首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The renal outer medullary K(+)-channel ROMK1 is upregulated by the serum- and glucocorticoid-inducible kinase SGK1, an effect potentiated by Na(+)/H(+)-exchanger-regulating-factor NHERF2. SGK1 phosphorylates ROMK1 at serine44. To explore the role of SGK1 phosphorylation, serine44 was replaced by an alanine ([S44A]ROMK1) or an aspartate ([S44D]ROMK1). Wild type ROMK1, [S44A]ROMK1, and [S44D]ROMK1 were expressed in Xenopus oocytes with or without constitutively active [S422D]SGK1 and NHERF2, and K(+) current (I(KR)) determined. Cytosolic pH required for halfmaximal I(KR) (pK(a)) amounted to 7.05+/-0.01 for ROMK1, 7.07+/-0.02 for [S44A]ROMK1, and 6.83+/-0.05 for [S44D]ROMK1. Maximal I(KR) was [S44D]ROMK1>wild type ROMK1>[S44A]ROMK1. Coexpression of [S422D]SGK1 and NHERF2 enhanced the activity of ROMK1, [S44A]ROMK1 and [S44D]ROMK1, but led to a significant shift of pK(a) only in wild type ROMK1 (6.95+/-0.03). In conclusion, phosphorylation by SGK1 or introduction of a negative charge at serine44 shifts the pH sensitivity of the channel and contributes to the stimulation of maximal channel activity by the kinase.  相似文献   

2.
The Na(+)/H(+) exchanger regulatory factor 2 (NHERF2/TKA-1/E3KARP) contains two PSD-95/Dlg/ZO-1 (PDZ) domains which interact with the PDZ docking motif (X-(S/T)-X-(V/L)) of proteins to mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. One of the PDZ domains of NHERF2 interacts specifically with the DSLL, DSFL, and DTRL motifs present at the carboxy-termini of the 2-adrenergic receptor, the platelet-derived growth factor receptor, and the cystic fibrosis transmembrane conductance regulator, respectively. Serum- and glucocorticoid-induced protein kinase 1 (SGK1) also carries a putative PDZ-binding motif (D-S-F-L) at its carboxy tail, implicated in the specific interaction with NHERF2. There is a 3-phosphoinositide-dependent protein kinase 1 (PDK1) interacting fragment (PIF) in the tail of NHERF2. Using pull-down assays and co-transfection experiments, we demonstrated that the DSFL tail of SGK1 interacts with the first PDZ domain of NHERF2 and the PIF of NHERF2 binds to the PIF-binding pocket of PDK1 to form an SGK1-NHERF2-PDK1 complex. Formation of the protein complex promoted the phosphorylation and activation of SGK1 by PDK1. Thus, it was suggested that NHERF2 mediates the activation and phosphorylation of SGK1 by PDK1 through its first PDZ domain and PIF motif, as a novel SGK1 activation mechanism.  相似文献   

3.
4.
The ROMK subtypes of inward rectifier K+ channels (Kir 1.1, KCNJ1) mediate potassium secretion and regulate NaCl reabsorption in the kidney. In the present study, the role of the PDZ binding motif in ROMK function is explored. Here we identify the Na/H exchange regulatory factors, NHERF-1 and NHERF-2, as PDZ domain interaction partners of the ROMK channel. Characterization of the basis and consequences of NHERF association with ROMK reveals a PDZ interaction-dependent trafficking process and a coupling mechanism for linking ROMK to a channel modifier protein, the cystic fibrosis transmembrane regulator (CFTR). As measured by antibody binding of external epitope-tagged forms of Kir 1.1 in intact cells, NHERF-1 or NHERF-2 coexpression increased cell surface expression of ROMK. Channel interaction with NHERF proteins and effects of NHERF on ROMK localization were dependent on the presence of the PDZ domain binding motif in ROMK. Both NHERF proteins contain two PDZ domains; recombinant protein-protein binding assays and yeast-two-hybrid studies revealed that ROMK preferentially associates with the second PDZ domain of NHERF-1 and with the first PDZ domain of NHERF-2, precisely opposite of what has been reported for CFTR. Consistent with the scaffolding capacity of the NHERF proteins, coexpression of NHERF-2 with ROMK and CFTR dramatically increases the amount of ROMK protein that coimmunopurifies and functionally interacts with CFTR. Thus NHERF facilitates assembly of a ternary complex containing ROMK and CFTR. These observations raise the possibility that PDZ-based interactions may underscore physiological regulation and membrane targeting of ROMK in the kidney.  相似文献   

5.
Na(+)/H(+) exchanger regulatory factor (NHERF) is an adapter protein that is responsible for organizing a number of cell receptors and channels. NHERF contains two amino-terminal PDZ (postsynaptic density 95/disk-large/zonula occluden-1) domains that bind to the cytoplasmic domains of a number of membrane channels or receptors. The carboxyl terminus of NHERF interacts with the FERM domain (a domain shared by protein 4.1, ezrin, radixin, and moesin) of a family of actin-binding proteins, ezrin-radixin-moesin. NHERF was shown previously to be capable of enhancing the channel activities of cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that binding of the FERM domain of ezrin to NHERF regulates the cooperative binding of NHERF to bring two cytoplasmic tails of CFTR into spatial proximity to each other. We find that ezrin binding activates the second PDZ domain of NHERF to interact with the cytoplasmic tails of CFTR (C-CFTR), so as to form a specific 2:1:1 (C-CFTR)(2).NHERF.ezrin ternary complex. Without ezrin binding, the cytoplasmic tail of CFTR only interacts strongly with the first amino-terminal PDZ domain to form a 1:1 C-CFTR.NHERF complex. Immunoprecipitation and immunoblotting confirm the specific interactions of NHERF with the full-length CFTR and with ezrin in vivo. Because of the concentrated distribution of ezrin and NHERF in the apical membrane regions of epithelial cells and the diverse binding partners for the NHERF PDZ domains, the regulation of NHERF by ezrin may be employed as a general mechanism to assemble channels and receptors in the membrane cytoskeleton.  相似文献   

6.
Epithelial calcium (re)absorption is mediated by TRPV5 and TRPV6 channels. TRPV5 is modulated by the SGK1 kinase, a process requiring the PDZ-domain containing scaffold protein NHERF2. The present study explored whether TRPV6 is similarly regulated by SGKs and the scaffold proteins NHERF1/2. In Xenopus oocytes, SGKs activate TRPV6 by increasing its plasma membrane abundance. Deletion of the putative PDZ binding motif on TRPV6 did not abolish channel activation by SGKs. Furthermore, coexpression of neither NHERF1 nor NHERF2 affected TRPV6 or potentiated the SGKs stimulating effect. The present observations disclose a novel TRPV6 regulatory mechanism which presumably participates in calcium homeostasis.  相似文献   

7.
Understanding the signal transduction systems governing invasion is fundamental for the design of therapeutic strategies against metastasis. Na(+)/H(+) exchanger regulatory factor (NHERF1) is a postsynaptic density 95/disc-large/zona occludens (PDZ) domain-containing protein that recruits membrane receptors/transporters and cytoplasmic signaling proteins into functional complexes. NHERF1 expression is altered in breast cancer, but its effective role in mammary carcinogenesis remains undefined. We report here that NHERF1 overexpression in human breast tumor biopsies is associated with metastatic progression, poor prognosis, and hypoxia-inducible factor-1alpha expression. In cultured tumor cells, hypoxia and serum deprivation increase NHERF1 expression, promote the formation of leading-edge pseudopodia, and redistribute NHERF1 to these pseudopodia. This pseudopodial localization of NHERF1 was verified in breast biopsies and in three-dimensional Matrigel culture. Furthermore, serum deprivation and hypoxia stimulate the Na(+)/H(+) exchanger, invasion, and activate a protein kinase A (PKA)-gated RhoA/p38 invasion signal module. Significantly, NHERF1 overexpression was sufficient to induce these morphological and functional changes, and it potentiated their induction by serum deprivation. Functional experiments with truncated and binding groove-mutated PDZ domain constructs demonstrated that NHERF1 regulates these processes through its PDZ2 domain. We conclude that NHERF1 overexpression enhances the invasive phenotype in breast cancer cells, both alone and in synergy with exposure to the tumor microenvironment, via the coordination of PKA-gated RhoA/p38 signaling.  相似文献   

8.
Na(+)/H(+) exchanger regulatory factor (NHERF) and NHERF2 are PDZ motif proteins that mediate the inhibitory effect of cAMP on Na(+)/H(+) exchanger 3 (NHE3) by facilitating the formation of a multiprotein signaling complex. With the use of antibodies specific for NHERF and NHERF2, immunocytochemical analysis of rat kidney was undertaken to determine the nephron distribution of both proteins and their colocalization with other transporters and with ezrin. NHERF was most abundant in apical membrane of proximal tubule cells, where it colocalized with ezrin and NHE3. NHERF2 was detected in the glomerulus and in other renal vascular structures. In addition, NHERF2 was strongly expressed in collecting duct principal cells, where it colocalized with ROMK. These results indicate a striking difference in the nephron distribution of NHERF and NHERF2 and suggests NHERF is most likely to be the relevant biological regulator of NHE3 in the proximal tubule, while NHERF2 may interact with ROMK or other targets in the collecting duct. The finding that NHERF isoforms occur in different cell types suggests that NHERF and NHERF2 may subserve different functions in the kidney.  相似文献   

9.
Scaffolding proteins are molecular switches that control diverse signaling events. The scaffolding protein Na+/H+ exchanger regulatory factor 1 (NHERF1) assembles macromolecular signaling complexes and regulates the macromolecular assembly, localization, and intracellular trafficking of a number of membrane ion transport proteins, receptors, and adhesion/antiadhesion proteins. NHERF1 begins with two modular protein-protein interaction domains—PDZ1 and PDZ2—and ends with a C-terminal (CT) domain. This CT domain binds to ezrin, which, in turn, interacts with cytosekeletal actin. Remarkably, ezrin binding to NHERF1 increases the binding capabilities of both PDZ domains. Here, we use deuterium labeling and contrast variation neutron-scattering experiments to determine the conformational changes in NHERF1 when it forms a complex with ezrin. Upon binding to ezrin, NHERF1 undergoes significant conformational changes in the region linking PDZ2 and its CT ezrin-binding domain, as well as in the region linking PDZ1 and PDZ2, involving very long range interactions over 120 Å. The results provide a structural explanation, at mesoscopic scales, of the allosteric control of NHERF1 by ezrin as it assembles protein complexes. Because of the essential roles of NHERF1 and ezrin in intracellular trafficking in epithelial cells, we hypothesize that this long-range allosteric regulation of NHERF1 by ezrin enables the membrane-cytoskeleton to assemble protein complexes that control cross-talk and regulate the strength and duration of signaling.  相似文献   

10.
Loss of cell polarity is one of the initial alterations in the development of human epithelial cancers. Na(+)/H(+) exchanger regulatory factor (NHERF) homologous adaptors 1 and 2 are membrane-associated proteins composed of two amino (N)-terminal PDZ domains and an ezrin-radixin-moesin (ERM)-binding (EB) carboxyl (C)-terminal region. We describe here an intramolecular conformation of NHERF1/EBP50 (ERM-binding phosphoprotein 50) in which the C-terminal EB region binds to the PDZ2 domain. This novel head-to-tail conformation masked the interaction of both PDZ domains with PDZ domain-specific ligands, such as PTEN and beta-catenin. An EB region composite structure comprising an alpha-helix ending in a PDZ-binding motif imparted opposite effects to NHERF1 associations, mediating binding to ERM proteins and inhibiting binding of PDZ domain ligands. The PDZ domain inhibition was released by prior association of ezrin with the EB region, a condition that occurs in vivo and likely disrupts NHERF1 head-to-tail interaction. In contrast, NHERF2 did not present a regulatory mechanism for protein complex formation. Functionally, NHERF1 is required to organize complexes at the apical membranes of polarized epithelial cells. The regulation of NHERF1 interactions at the apical membrane thus appears to be a dynamic process that is important for maintaining epithelial-tissue integrity.  相似文献   

11.
The mammalian Na+/H+ exchange regulatory factor 1 (NHERF1) is a multidomain scaffolding protein essential for regulating the intracellular trafficking and macromolecular assembly of transmembrane ion channels and receptors. NHERF1 consists of tandem PDZ-1, PDZ-2 domains that interact with the cytoplasmic domains of membrane proteins and a C-terminal (CT) domain that binds the membrane-cytoskeleton linker protein ezrin. NHERF1 is held in an autoinhibited state through intramolecular interactions between PDZ2 and the CT domain that also includes a C-terminal PDZ-binding motif (-SNL). We have determined the structures of the isolated and tandem PDZ2CT domains by high resolution NMR using small angle x-ray scattering as constraints. The PDZ2CT structure shows weak intramolecular interactions between the largely disordered CT domain and the PDZ ligand binding site. The structure reveals a novel helix-turn-helix subdomain that is allosterically coupled to the putative PDZ2 domain by a network of hydrophobic interactions. This helical subdomain increases both the stability and the binding affinity of the extended PDZ structure. Using NMR and small angle neutron scattering for joint structure refinement, we demonstrate the release of intramolecular domain-domain interactions in PDZ2CT upon binding to ezrin. Based on the structural information, we show that human disease-causing mutations in PDZ2, R153Q and E225K, have significantly reduced protein stability. Loss of NHERF1 expressed in cells could result in failure to assemble membrane complexes that are important for normal physiological functions.  相似文献   

12.
Metastatic cells are highly plastic for differential expression of tumor phenotype hallmarks and metastatic organotropism. The signaling proteins orchestrating the shift of one cell phenotype and organ pattern to another are little known. Na(+)/H(+) exchanger regulatory factor (NHERF1) is a molecular pathway organizer, PDZ-domain protein that recruits membrane, cytoplasmic, and cytoskeletal signaling proteins into functional complexes. To gain insight into the role of NHERF1 in metastatic progression, we stably transfected a metastatic breast cell line, MDA-MB-231, with an empty vector, with wild-type NHERF1, or with NHERF1 mutated in either the PDZ1- or PDZ2-binding domains to block their binding activities. We observed that NHERF1 differentially regulates the expression of two phenotypic programs through its PDZ domains, and these programs form the mechanistic basis for metastatic organotropism. The PDZ2 domain promotes visceral metastases via increased invadopodia-dependent invasion and anchorage-independent growth, as well as by inhibition of apoptosis, whereas the PDZ1 domain promotes bone metastases by stimulating podosome nucleation, motility, neoangiogenesis, vasculogenic mimicry, and osteoclastogenesis in the absence of increased growth or invasion. Collectively, these findings identify NHERF1 as an important signaling nexus for coordinating cell structure with metastatic behavior and identifies the "mesenchymal-to-vasculogenic" phenotypic transition as an essential step in metastatic progression.  相似文献   

13.
The Na(+)/H(+) exchange regulatory factor-1 (NHERF1) is a scaffolding protein that possesses two tandem PDZ domains and a carboxy-terminal ezrin-binding domain (EBD). The parathyroid hormone receptor (PTHR), type II sodium-dependent phosphate cotransporter (Npt2a), and β2-adrenergic receptor (β2-AR), through their respective carboxy-terminal PDZ-recognition motifs, individually interact with NHERF1 forming a complex with one of the PDZ domains. In the basal state, NHERF1 adopts a self-inhibited conformation, in which its carboxy-terminal PDZ ligand interacts with PDZ2. We applied molecular dynamics (MD) simulations to uncover the structural and biochemical basis for the binding selectivity of NHERF1 PDZ domains. PDZ1 uniquely forms several contacts not present in PDZ2 that further stabilize PDZ1 interactions with target ligands. The binding free energy (ΔG) of PDZ1 and PDZ2 with the carboxy-terminal, five-amino acid residues that form the PDZ-recognition motif of PTHR, Npt2a, and β2-AR was calculated and compared with the calculated ΔG for the self-association of NHERF1. The results suggest that the interaction of the PTHR, β2-adrenergic, and Npt2a involves competition between NHERF1 PDZ domains and the target proteins. The binding of PDZ2 with PTHR may also compete with the self-inhibited conformation of NHERF1, thereby contributing to the stabilization of an active NHERF1 conformation.  相似文献   

14.
NHERF (Na(+)/H(+) exchanger regulatory factor) and E3KARP (NHE3 kinase A regulatory protein or NHERF2) are structurally related adapter proteins that contain two tandem PDZ (PSD-95/Dlg-1/ZO-1) domains. Recent studies suggest that these proteins play important roles in the membrane targeting, trafficking, and sorting of several ion channels, transmembrane receptors, and signaling proteins in many tissues. Both NHERF and E3KARP interact with NHE3 through their C-terminally extended second PDZ domain, and the last 30 amino acids of these PDZ domain proteins interact with ezrin. However, the structural bases of the full-length human NHERF and E3KARP, in their physiological roles on the regulation of NHE3 trafficking, are still unknown. To obtain pure and soluble proteins for crystallization and X-ray studies, NHERF and E3KARP were subcloned into pET-30b and pET-30a vectors, and overexpressed in Escherichia coli strains of BL21(DE3). The soluble NHERF and E3KARP proteins were purified using Ni-NTA, anion-exchange column and gel filtration chromatography. The purity, molecular mass, and the conformation of the proteins were determined by high-performance liquid chromatography, matrix-assisted laser desorption-ionization-time-of-flight mass spectroscopy and circular dichroism studies, respectively.  相似文献   

15.
16.
Liedtke CM  Wang X 《Biochemistry》2006,45(34):10270-10277
Regulation of the CFTR Cl channel function involves a protein complex of activated protein kinase Cepsilon (PKCepsilon) bound to RACK1, a receptor for activated C kinase, and RACK1 bound to the human Na(+)/H(+) exchanger regulatory factor (NHERF1) in human airway epithelial cells. Binding of NHERF1 to RACK1 is mediated via a NHERF1-PDZ1 domain. The goal of this study was to identify the binding motif for human NHERF1 on RACK1. We examined the site of binding of NHERF1 on RACK1 using peptides encoding the seven WD40 repeat units of human RACK1. One WD repeat peptide, WD5, directly binds NHERF1 and the PDZ1 domain with similar EC(50) values, blocks binding of recombinant RACK1 and NHERF1, and pulls down endogenous RACK1 from Calu-3 cell lysate in a dose-dependent manner. The remaining WD repeat peptides did not block RACK1-NHERF1 binding. An 11-amino acid peptide encoding a site on the PDZ1 domain blocks binding of the WD5 repeat peptide with the PDZ1 domain. An N-terminal 12-amino acid segment of the WD5 repeat peptide, which comprises the first of four antiparallel beta-strands, dose-dependently binds to the PDZ1 domain of NHERF1 and blocks binding of the PDZ1 domain to RACK1. These results suggest that the binding site might form a beta-turn with topology sufficient for binding of NHERF1. Our results also demonstrate binding of NHERF to RACK1 at the WD5 repeat, which is distinct from the PKCepsilon binding site on the WD6 repeat of RACK1.  相似文献   

17.
The Na(+)/H(+) exchanger regulatory factor (NHERF; also known as EBP50) contains two PDZ domains that mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. The NHERF PDZ1 domain interacts specifically with the motifs DSLL, DSFL, and DTRL present at the carboxyl termini of the beta(2) adrenergic receptor (beta(2)AR), the platelet-derived growth factor receptor (PDGFR), and the cystic fibrosis transmembrane conductance regulator (CFTR), respectively, and plays a central role in the physiological regulation of these proteins. The crystal structure of the human NHERF PDZ1 has been determined at 1.5 A resolution using multiwavelength anomalous diffraction phasing. The overall structure is similar to known PDZ structures, with notable differences in the NHERF PDZ1 carboxylate-binding loop that contains the GYGF motif, and the variable loop between the beta2 and beta3 strands. In the crystalline state, the carboxyl-terminal sequence DEQL of PDZ1 occupies the peptide-binding pocket of a neighboring PDZ1 molecule related by 2-fold crystallographic symmetry. This structure reveals the molecular mechanism of carboxyl-terminal leucine recognition by class I PDZ domains, and provides insights into the specificity of NHERF interaction with the carboxyl termini of several membrane receptors and ion channels, including the beta(2)AR, PDGFR, and CFTR.  相似文献   

18.
Among the phospholipase C that catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate, four mammalian phospholipase C-beta (PLC-beta) isotypes (isotypes 1-4) are activated through G protein-coupled receptors (GPCRs). Although the regulation of the PLC-betas by GPCRs and heterotrimeric G proteins has been extensively studied, little is known about the molecular determinants that regulate their activity. The PLC-beta isozymes carry a putative PSD-95/Dlg/ZO-1 (PDZ) binding motif (X(S/T)X(V/L)COOH) at their carboxyl terminus, which is implicated in specific interactions with anchor proteins. Using the yeast two-hybrid system, we identified Na(+)/H(+) exchanger regulatory factor 2 (NHERF2) as a protein that interacted with a C-terminal heptapeptide of PLC-beta3. Immunoprecipitation studies revealed that NHERF2 interacts specifically with PLC-beta3, but not with other PLC-beta isotypes. Furthermore, PLC-beta3 interacted with NHERF2 rather than with other PDZ-containing proteins. This interaction required the COOH-terminal NTQL sequence of PLC-beta3 and the second PDZ domain of NHERF2. Interestingly, NHERF2 potentiated the PLC-beta activation by carbachol in COS7 and HeLa cells, while mutant NHERF2, lacking the second PDZ domain, had no such effect. Taken together, the data suggest that NHERF2 may act as a modulator underlying the process of PLC-beta3-mediated signaling.  相似文献   

19.
In past studies, we demonstrated regulation of CFTR Cl channel function by protein kinase C (PKC)- through the binding of PKC- to RACK1 (a receptor for activated C-kinase) and of RACK1 to human Na+/H+ exchanger regulatory factor (NHERF1). In this study, we investigated the site of RACK1 binding on NHERF1 using solid-phase and solution binding assays and pulldown, immunoprecipitation, and 36Cl efflux experiments. Recombinant RACK1 binding to glutathione S-transferase (GST)-tagged PDZ1 domain of NHERF1 was 10-fold higher than its binding to GST-tagged PDZ2 domain of NHERF1. PDZ1 binds to RACK1 in a dose-dependent manner and vice versa, with similar binding constants of 1.67 and 1.26 µg, respectively. Interaction of the PDZ1 domain with RACK1 was not blocked by binding of activated PKC- to RACK1. A GST-tagged PDZ1 domain pulled down endogenous RACK1 from Calu-3 cell lysate. An internal 11-amino acid motif embedding the GYGF carboxylate binding loop of PDZ1 binds to RACK1, inhibits binding of recombinant NHERF1 and RACK1, pulls down endogenous RACK1 from Calu-3 cell lysate, and blocks coimmunoprecipitation of endogenous RACK1 with endogenous NHERF1 but does not affect cAMP-dependent activation of CFTR. A similar amino acid sequence in the PDZ2 domain did not bind RACK1. Our results indicate binding of Calu-3 RACK1 predominantly to the PDZ1 domain of NHERF1 at a site encompassing the GYGF loop of the PDZ1 domain and a site on RACK1 distinct from a PKC- binding site. CFTR activation by cAMP-generating agent is not affected by loss of RACK1-NHERF1 interaction. cystic fibrosis; cystic fibrosis transmembrane conductance regulator; protein-protein interaction; slot blot assay; pulldown; PDZ domain; chloride efflux; immunoprecipitation  相似文献   

20.
PTEN, a tumor suppressor frequently inactivated in many human cancers, directly antagonizes the activity of phosphatidylinositol-3-OH kinase (PI3K) by dephosphorylating phosphoinositides. We show here that PTEN interacts directly with the NHERF1 and NHERF2 (Na+/H+ exchanger regulatory factor) homologous adaptor proteins through the PDZ motif of PTEN and the PDZ1 domain of NHERF1 or both PDZ domains of NHERF2. NHERFs were shown to interact directly with platelet-derived growth factor receptor (PDGFR), and we demonstrate the assembly of a ternary complex between PTEN, NHERFs and PDGFR. The activation of the PI3K pathway after PDGFR stimulation was prolonged in NHERF1(-/-) mouse embryonic fibroblasts as compared to wild-type cells, consistent with defective PTEN recruitment to PDGFR in the absence of NHERF1. Depletion of NHERF2 by small interfering RNA similarly increased PI3K signaling. Phenotypically, the loss of NHERF1 enhanced the PDGF-induced cytoskeletal rearrangements and chemotactic migration of the cells. These data indicate that, in normal cells, NHERF proteins recruit PTEN to PDGFR to restrict the activation of the PI3K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号