首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel triple-kringle plasminogen activator protein, PK1 delta FE1X, has been produced which is a genetic chimera between the fibrin binding kringle 1 domain of plasminogen and the two kringles and serine protease domains of naturally occurring wild-type tissue plasminogen activator (wt t-PA). This chimera also contains a modification to prevent high mannose type N-linked glycosylation on kringle 1 of t-PA. PK1 delta FE1X is biochemically and fibrinolytically similar to wt t-PA in vitro but retains the decreased plasma clearance rate characteristic of other t-PA variants which lack fibronectin finger-like and epidermal growth factor domains. The serine protease domain of PK1 delta FE1X exhibits the amidolytic activity characteristic of wt t-PA. In an indirect coupled plasminogen activator assay, the specific activity of PK1 delta FE1X is approximately 1.4 times greater than that of wt t-PA. In a fibrin film-binding assay, greater binding to untreated fibrin is observed with wt t-PA than with PK1 delta FE1X. However, following limited plasmin digestion of the fibrin film, PK1 delta FE1X binding increases to the level observed with wt t-PA. The incremental binding to plasmin-digested fibrin observed with PK1 delta FE1X is eliminated if plasmin digestion of the fibrin film is followed by carboxypeptidase B treatment. This result suggests that plasminogen kringle 1 binds plasmin-digested fibrin even after recombination with a heterologous protein. The fibrinolytic activity of PK1 delta FE1X in human plasma clot lysis assays was similar to that of wt t-PA at activator concentrations of approximately 1 microgram/ml. At substantially lower concentrations, approximately 0.1 microgram/ml, PK1 delta FE1X was only slightly less active than wt t-PA. Pharmacokinetic analysis showed that wt t-PA activity is cleared approximately 15 times as rapidly as PK1 delta FE1X following intravenous bolus injection. In a rabbit jugular vein clot lysis model, intravenous bolus injection of 0.06 mg/kg of PK1 delta FE1X showed greater thrombolytic potency than a similar administration of 0.5 mg/kg of wt t-PA. Thus it appears that in vitro exon shuffling techniques can be used to generate novel fibrinolytic agents which biochemically and pharmacologically represent the combination of individual domains of naturally occurring proteins.  相似文献   

2.
The binding of recombinant tissue-type plasminogen activator (rt-PA) to fibrin increases upon digestion of fibrin with plasmin. Optimal binding is observed following a limited plasmin digestion of fibrin, coinciding with the generation of fibrin fragment X polymers. We studied the involvement of the separate domains of the amino-terminal "heavy" (H) chain of rt-PA in this augmentation of fibrin binding. The fibrin-binding characteristics of a set of rt-PA deletion mutants, lacking either one or more of the structural domains of the H chain, were determined on intact fibrin matrices and on fibrin matrices that were subjected to limited digestion with plasmin. The augmented fibrin binding of rt-PA is partially abolished when the plasmin-degraded fibrin matrices are subsequently treated with carboxypeptidase B, demonstrating that this increased binding is dependent on the generation of carboxyl-terminal lysine residues in the fibrin matrix. Evidence is provided that this increase of fibrin binding is mediated by the kringle 2 (K2) domain that contains a lysine-binding site. Further increase of the fibrin binding of rt-PA is independent of the presence of carboxyl-terminal lysines. It is shown that the latter increase is not mediated by the K2 domain. Based on our data, we propose that the increase in fibrin binding, unrelated to the presence of carboxyl-terminal lysine residues, is mediated by the finger (F) domain, provided that this domain is correctly exposed in the remainder of the protein.  相似文献   

3.
The role of Asn-linked oligosaccharide in the functional properties of both human tissue-type plasminogen activator (t-PA) and a genetic variant of t-PA was studied. Nonglycosylated and glycosylated wild-type t-PA were produced in mammalian cells which express recombinant t-PA. These proteins were compared in fibrin binding and 125I-labeled fibrin clot lysis assays, using purified components. The nonglycosylated form showed higher fibrin binding, as well as higher fibrinolytic potency than the glycosylated form. Subsequently, prevention of glycosylation of a t-PA variant which lacked the finger and epidermal growth factor domains (delta FE), was carried out in an attempt to enhance its fibrinolytic activity. Glycosylation was prevented by changing Asn to Gln; at Asn-117 to produce delta FE1X t-PA, and at Asn-117, -184, and -448 to produce delta FE3X t-PA. All variants were similar to wild-type t-PA in their catalytic dependence on fibrinogen fragments, fibrinolytic activity in fibrin autography analysis, and plasminogen activator activity. In a clot lysis assay, using citrated human plasma, the fibrinolytic potency of the variants were comparable to that of wild-type t-PA at activator concentrations of 17-51 nM (approximately 1-3 micrograms/ml). At 0.5-5.1 nM (approximately 0.03-0.3 micrograms/ml), however, the variant proteins had lower fibrinolytic potency than wild-type t-PA. Fifty percent lysis in 1.5 h for wild-type, delta FE, delta FE1X, and delta FE3X t-PA, required 2.5, 10, 7.5, and 5.5 nM t-PA, respectively. The fibrinogenolytic activity in human plasma was measured for wild-type, delta FE, delta FE1X, and delta FE3X t-PA, and showed significant fibrinogen depletion after 3 h of incubation at 51 nM, decreasing to 11, 11, 50, and 72% of basal levels, respectively. These data indicate that partial or total nonglycosylated t-PA variants have a higher fibrinolytic versus fibrinogenolytic ratio than their fully glycosylated counterparts.  相似文献   

4.
The heavy chain of tissue plasminogen activator (t-PA) consists of four domains [finger, epidermal-growth-factor (EGF)-like, kringle 1 and kringle 2] that are homologous to similar domains present in other proteins. To assess the contribution of each of the domains to the biological properties of the enzyme, site-directed mutagenesis was used to generate a set of mutants lacking sequences corresponding to the axons encoding the individual structural domains. The mutant proteins were assayed for their ability to hydrolyze artificial and natural substrates in the presence and absence of fibrin, to bind to lysine-Sepharose and to be inhibited by plasminogen activator inhibitor-1. All the deletion mutants exhibit levels of basal enzymatic activity very similar to that of wild-type t-PA assayed in the absence of fibrin. A mutant protein lacking the finger domain has a 2-fold higher affinity for plasminogen than wild-type t-PA, while the mutant that lacks both finger and EGF-like domains is less active at low concentrations of plasminogen. Mutants lacking both kringles neither bind to lysine-Sepharose nor are stimulated by fibrin. However, mutants containing only one kringle (either kringle 1 or kringle 2) behave indistinguishably from one another and from the wild-type protein. We conclude that kringle 1 and kringle 2 are equivalent in their ability to mediate stimulation of catalytic activity by fibrin.  相似文献   

5.
Human tissue-type plasminogen activator (t-PA) consists of five domains designated (starting from the N-terminus) finger, growth factor, kringle 1, kringle 2, and protease. The binding of t-PA to lysine-Sepharose and aminohexyl-Sepharose was found to require kringle 2. The affinity for binding the lysine derivatives 6-aminohexanoic acid and N-acetyllysine methyl ester was about equal, suggesting that t-PA does not prefer C-terminal lysine residues for binding. Intact t-PA and a variant consisting only of kringle 2 and protease domains were found to bind to fibrin fragment FCB-2, the very fragment that also binds plasminogen and acts as a stimulator of t-PA-catalyzed plasminogen activation. In both cases, binding could completely be inhibited by 6-aminohexanoic acid, pointing to the involvement of a lysine binding site in this interaction. Furthermore, the second site in t-PA involved in interaction with fibrin, presumably the finger, appears to interact with a part of fibrin, different from FCB-2.  相似文献   

6.
Tissue-type plasminogen activator (t-pa) is a serine protease comprising four different putative structural domains with homologies to fibronectin finger-like structures (finger), epidermal growth factor, kringle structures, and the active site of serine proteases. Only the finger and epidermal growth factor domain are each entirely encoded by unique single exons. We assessed the functional contribution of these two structural domains by making mutants precisely deleted for one or both of the relevant exons. The three mutant genes were expressed in monkey cells, and the variant proteins, purified from the culture medium, were characterized for their fibrinolytic activity, fibrinogenolytic potential, and affinity for fibrin. No significant difference in any biochemical property was observed among the variants. All three variants retained a catalytic dependence on cyanogen bromide fragments of fibrinogen which could not be distinguished from the wild-type enzyme. The activities of the variants were also very similar to that of wild-type t-pa, showing no detectable fibrinogenolytic potential in human plasma at activator concentrations of 500 IU/ml, or when their fibrinolytic activity was tested in human plasma using the 125I-labeled fibrin clot lysis assay at activator concentrations of 150 IU/ml or greater. However, the variants were markedly defective in fibrinolysis at low activator concentrations such that essentially no fibrinolysis was detected at 15 IU/ml. Measurement of fibrin binding showed that the variants lacked the high fibrin binding characteristic of wild-type t-pa. These results demonstrate that the fibrin specificity and fibrin-dependent activity of t-pa are independent of the protein's high affinity for fibrin. The implication of these results is that the t-pa variants would be ineffective activators at a physiological concentration of approximately 2 IU/ml but would be expected to behave similarly to wild-type t-pa at the steady-state plasma concentrations of 0.75-1.25 micrograms/ml (approximately 500 IU/ml) currently required for coronary reperfusion in patients receiving t-pa for acute myocardial infarction (Garabedian, H.D., Gold, H.K., Leinbach, R.C., Yasuda, T., Johns, J.A., and Collen, D. (1986) Am. J. Cardiol. 58, 673-679).  相似文献   

7.
We constructed two human tissue-type plasminogen activator/urokinase (t-PA/u-PA) hybrid cDNAs which were expressed by transfection of mouse Ltk- cells. The properties of the secreted proteins were compared with those of recombinant t-PA (rt-PA) and high molecular weight (HMW) u-PA. The hybrid proteins each contain the amino-terminal fibrin-binding chain of t-PA fused to the carboxy-terminal serine protease moiety of u-PA but differ by a stretch of 13 amino acid residues between kringle 2 of t-PA and the plasmin cleavage site of u-PA. Hybrid protein rt-PA/u-PA I contains amino acids 1-262 of t-PA connected with amino acids 147-411 of u-PA, whereas hybrid protein rt-PA/u-PA II consists of the same t-PA segment and residues 134-411 of u-PA. We demonstrated fibrin binding for rt-PA, whereas the hybrid proteins bind to a lesser extent and HMW u-PA has no affinity for fibrin. Plasminogen activation by either one of the hybrid proteins in the absence of a fibrin substitute was similar to that by HMW u-PA, while rt-PA was much less active. The catalytic efficiency, in the presence of a fibrin substitute, increases more than 2000-fold for rt-PA, about 250-fold for hybrid proteins I and II, and 12-fold for HMW u-PA, respectively. Under these conditions the hybrid proteins are more efficient plasminogen activators than the parental ones. The hybrid molecules form a 1:1 molar complex with the human endothelial plasminogen activator inhibitor (PAI-1), analogous to that formed by rt-PA and HMW u-PA. The relative affinity of rt-PA for PAI-1 is 4.6-fold higher than that of HMW u-PA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Human tissue-type plasminogen activator (t-PA) catalyses the conversion of inactive plasminogen into active plasmin, the main fibrinolytic enzyme. This process is confined to the fibrin surface by specific binding of t-PA to fibrin and stimulation of its activity by fibrin. Tissue-type plasminogen activator contains five domains designated finger, growth factor, kringle 1, kringle 2 and protease. The involvement of the domains in fibrin specificity was investigated with a set of variant proteins lacking one or more domains. Variant proteins were produced by expression in Chinese hamster ovary cells of plasmids containing part of the coding sequence for the activator. It was found that kringle 2 domain only is involved in stimulation of activity by fibrin. In the absence of plasminogen and at low concentration of fibrin, binding of t-PA is mainly due to the finger domain, while at high fibrin concentrations also kringle 2 is involved in fibrin binding. In the presence of plasminogen, fibrin binding of the kringle 2 region of t-PA also becomes important at low fibrin concentrations.  相似文献   

9.
Recent data from several studies have suggested that the non-protease domains in tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) determine their biological specificities, including binding to fibrin clots and survival in the circulatory system (Van Zonneveld, A.-J., Veerman, H., and Pannekoek, H. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 4670-4674; Rijken, D. C., and Emeis, J. J. (1986) Biochem. J. 238, 643-646). Structural manipulations (e.g. deletions, additions, or substitutions) in these domains can thus be utilized to maximize the desired biological effects. Using recombinant DNA technology, we constructed a number of hybrid molecules from the t-PA and u-PA genes. In hybrid A, the epidermal growth factor and finger domains of t-PA (residues 1-91) were replaced by the epidermal growth factor and kringle of u-PA (residues 1-131). In hybrids B and C, the u-PA kringle (residues 50-131) was inserted either before (residue 92) or after (residue 261) the double-kringle region of t-PA. All these hybrid PAs containing three kringles were expressed in mouse fibroblast cells (C-127). The hybrid proteins were synthesized in predominantly a single-chain form with molecular weights of 70,000-80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were enzymatically active as assayed by the fibrin-agar plate method. In vitro studies on the binding of hybrid PAs to fibrin showed that hybrid B, like t-PA, possesses affinity toward fibrin, while hybrid A shows lower binding. This suggests that the finger domain, which is not present in hybrid A, plays a role in conferring fibrin affinity to the hybrid PAs. The enzymatic activities of the hybrids were compared with that of recombinant t-PA (rt-PA) expressed in the same vector/host system and found to be similar in activity toward a chromogenic peptide substrate. In addition, plasminogen activation with all the hybrid-PAs, as with rt-PA, was stimulated by fibrin, with the order of activity being rt-PA greater than or equal to hybrid B greater than hybrid C greater than hybrid A. This study shows the feasibility of shuffling functional domain(s) of known specificity in plasminogen activators which may lead to the design of a superior thrombolytic agent.  相似文献   

10.
Thrombolytic therapy by plasminogen activators (PAs) has been a main goal in the treatment of acute myocardial infarction. Despite improved outcomes of currently available thrombolytic therapies, all these agents have different drawbacks that may result in less than optimal outcomes. In order to make tissue plasminogen activator (tPA) more potent, while being more resistant to plasminogen activator inhibitor-1 (PAI-1) and having a higher affinity to fibrin, a new chimeric-truncated form of tPA (CT tPA) was designed and expressed in Pichia pastoris. This novel variant consists of a finger domain of Desmoteplase, an epidermal growth factor (EGF) domain, a kringle 1 (K1) domain, a kringle 2 (K2) domain, in which the lysine binding site (LBS) was deleted, and a protease domain, where the four amino acids lysine 296, arginine 298, arginine 299, and arginine 304 were substituted by aspartic acid. The chimera CT tPA showed 14-fold increase in its activity in the presence of fibrin compared to the absence of fibrin. Furthermore, CT tPA showed about 10-fold more potency than commercially available full-length tPA (Actylase®) and provided 1.2-fold greater affinity to fibrin. A residual activity of only 68 % was observed after incubation of Actylase® with PAI-1, however, 91 % activity remained for CT tPA. These promising findings suggest that the novel CT tPA variant might be an acceptable PA with superior characteristics and properties.  相似文献   

11.
The interactions between tPA domains that are important for catalysis are poorly understood. We have probed the function of interdomain interactions by generating tPA variants in which domains are duplicated or rearranged. The proteins were expressed in a transient mammalian expression system and tested in vitro for their ability to activate plasminogen, induce fibrinolysis and bind to a forming fibrin clot. Duplication of the heavy chain domains of tPA produced enzymatically active tPA variants, many of which demonstrated similar in vitro amidolytic and fibrinolytic activity and similar fibrin affinity to the parent molecule. Zymographic analysis of the domain duplication tPA variants showed one major active species for each variant. Selection of the residues duplicated and the interdomain spacing were found to be critical considerations in the design of tPA variants with duplicated domains. We also rearranged the domains of tPA such that kringle 1 replaced the second kringle domain and vice versa. An analysis of these variants indicates that the first kringle domain can confer fibrin affinity to a tPA variant and function in place of kringle 2. Therefore, in wild-type tPA, the functions of kringle 1 and kringle 2 must be dependent partially on their orientation within the heavy chain of the protein. The functional autonomy of the heavy and light chains of tPA is demonstrated by the activity of a tPA variant in which the order of the heavy and light chains was reversed.  相似文献   

12.
Active-site-blocked, fluorescent derivatives of tPA (Activase) and a variant (delta FEIX) which lacks the finger and epidermal growth factor-like domains and possesses Asn to Gln and Val to Met mutations at residues 117 and 245, respectively, were prepared. The binding of these to fibrin was studied by adding them at systematically varying concentrations to fibrinogen, at a fixed concentration, inducing clotting with thrombin, separating free and bound tPA or delta FEIX by centrifugation, and measuring the concentration of unbound material by extrinsic fluorescence. Similar studies were performed with Glu and Lys-plasminogen, using intrinsic fluorescence. epsilon-amino caproic acid (EACA) was utilized to distinguish kringle-dependent from finger-dependent binding. In the absence of EACA, delta FEIX-bound fibrin through a single class of sites with Kd = 0.69 microM and n = 1.34 delta FEIX/fibrin. The binding of delta FEIX was completely inhibited by EACA and 50% displacement occurred at [EACA] = 300 microM. Fibrin-bound tPA was only partially displaced with EACA. In the presence of 30 mM EACA, tPA binding reflected a single class of sites with Kd = 0.26 microM and n = 0.60 tPA/fibrin. In the absence of EACA, tPA binding was complex, typified by downwardly curved Scatchard plots, and was consistent with interactions of the two classes of sites, characterized by Kd = 0.13 microM, n = 0.60 and Kd = 0.61 microM, n = 1.23. These were attributed to finger and kringle-dependent interactions, respectively. Under the experimental conditions employed, Glu-plasminogen exhibited no binding to fibrin, whereas Lys-plasminogen bound to a single class of sites with Kd = 0.25 microM and n = 1.02 plasminogen/fibrin. This binding was completely inhibited by EACA and 50% displacement occurred at [EACA] = 28 microM. Competition experiments indicated that Lys-plasminogen does not displace either tPA or delta FEIX from fibrin. From these results the conclusions are drawn that tPA can interact with intact fibrin by two different and independent modes, involving, respectively, the finger and kringle 2 domains, and neither of these modes are competitive with the kringle-dependent binding of Lys-plasminogen.  相似文献   

13.
The enzyme tissue-type plasminogen activator (t-PA) and its substrate Glu-plasminogen can both bind to fibrin. The assembly of these three components results in about a 1000-fold acceleration of the conversion of Glu-plasminogen into plasmin. Fibrin binding of t-PA is mediated both by its finger (F) domain and its kringle-2 domain. Fibrin binding of Glu-plasminogen involves its kringle structures (K1-K5). It has been suggested that particular kringles contain lysine-binding sites and/or aminohexyl-binding sites, exhibiting affinity for specific carboxyl-terminal lysines and intrachain lysines, respectively. We investigated the possibility that t-PA and Glu-plasminogen kringles share common binding sites in fibrin, limitedly digested with plasmin. For that purpose we performed competition experiments, using conditions that exclude plasmin formation, with Glu-plasminogen and either t-PA or two deletion mutants, lacking the F domain (t-PA del.F) or lacking the K2 domain (t-PA del.K2). Our data show that fibrin binding of t-PA, mediated by the F domain, is independent of Glu-plasminogen binding. In contrast, partial inhibition by Glu-plasminogen of t-PA K2 domain-mediated fibrin binding is observed that is dependent on carboxyl-terminal lysines, exposed in fibrin upon limited plasmin digestion. Half-maximal competition of fibrin binding of both t-PA and t-PA del.F is obtained at 3.3 microM Glu-plasminogen. The difference between this value and the apparent dissociation constant of Glu-plasminogen binding to limitedly digested fibrin (12.1 microM) under these conditions is attributed to multiple, simultaneous interactions, each having a separate affinity. It is concluded that t-PA and Glu-plasminogen can bind to the same carboxyl-terminal lysines in limitedly digested fibrin, whereas binding sites composed of intrachain lysines are unique both for the K2 domain of t-PA and the Glu-plasminogen kringles.  相似文献   

14.
Structure and function of human tissue-type plasminogen activator (t-PA)   总被引:5,自引:0,他引:5  
Full-length tissue-type plasminogen activator (t-PA) cDNA served to construct deletion mutants within the N-terminal "heavy" (H)-chain of the t-PA molecule. The H-chain cDNA consists of an array of structural domains homologous to domains present on other plasma proteins ("finger," "epidermal growth factor," "kringles"). These structural domains have been located on an exon or a set of exons. The endpoints of the deletions nearly coincide with exon-intron junctions of the chromosomal t-PA gene. Recombinant t-PA deletion mutant proteins were obtained after transient expression in mouse Ltk- cells, transfected with SV40-pBR322-derived t-PA cDNA plasmids. It is demonstrated that the serine protease moiety of t-PA and its substrate specificity for plasminogen is entirely contained within the C-terminal "light" (L)-chain of the protein. The presence of cDNA, encoding the t-PA signal peptide preceding the remaining portion of t-PA, suffices to achieve secretion of (mutant) t-PA into the medium. The stimulatory effect of fibrin on the plasminogen activator activity of t-PA was shown to be mediated by the kringle K2 domain and, to a lesser extent, by the finger domain. The other domains on the H-chain, kringle K1, and the epidermal growth-factor-like domain, do not contribute to this property of t-PA. These findings correlate well with the fibrin-binding properties of the rt-PA deletion-mutant proteins, indicating that stimulation of the activity is based on aligning of the substrate plasminogen and its enzyme t-PA on the fibrin matrix. The primary target for endothelial plasminogen activator inhibitor (PAI) is located within the L-chain of t-PA. Deleting specific segments of t-PA H-chain cDNA and subsequent transient expression in mouse Ltk- cells of t-PA deletion-mutant proteins did not affect the formation of a stable complex between mutant t-PA and PAI.  相似文献   

15.
Fibrin interacts with tissue-type plasminogen activator (tPA) via the finger and the kringle 2 domains. Three monoclonal antibodies against tPA, designated MPW3VPA, MPW6VPA, and MPW7VPA, which react with epitopes in the tPA molecule involved in fibrin binding, were characterized. The IgM monoclonal antibody MPW6VPA, directed against an epitope close to the finger and epidermal growth factor domains, stimulated plasminogen activation only in the absence of CNBr-fibrinogen fragments by increasing kcat in a dose-dependent fashion, an effect which was not restricted to the intact molecule. These results suggest that MPW6VPA mimics the initial effect of fibrin bound to the tPA molecule, which results in a change of kcat values. The MPW6VPA effect was reversed by another antibody, MPW3VPA, also directed against epidermal growth factor and finger domains. The latter antibody also inhibited plasminogen activation by tPA in the presence of CNBr-fibrinogen fragments in a dose-dependent, apparently noncompetitive way. No effect of MPW3VPA was seen in the absence of CNBr-fibrinogen fragments. MPW7VPA directed against kringle 2 of tPA inhibited plasminogen activation by tPA only when CNBr-fibrinogen fragments were present. This inhibition was apparently competitive and dose-dependent. These data suggest that MPW3VPA interferes with the first phase of fibrin binding to tPA, whereas MPW7VPA interferes with the second phase of fibrin binding to the tPA molecule via kringle 2, resulting in Km changes.  相似文献   

16.
Kringle 1 (Tyr 79/Leu 80-His 167 and Tyr 79/Leu 80-Tyr 173), a chymotryptic fragment of human plasminogen that has high affinity for fibrin and omega-aminocarboxylic acids, has been subjected to modification with 1,2-cyclohexanedione to identify arginine residues essential for ligand binding. Reaction of 1,2-cyclohexanedione with kringle 1 was found to rapidly abolish the fibrin-Sepharose affinity of the fragment, whereas the affinity for lysine-Sepharose was lost at a significantly slower rate. Successive affinity chromatography of modified kringle 1 on fibrin- and lysine-Sepharose was used to separate kringle 1 that lost affinity for fibrin-, but retained affinity for lysine-Sepharose from kringle 1 that lost affinity for both affinants. The modified proteins were subjected to structural studies in order to locate the labeled arginine residues in kringle 1. These studies have revealed that modification of Arg 34 leads to the loss of both the fibrin- and lysine-Sepharose affinities of kringle 1, whereas reaction of Arg 32 abolishes fibrin affinity but leaves lysine-Sepharose affinity unaltered. The results suggest that Arg 32 and Arg 34 are both involved in fibrin binding and that Arg 34 is also involved in binding omega-aminocarboxylic acids. Previous NMR studies on kringles have indeed shown that the segment containing residue 34 is in the proximity of and interacts with the omega-aminocarboxylic acid-binding site. This interaction may explain the influence of omega-aminocarboxylic acids on fibrin binding by kringle 1.  相似文献   

17.
Elevated levels of lipoprotein(a) [Lp(a)] in plasma are a significant risk factor for the development of atherosclerotic disease, a property which may arise from the ability of this lipoprotein to inhibit fibrinolysis. In the present study we have quantitated the binding of recombinant forms of apolipoprotein(a) [17K and 12K r-apo(a); containing 8 and 3 copies, respectively, of the major repeat kringle sequence (kringle IV type 2)] to modified fibrinogen surfaces. Iodinated 17K and 12K r-apo(a) bound to immobilized thrombin-modified fibrinogen (i.e., fibrin) surfaces with similar affinities (Kd approximately 1.2-1.6 microM). The total concentration of binding sites (Bmax) present on the fibrin surface was approximately 4-fold greater for the 12K than for the 17K (Bmax values of 0.81 +/- 0.09 nM, and 0.20 +/- 0.01 nM respectively), suggesting that the total binding capacity on fibrin surfaces is reduced for larger apolipoprotein(a) (apo(a)) species. Interestingly, binding of apo(a) to intact fibrin was not detected as assessed by measurement of intrinsic fluorescence of free apo(a) present in the supernatants of sedimented fibrin clots. In other experiments, the total concentration apo(a) binding sites available on plasmin-modified fibrinogen surfaces was shown to be 13.5-fold higher than the number of sites available on unmodified fibrin surfaces (Bmax values of 2.7 +/- 0.3 nM and 0.20 +/- 0.01 nM respectively) while the affinity of apo(a) for these surfaces was similar. The increase in Bmax was correlated with plasmin-mediated exposure of C-terminal lysines since treatment of plasmin-modified fibrinogen surfaces with carboxypeptidase B produced a significant decrease in total binding signal as detected by ELISA (enzyme linked immunosorbent assay). Taken together, these data suggest that apo(a) binds to fibrin with poor affinity (low microM) and that the total concentration of apo(a) binding sites available on modified-fibrinogen surfaces is affected by both apo(a) isoform size and by the increased availability of C-terminal lysines on plasmin-degraded fibrinogen surfaces. However, the low affinity of apo(a) for fibrin indicates that Lp(a) may inhibit fibrinolysis through a mechanism distinct from binding to fibrin, such as binding to plasminogen.  相似文献   

18.
Elevated plasma concentrations of lipoprotein(a) [Lp(a)] are associated with an increased risk for the development of atherosclerotic disease which may be attributable to the ability of Lp(a) to attenuate fibrinolysis. A generally accepted mechanism for this effect involves direct competition of Lp(a) with plasminogen for fibrin(ogen) binding sites thus reducing the efficiency of plasminogen activation. Efforts to determine the domains of apolipoprotein(a) [apo(a)] which mediate fibrin(ogen) interactions have yielded conflicting results. Thus, the purpose of the present study was to determine the ability of single KIV domains of apo(a) to bind plasmin-treated fibrinogen surfaces as well to determine their effect on fibrinolysis using an in vitro clot lysis assay. A bacterial expression system was utilized to express and purify apo(a) KIV (2), KIV (7), KIV (9) DeltaCys (which lacks the seventh unpaired cysteine) and KIV (10) which contains a strong lysine binding site. We also expressed and examined three mutant derivatives of KIV (10) to determine the effect of changing critical residues in the lysine binding site of this kringle on both fibrin(ogen) binding and fibrin clot lysis. Our results demonstrate that the strong lysine binding site in apo(a) KIV (10) is capable of mediating interactions with plasmin-modified fibrinogen in a lysine-dependent manner, and that this kringle can increase in vitro fibrin clot lysis time by approximately 43% at a concentration of 10 microM KIV (10). The ability of the KIV (10) mutant derivatives to bind plasmin-modified fibrinogen correlated with their lysine binding capacity. Mutation of Trp (70) to Arg abolished binding to both lysine-Sepharose and plasmin-modified fibrinogen, while the Trp (70) -->Phe and Arg (35) -->Lys substitutions each resulted in decreased binding to these substrates. None of the KIV (10) mutant derivatives appeared to affect fibrinolysis. Apo(a) KIV (7) contains a lysine- and proline-sensitive site capable of mediating binding to plasmin-modified fibrinogen, albeit with a lower apparent affinity than apo(a) KIV (10). However, apo(a) KIV (7) had no effect on fibrinolysis in vitro. Apo(a) KIV (2) and KIV (9) DeltaCys did not bind measurably to plasmin-modified fibrinogen surfaces and did not affect fibrinolysis in vitro.  相似文献   

19.
dsPAα1的缺失突变体的构建及其活性   总被引:1,自引:0,他引:1  
纤溶酶原激活剂dsPAα1(Desmodusrotundussalivaryplasminogenactivatoralpha 1)从吸血蝙蝠(Desmodusrotundus)唾液中提取 ,它包括Finger、EGF、Kringle和蛋白酶区 .dsPAα1的功能可能与其分子结构相关 ,特别是其Finger区和EGF区 .构建、表达了缺失Finger和EGF区的dsPAα1的缺失突变体 (dsPK) ,研究dsPAα1的结构与功能的关系 .Western印迹检测 ,转染后细胞上清见dsPK条带 ;用小分子底物S2 76 5测定dsPAα1和dsPK的酶动力学常数 ,在无纤维蛋白存在下 ,两者的Km 和kcat Km基本一致 .但在纤维蛋白存在下 ,dsPAα1的kcat Km 值增加了 3 9倍 ,而dsPK仅增加了 1 6倍 ;溶栓试验显示dsPK具有溶栓作用 ,但溶栓作用显著低于dsPAα1;PAI 1对dsPAα1和dsPK具有同等的抑制作用 .证实dsPAα1的Finger结构区和EGF结构区对dsPAα1的纤溶功能是非常重要的  相似文献   

20.
Heparin has been shown recently to stimulate the activity of human tissue-type plasminogen activator (t-PA). To investigate this effect further, mutant proteins lacking various domains of t-PA were screened for the ability to be stimulated by heparin. Those mutants harboring either the finger domain or the 2nd kringle were found to have enhanced enzymatic activity in the presence of heparin. Only mutants containing these structures would bind to heparin-agarose beads; monoclonal antibodies directed against these domains blocked binding. The stimulatory effect of heparin was more pronounced in finger-containing mutants than kringle-2 proteins. Earlier results had localized the fibrin-binding domains to the same two structures. Unlike heparin, the 2nd kringle was shown to be more important than the finger for fibrin stimulation. Our results have implications for producing recombinant t-PA variants for use in thrombolytic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号