首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penicillin-resistant strains of Streptococcus pneumoniae have been common in South Africa and Spain for several years. Multilocus enzyme electrophoresis identified one clone of capsular type 6B which was prevalent in Spain and another clone of type 23F that was present in both countries. Genes for penicillin-binding proteins (PBPs) in penicillin-resistant strains are often mosaics where parts of the pneumococcal genes are replaced by homologous genes from other species. We have compared the mosaic structures of the PBP 1a genes from the two clones as well as from genetically distinct South African isolates. Four classes of mosaic PBP 1a genes were found that contained blocks of sequences divergent by 6-22% from those of sensitive genes; two classes contained sequences coming from more than one external source. Data are presented showing that the PBP 1a genes from the 23F and the 6B clone are related, and that the two PBP 1a genes from the South African isolates are also related. We suggest that the type 23F clone originated in Spain prior to distribution into other continents.  相似文献   

2.
Penicillin-resistant clinical isolates of Streptococcus pneumoniae contain mosaic penicillin-binding protein (PBP) genes that encode PBPs with decreased affinity for β-lactam antibiotics. The mosaic blocks are believed to be the result of gene transfer of homologous PBP genes from related penicillin-resistant species. We have now identified a gene homologous to the pneumococcal PBP2x gene (pbpX) in a penicillin-sensitive Streptococcus oralis isolate M3 from South Africa that diverged by almost 20% from pbpX of penicillin-sensitive pneumococci, and a central sequence block of a mosaic pbpX gene of Streptococcus mitis strain NCTC 10712. In contrast, it differed by only 2-4% of the 1 to 1.5 kb mosaic block in pbpX genes of three genetically unrelated penicillin-resistant S. pneumoniae isolates, two of them representing clones of serotype 6B and 23F, which are prevalent in Spain and are also already found in other countries. With low concentrations of cefotaxime, transformants of the sensitive S. pneumoniae R6 strain could be selected containing pbpX genes from either S. mitis NCTC 10712 or S. oralis M3, demonstrating that genetic exchange can already occur between β-lactam-sensitive species. These data are in agreement with the assumption that PBPs as penicillin-resistance determinants have evolved by the accumulation of point mutations in genes of sensitive commensal species.  相似文献   

3.
The capsule (cps) locus of Streptococcus pneumoniae is flanked by the pbp2x and pbp1a genes, coding for penicillin-binding proteins, enzymes involved in cell wall synthesis that are targets for beta-lactams. This linkage suggested to us that selection for beta-lactam resistance might coselect for capsular transformants. The recombination event would then involve PBP genes, as well as the cps operon, and would change both the serotype and the resistance profile of the strain. We transformed beta-lactam-susceptible strain TIGR4 by using whole genomic DNA extracted from multidrug-resistant strain GA71, a serotype 19F variant of pneumococcal clone Spain(23F)-1, and selected beta-lactam-resistant transformants. Smooth colonies appearing on selective plates were subcultured, serotyped by the Quellung reaction, and genotyped to confirm the presence of the GA71 pbp2x-cps19-pbp1a locus in the TIGR4 genetic background by restriction fragment length polymorphism analysis of the whole locus and its flanking regions. The results showed that a new serotype, combined with resistance to beta-lactams, could emerge in a susceptible strain via a single transformation event. Quantitative analysis showed that transfer of the cps locus had occurred at an elevated rate in beta-lactam-selected transformants. This suggests that in natural settings selection by host immunity and selection by antibiotics may be interrelated because of "hitchhiking" effects due to linkage of resistance determinants and the capsule locus.  相似文献   

4.
Group B streptococcus (GBS; Streptococcus agalactiae) serotype III is one of the most common and virulent serotypes of the species. It can be divided into several subtypes, which vary in their distribution among invasive isolates from different patient groups. In this study, we used 91 well-characterized GBS serotype III isolates to compare three subtyping methods, and developed a novel padlock probe and rolling circle amplification (RCA) method to identify informative single nucleotide polymorphisms (SNPs) that define the major subtypes. There was good agreement between partial sequencing of the capsule polysaccharide synthesis (cps) gene cluster, a 3-set genotyping system and multilocus sequence typing (MLST). Serosubtype III-2/multilocus sequence type (ST)-17 represents a virulent clone which is significantly associated with late onset GBS neonatal infections. RCA provides a simple, reproducible method for rapid identification of the two most common GBS serotype III subtypes (III-1/ST-19 and III-2/ST-17).  相似文献   

5.
The aim of this study was to investigate the nature of the amino acid motifs found in penicillin-binding proteins (PBP) 2b, 2x, and 1a of penicillin-nonsusceptible Streptococcus pneumoniae isolates from Shenyang, China, and to obtain information regarding the prevalence of alterations within the motifs or in positions flanking the motifs. For 18 clinical isolates comprising 4 penicillin-susceptible S. pneumoniae, 5 penicillin-intermediate S. pneumoniae, and 9 penicillin-resistant S. pneumoniae. the DNA sequences of PBP2b, PBP2x, and PBP1a transpeptidase domains were determined and then genotyped by multilocus sequence typing. Sequence analysis revealed that most penicillin-nonsusceptible S. pneumoniae isolates (penicillin MIC > or = 1.5 microg/mL and cefotaxime MIC > or = 2 microg/mL) shared identical PBP2b, PBP2x, and PBP1a amino acid profiles. Most penicillin-resistant S. pneumoniae isolates were ST320 (4-16-19-15-6-20-1), the double-locus variant of the Taiwan19F-14 clone. This study will serve as a basis for future monitoring of genetic changes associated with the emergence and spread of beta-lactam resistance in Shenyang, China.  相似文献   

6.
An electrophoretic analysis of allelic variation at 24 enzyme loci among 170 isolates of the serovar Salmonella dublin (serotype 1,9,12[Vi]:g,p:-) identified three electrophoretic types (Du 1, Du 3, and Du 4), marking three closely related clones, one of which (Du 1) is globally distributed and was represented by 95% of the randomly selected isolates. All but 1 of 114 nonmotile isolates of serotype 1,9,12:-:- recovered from cattle and swine in the United States were genotypically Du 1. The virulence capsular polysaccharide (Vi antigen) is confined to clone Du 3, which apparently is limited in distribution to France and Great Britain. For all 29 isolates of Du 3, positive signals were detected when genomic DNA was hybridized with a probe specific for the ViaB region, which contains the structurally determinant genes for the Vi antigen; and 23 of these isolates had been serologically typed as Vi positive. In contrast, all 30 isolates of Du 1 tested with the ViaB probe were negative. These findings strongly suggest that the ViaB genes were recently acquired by S. dublin via horizontal transfer and additive recombination. The clones of S. dublin are closely similar to the globally predominant clone (En 1) of Salmonella enteritidis (serotype 1,9,12:g,m:-) in both multilocus enzyme genotype and nucleotide sequence of the fliC gene encoding phase 1 flagellin. Comparative sequencing of fliC has revealed the molecular genetic basis for expression of the p and m flagellar epitopes by which these serovars are distinguished in the Kauffmann-White serological scheme of classification.  相似文献   

7.
Penicillin resistance in pneumococci is due to the appearance of high molecular-weight penicillin-binding proteins (PBPs) that have reduced affinity for the antibiotic. We have compared the PBX 2x genes (pbpX) of one penicillin-susceptible and five penicillin-resistant clinical isolates of Streptococcus pneumoniae isolated from various parts of the world. All of the resistant isolates contained a low-affinity form of PBP 2x. The 2 kb region of the two penicillin-susceptible isolates differed at only eight nucleotide sites (0.4%) and resulted in one single amino acid difference in PBP 2x. In contrast, the sequences of the PBP 2x genes from the resistant isolates differed overall from those of the susceptible isolates at between 7 and 18% of nucleotide sites and resulted in between 27 and 86 amino acid substitutions in PBP 2x. The altered PBP 2x genes consisted of regions that were similar to those of susceptible strains (less than 3% diverged), alternating with regions that were very different (18-23% diverged). The presence of highly diverged regions within the PBP 2x genes of the resistant isolates contrasts with the uniformity of the sequences of the amylomaltase genes from the same isolates, and with the uniformity of the PBP 2x genes in the two susceptible isolates. It suggests that the altered PBP 2x genes have arisen by localized interspecies recombinational events involving the PBP 2x genes of closely related streptococci, as has been suggested to occur for altered PBP 2b genes (Dowson et al., 1989b). The PBP 2x genes from the resistant isolates could transform the susceptible strain R6 to increased levels of resistance to beta-lactam antibiotics, indicating that the altered forms of PBP 2x in the resistant isolates contribute to their resistance to penicillin.  相似文献   

8.
We used a rabbit model to assess the effects of capsular serotype, genetic background and beta-lactam resistance on the course and severity of experimental meningitis. Meningitis was induced by five pneumococcal strains belonging to five different clones with known invasive potential: two serotype 3 strains (ST260(3) and Netherlands(3)-31 clones) and three serotype 23F strains with different beta-lactam susceptibility patterns (Spain(23F)-1 clone, Tennessee(23F)-4 clone and a double locus variant of the Tennessee(23F)-4 clone). Major differences in secondary bacteremia and mortality rates were observed between serotypes 3 and 23F, as were divergences in the CSF lactate, protein and lipoteichoic-teichoic acid concentrations. Minor differences in the CSF-induced inflammatory response were found among strains belonging to the same serotype. Our results suggest that capsular serotype might be the main factor determining the course and severity of pneumococcal meningitis and genetic background contributes to a lesser extent. The acquisition of beta-lactam resistance does not reduce the virulence of the invasive clones. Since five strains belonging to two serotypes were studied, our findings have to be confirmed with other pneumococcal serotypes.  相似文献   

9.

Background

The 10-valent pneumococcal conjugate vaccine (PCV10) was introduced in Kenya in 2011. Introduction of any PCV will perturb the existing pneumococcal population structure, thus the aim was to genotype pneumococci collected in Kilifi before PCV10.

Methods and Findings

Using multilocus sequence typing (MLST), we genotyped >1100 invasive and carriage pneumococci from children, the largest collection genotyped from a single resource-poor country and reported to date. Serotype 1 was the most common serotype causing invasive disease and was rarely detected in carriage; all serotype 1 isolates were members of clonal complex (CC) 217. There were temporal fluctuations in the major circulating sequence types (STs); and although 1-3 major serotype 1, 14 or 23F STs co-circulated annually, the two major serotype 5 STs mainly circulated independently. Major STs/CCs also included isolates of serotypes 3, 12F, 18C and 19A and each shared ≤2 MLST alleles with STs that circulate widely elsewhere. Major CCs associated with non-PCV10 serotypes were predominantly represented by carriage isolates, although serotype 19A and 12F CCs were largely invasive and a serotype 10A CC was equally represented by invasive and carriage isolates.

Conclusions

Understanding the pre-PCV10 population genetic structure in Kilifi will allow for the detection of changes in prevalence of the circulating genotypes and evidence for capsular switching post-vaccine implementation.  相似文献   

10.
Streptococcus pneumoniae penicillin resistance is associated with the international dispersion of specifically identified strains. In Colombia, the presence and circulation of resistant strains Spain23F-1, Spain6B-2, Spain9V and Colombian23F-25 has been demonstrated in children less than 5 years old. Strain identities were established for 80 penicillin resistant S. pneumoniae isolates recovered from Colombian adult patients. Three approaches to genotypic characterization of the strains wrere used: a) chromosomal DNA was digested with Sma 1, and the products subjected to pulse-field gel electrophoresis (PFGE); b) restriction enzyme fragment comparison of the penicillin binding protein genes (pbp 1a, 2b and 2x), and c) pneumococcal surface protein A (PspA) family. The results showed that 2.5% of the isolates were genetically related to Spain23F-1 clone, 10% to Spain6B-2 clone, 37.5% to Spain9V-3, in addition, 14% of the capsular type 23F isolates were related to the Colombia23F-25 clone and demonstrated an intermediate level resistance to penicillin. Wide spread circulation of international strains as well as a Colombian strain highlighted the importance of these clones in maintaining the prevalence of resistance to penicillin in Colombia.  相似文献   

11.
We recently developed a multilocus sequence typing (MLST) scheme to differentiate S. uberis isolates and facilitate an understanding of the population biology of this pathogen. The scheme was initially used to study a collection of 160 bovine milk isolates from the United Kingdom and showed that the majority of isolates were from one clonal complex (designated the ST-5 complex). Here we describe the MLST analysis of a collection of New Zealand isolates. These were obtained from diverse sources, including bovine milk, other bovine anatomical sites, and environmental sources. The complete allelic profiles of 253 isolates were determined. The collection was highly diverse and included 131 different sequence types (STs). The New Zealand and United Kingdom populations were distinct, since none of the 131 STs were represented within the previously studied collection of 160 United Kingdom S. uberis isolates. However, seven of the STs were members of the ST-5 clonal complex, the major complex within the United Kingdom collection. Two new clonal complexes were identified: ST-143 and ST-86. All three major complexes were isolated from milk, other bovine sites, and the environment. Carriage of the hasA gene, which is necessary for capsule formation, correlated with clonal complex and isolation from clinical cases of mastitis.  相似文献   

12.

Objective

Streptococcus pneumoniae is a common pathogenic cause of pediatric infections. This study investigated the serotype distribution, antimicrobial susceptibility, and molecular epidemiology of pneumococci before the introduction of conjugate vaccines in Shanghai, China.

Methods

A total of 284 clinical pneumococcal isolates (270, 5, 4,3, and 2 of which were isolated from sputum, bronchoalveolar lavage fluid, blood, cerebral spinal fluid, and ear secretions, respectively) from children less than 14 years of age who had not been vaccinated with a conjugate vaccine, were collected between January and December in 2013. All isolates were serotyped by multiplex polymerase chain reaction or quellung reactions and antimicrobial susceptibility testing was performed using the broth microdilution method. The molecular epidemiology of S.pneumoniae was analyzed by multilocus sequence typing (MLST).

Results

Among the 284 pneumococcal isolates, 19F (33.5%), 19A (14.1%), 23F (12.0%), and 6A (8.8%) were the most common serotypes and the coverage rates of the 7-, 10-, and 13-valent pneumococcal conjugate vaccines (PCV7, PCV10, and PCV13) were 58.6%, 59.4% and 85.1%, respectively. Antimicrobial susceptibility showed that the prevalence rates of S.pneumoniae resistance to penicillin were 11.3% (32/284). Approximately 88.0% (250/284) of the isolates exhibited multi-drug resistance. MLST analysis revealed a high level of diversity, with 65 sequence types (STs) among 267 isolates. Specifically, the four predominant STs were ST271 (24.3%, 65/267), ST320 (11.2%, 30/267), ST81 (9.7%, 26/267), and ST3173 (5.2%, 14/267), which were mainly associated with serotypes 19F, 19A, 23F, and 6A, respectively.

Conclusions

The prevalent serotypes among clinical isolates from children were 19F, 19A, 23F, and 6A and these isolates showed high resistance rates to β-lactams and macrolides. The Taiwan19F-14 clone played a predominant role in the dissemination of pneumococcal isolates in Shanghai, China. Therefore, continued and regional surveillance on pneumococcal isolates may be necessary.  相似文献   

13.
Penicillin-resistant strains of Streptococcus pneumoniae possess forms of penicillin-binding proteins (PBPs) that have a low affinity for penicillin compared to those from penicillin-sensitive strains. PBP genes from penicillin-resistant isolates are very variable and have a mosaic structure composed of blocks of nucleotides that are similar to those found in PBP genes from penicillin-sensitive isolates and blocks that differ by up to 21%. These chromosomally encoded mosaic genes have presumably arisen following transformation and homologous recombination with PBP genes from a number of closely related species. This study shows that PBP2B genes from many penicillin-resistant isolates of S. pneumoniae contain blocks of nucleotides originating from Streptococcus mitis. In several instances it would appear that this material alone is sufficient to produce a low affinity PBP2B. In other examples PBP2B genes possess blocks of nucleotides from S. mitis and at least one additional unidentified species. Mosaic structure was aiso found in the PBP2B genes of penicillin-sensitive isolates of S. mitis or S. pneumoniae. These mosaics did not confer penicillin resistance but nevertheless reveal something of the extent to which localized recombination occurs in these naturally transformable streptococci.  相似文献   

14.
The phylogenetic utility of the IS1167 insertion sequence was examined with restriction fragment length polymorphism (RFLP) analyses of a sample of 50, predominantly invasive, capsular serotype 6B Streptococcus pneumoniae isolates previously characterized by multilocus enzyme electrophoresis (MLEE). The strains represented a genetically diverse assemblage of 34 distinct clonotypes composed of 26 restriction fragment types and 23 multilocus enzyme types. All isolates carried the IS1167 insertion sequence, with an average of 9.5 copies. The cross-classification of isolates based on RFLP and MLEE typing schemes was 81% concordant. Phylogenetic analyses demonstrated a significant (P < 0.0001) association between strains of a given RFLP lineage with those of a given MLEE lineage. A significant correlation (P < 0.00004) was also found between the proportion of restriction fragments shared by any given pair of isolates and their genetic distances estimated from the MLEE data. Parity between the two genetic markers implied that the sampled isolates were in linkage disequilibrium. The existence of nonrandom associations among genetic loci was confirmed by Monte Carlo analyses of the MLEE data. These studies, thus, demonstrated that invasive pneumococcal isolates of a single capsule type recovered on a regional scale can retain a largely clonal population structure over a period of 8 years. The ability to detect linkage disequilibrium and generate relatively congruent dendrograms based on distance and parsimony methods suggested that the restriction fragment data were robust to phylogenetic analysis. Received: 20 May 1997 / Accepted: 20 November 1997  相似文献   

15.
Abstract The presence of endophytic Acetobacter diazotrophicus was tested for pineapple plants (Ananas comosus [L.] Merr.) grown in the field. Diazotrophic bacteria were isolated from the inner tissues of surface sterilized roots, stems, and leaves of pineapple plants. Phenotypic tests permitted the selection of presumptive nitrogen-fixing A. diazotrophicus isolates. Restriction fragment length polymorphisms (RFLPs) of small subunit (SSU) rDNA using total DNA digested with endonuclease SphI and with endonuclease NcoI, hybridizations of RNA with an A. diazotrophicus large subunit (LSU) rRNA specific probe, as well as patterns in denaturing protein electrophoresis (SDS-PAGE) and multilocus enzyme tests allowed the identification of A. diazotrophicus isolates. High frequencies of isolation were obtained from propagative buds that had not been nitrogen-fertilized, and lower frequencies from 3-month-old plants that had been nitrogen-fertilized. No isolates were recovered from 5- to 7-month-old nitrogen-fertilized plants. All the A. diazotrophicus isolates recovered from pineapple plants belonged to the multilocus genotype which shows the most extensive distribution among all host species previously analyzed. Received: 16 March 1999; Accepted: 27 August 1999; Online Publication: 23 February 2000  相似文献   

16.
We report on the comparative genomics and characterization of the virulence phenotypes of four S. pneumoniae strains that belong to the multidrug resistant clone PMEN1 (Spain(23F) ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinants.  相似文献   

17.
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops.  相似文献   

18.
Aims: The aim of this study was to determine the uropathogenic potential of Escherichia coli isolated from retail meats. Methods and Results: Two hundred E. coli isolates recovered from retail meats, which were previously identified molecularly as extraintestinal pathogenic E. coli, were investigated for the presence of 21 uropathogenic E. coli (UPEC) virulence‐associated genes. Twenty‐three E. coli isolates were selected based on their serogroups and the number of virulence genes they contained, and further characterized using multilocus sequence typing, and by tissue culture assays for adherence to and invasion of T‐24 human bladder cells and for their induction of interleukin (IL)‐6 secretion. All virulence genes tested, except afa/dra and hlyD, were detected among the E. coli isolates. Multilocus sequence typing analysis of 23 selected isolates revealed that 17 isolates belonged to STs associated with human UPEC. Nearly all 23 isolates exhibited lower level of adherence and invasion compared to a clinical strain, UPEC CFT073. Conclusions: These observations suggested that a small proportion of E. coli isolates from retail meats carry uropathogenic associated virulence genes and thus may serve as a reservoir of these genes to UPEC in the human intestine. Their virulence potential seemed limited as they were only weakly invasive in human bladder cell culture. Significance and Impact of the Study: These findings support the hypothesis that retail meat E. coli may play a role in relation to urinary tract infection (UTI) and may be considered in development of a UTI prevention strategy.  相似文献   

19.
Aims: To investigate the distribution of staphylococcal enterotoxin genes (se) and the molecular features of community‐associated methicillin‐sensitive/resistant Staphylococcus aureus (CA‐MSSA/MRSA) isolates in the nostrils of healthy pets and their owners. Methods and Results: A total of 114 Staph. aureus isolates were identified from 1563 nasal swab samples, and CA‐MRSA accounted for 20·2% (n = 23) of the total identified isolates. CA‐MRSA isolates (91·3%, 21/23) harboured higher percentage of se than did CA‐MSSA isolates (58·2%, 53/91) (P < 0·01), and the two highest se profiles of CA‐MRSA were sebsekseq (42·9%, 9/21) and sebsekseqsep (28·6%, 6/21). Of the MSSAs, 42·8% (39/91) were resistant to at least one antimicrobial drug and 8·8% (8/91) were multidrug resistant (MDR). We identified nine staphylocoagulase (SC) types (I–VIII and X) and three multilocus sequence types (ST59‐MRSA‐IV/V, ST‐239‐MRSA‐V and ST241‐MRSA‐V). SC VII (23·4%, 22/94), a staphylococcal food poisoning isolate found mainly in Japan, and ST‐59‐MRSA‐IV/V (85%, 17/20), a widespread CA‐MRSA clone found mainly in Taiwan, both were the most predominant types. Phylogenetic analysis together with se and molecular characteristics obtained using pulsed‐field gel electrophoresis showed that high levels of antimicrobial resistance and the se‐carrying clone ST59‐MRSA‐IV/V‐SC VII were all clustered in genogroup 5. Conclusions: The CA‐MRSA clone of se‐carrying‐MDR‐ST‐59‐IV/V‐SC VII was identified predominantly in this study, and this clone might play a significant role in staphylococcal food poisoning in community settings. Significance and Impact of the Study: To our knowledge, this is the first study focussing on enterotoxin‐carrying CA‐MRSA/MSSA in pets and their owners, and the results support the future warnings in animal–human bond caused by CA‐staphylococci in the commonwealth and the need to take cautions worldwide.  相似文献   

20.
The evolution of the capsular biosynthetic (cps) locus of serogroup 6 Streptococcus pneumoniae was investigated by analyzing sequence variation within three serotype-specific cps genes from 102 serotype 6A and 6B isolates. Sequence variation within these cps genes was related to the genetic relatedness of the isolates, determined by multilocus sequence typing, and to the inferred patterns of recent evolutionary descent, explored using the eBURST algorithm. The serotype-specific cps genes had a low percent G+C, and there was a low level of sequence diversity in this region among serotype 6A and 6B isolates. There was also little sequence divergence between these serotypes, suggesting a single introduction of an ancestral cps sequence, followed by slight divergence to create serotypes 6A and 6B. A minority of serotype 6B isolates had cps sequences (class 2 sequences) that were approximately 5% divergent from those of other serotype 6B isolates (class 1 sequences) and which may have arisen by a second, more recent introduction from a related but distinct source. Expression of a serotype 6A or 6B capsule correlated perfectly with a single nonsynonymous polymorphism within wciP, the rhamnosyl transferase gene. In addition to ample evidence of the horizontal transfer of the serotype 6A and 6B cps locus into unrelated lineages, there was evidence for relatively frequent changes from serotype 6A to 6B, and vice versa, among very closely related isolates and examples of recent recombinational events between class 1 and 2 cps serogroup 6 sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号