首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nontranscribed spacers in Drosophila ribosomal DNA   总被引:3,自引:0,他引:3  
Ribosomal DNA nontranscribed spacers in Drosophila virilis DNA have been examined in some detail by restriction site analysis of cloned segments of rDNA, nucleic acid hybridizations involving unfractionated rDNA, and base composition estimates. The overall G+C content of the spacer is 27–28%; this compares with 39% for rDNA as a whole, 40% for main band DNA, and 26% for the D. virilis satellites. Much of the spacer is comprised of 0.25 kb repeats revealed by digestion with Msp I, Fnu DII or Rsd I, which terminate very near the beginning of the template for the ribosomal RNA precursor. The spacers are heterogeneous in length among rDNA repeats, and this is largely accounted for by variation among rDNA units in the number of 0.25 kb elements per spacer. Despite its high A+T content and the repetitive nature of much of the spacer, and the proximity of rDNA and heterochromatin in Drosophila, pyrimidine tract analysis gave no indication of relatedness between the spacer and satellite DNA sequences. Species of Drosophila closely related to D. virilis have rDNA spacers that are homologous with those in D. virilis to the extent that hybridization of a cloned spacer segment of D. virilis rDNA to various DNA is comparable with hybridization to homologous DNA, and distributions of restriction enzyme cleavage sites are very similar (but not identical) among spacers of the various species. There is spacer length heterogeneity in the rDNA of all species, and each species has a unique major rDNA spacer length. Judging from Southern blot hybridization, D. hydei rDNA spacers have 20–30% sequence homology with D. virilis rDNA spacers, and a repetitive component is similarly sensitive to Msp I and Fnu DII digestion, D. melanogaster rDNA spacers have little or no homology with counterparts in D. virilis rDNA, despite a similar content of 0.25 kb repetitive elements. In contrast, sequences in rDNA that encode 18S and 28S ribosomal RNA have been highly conserved during the divergence of Drosophila species; this is inferred from interspecific hybridizations involving ribosomal RNA and a comparison of distributions of restriction enzyme cleavage sites in rDNA.Dedicated to Professor Wolfgang Beermann on the occasion of his sixtieth birthday  相似文献   

2.
Length and sequence heterogeneity in 5S rDNA of Populus deltoides.   总被引:1,自引:0,他引:1  
The 5S rRNA genes and their associated non-transcribed spacer (NTS) regions are present as repeat units arranged in tandem arrays in plant genomes. Length heterogeneity in 5S rDNA repeats was previously identified in Populus deltoides and was also observed in the present study. Primers were designed to amplify the 5S rDNA NTS variants from the P. deltoides genome. The PCR-amplified products from the two accessions of P. deltoides (G3 and G48) suggested the presence of length heterogeneity of 5S rDNA units within and among accessions, and the size of the spacers ranged from 385 to 434 bp. Sequence analysis of the non-transcribed spacer (NTS) revealed two distinct classes of 5S rDNA within both accessions: class 1, which contained GAA trinucleotide microsatellite repeats, and class 2, which lacked the repeats. The class 1 spacer shows length variation owing to the microsatellite, with two clones exhibiting 10 GAA repeat units and one clone exhibiting 16 such repeat units. However, distance analysis shows that class 1 spacer sequences are highly similar inter se, yielding nucleotide diversity (pi) estimates that are less than 0.15% of those obtained for class 2 spacers (pi = 0.0183 vs. 0.1433, respectively). The presence of microsatellite in the NTS region leading to variation in spacer length is reported and discussed for the first time in P. deltoides.  相似文献   

3.
The sequence and characterisation of the entire nuclear rDNA intergenic spacer (IGS) for the genus Tuber are presented. Sequence analyses showed that the organisation of the Tuber borchii rDNA IGS is typical of rDNA spacers, consisting of a central repetitive region and flanking unique sequences on either side. Direct repeats, symmetry elements, tandem repeats and possible areas of recombination were found. The putative ends of the 25S and 17S rDNA were identified. The presence of 5S rDNA in the IGS region was excluded.  相似文献   

4.
The sequence arrangement of ribosomal DNA (rDNA) spacers in Drosophila melanogaster was analyzed with restriction endonucleases. Spacers, derived from cloned rDNA repeats and from uncloned purified rDNA, are internally repetitive, as demonstrated by the regular 250 base pairs interval between sites recognized by the enzyme Alu I. Length heterogeneity of spacers is due at least in part to varying numbers of repeated sequence elements. All spacers and analyzed, whether derived from X or from Y chromosomal rDNA, have a very similar sequence organization. The distance separating the repeated nontranscribed spacer sequences from the 5' end of the transcribed region is conserved in all ten cloned fragments examined, and is probably less than 150 base pairs, as measured by electron microscopy.  相似文献   

5.
6.
Immunoelectron microscopy and in situ hybridization have been used to investigate the precise location of transcribed and non-transcribed rDNA spacer sequences. Whereas a 5'-external transcribed spacer sequence is predominantly visualized in the fibrillar centers of nucleoli, a non-transcribed spacer sequence is preferentially detected in the interstices, in close contact with the fibrillar centers and which interrupt the surrounding dense fibrillar component. Occasionally these two spacers are also observed in clumps of dense nucleolus-associated chromatin. These observations provide insights into the organization of ribosomal repeats within the nucleolus.  相似文献   

7.
Sister chromatid exchange and the evolution of rDNA spacer length   总被引:3,自引:0,他引:3  
The structures of rDNA spacers from several species have been characterized and virtually all have internally repeated sequences. Different numbers of these internal repeats are responsible for most spacer length variation. Because unequal recombination between these internal repeats will cause new length variation, while unequal exchange between rDNA copies will homogenize the variants, we modeled the interaction of these two processes. Two models were used to simulate both types of unequal exchange at the sister chromatid level. Both models indicate that a narrow range of relative recombination frequencies is required to produce levels of variability comparable to those published. One model puts a lower limit on the number of internal repeats, and the other puts both a lower and upper limit on the number of repeats. The model with both maximum and minimum constraints produces a distribution closer to actual spacer distributions. These results imply that small changes in recombination rates can generate the differences in numbers of length variants observed in different species.  相似文献   

8.
9.
E Falistocco  V Passeri  G Marconi 《Génome》2007,50(10):927-938
Here we report the first results of a study of 5S rDNA of Vitis vinifera. 5S rDNA sequences from seven genotypes were amplified by PCR, cloned, and sequenced. Three types of repeats were found. Two variants, denominated long repeat and short repeat, appeared to be the main components of the 5S rDNA of this species, since they were found in all genotypes analyzed. They differed markedly from each other in both the length and the nucleotide composition of the spacers. The third variant, classified as DEL short repeat, differs from the short repeat owing to a large deletion in the spacer region. It appears to be the most recent repeat type, since it was identified in only one genotype. The organization of the 5S rDNA repeat unit variants was investigated by amplifying the genomic DNA with primers designed on the sequence of the long and short spacers. The PCR-amplified fragments showed that the long repeat is associated with the other two repeats, indicating that in V. vinifera different repeat units coexist within the same tandem array. FISH analysis demonstrated that 5S rRNA genes are localized at a single locus. The variability of 5S rDNA repeats is discussed in relation to the putative allopolyploid origin of V. vinifera.  相似文献   

10.
Sequences in the cloned Drosophila melanogaster rDNA fragments described by Dawid et al. (1978) were compared by heteroduplex mapping. The nontranscribed spacer regions in all fragments are homologous but vary in length. Deletion loops were observed at variable positions in the spacer region suggesting that spacers are internally repetitious.Many rDNA repeats in D. melanogaster have a 28 S gene interrupted by a region named the ribosomal insertion. Insertions of 0.5, 1 and 5 kb were found in repeat-length EcoRI fragments. These DNA regions, named type 1 insertions, are homologous at their right ends. Although 1 kb insertions are quite precisely twice as large as 0.5 kb insertions they do not represent a duplication of the shorter sequence. Some insertions have at least one EcoRI site and therefore yield EcoRI fragments which are only part of a repeat. The sequences in two cloned right-hand partial insertion sequences are homologous, but the sequences in two lefthand partial insertions are not. None of the EcoRI-restrictable insertion sequences has any homology to any part of type 1 insertions; they are thus grouped together as type 2. Evidence for insertion sequences of at least two types in uncloned rDNA was obtained by annealing a cloned fragment with a 1 kb insertion to genomic rDNA. About 15% of the rDNA repeats show substitution type loops between the 1 kb type 1 insertion derived from the cloned fragment and type 2 insertions in the rDNA.  相似文献   

11.
Isolation and sequence organization of human ribosomal DNA.   总被引:6,自引:0,他引:6  
The genes coding for 28 S and 18 S ribosomal RNA have been purified from leukemic leukocytes of one human individual by density gradient centrifugation. The purified ribosomal DNA was analyzed by restriction endonuclease digestion and electron microscopy. The location of cleavage sites for the restriction endonuclease EcoRI was established by R-loop mapping of restriction fragments by electron microscopy. The results are in agreement with gel analysis and gel transfer hybridization. One type of ribosomal DNA repeating unit contains four cleavage sites for EcoRI. Two of these cuts are located in the genes coding for 28 S and 18 S rRNA, while the other two are in the non-transcribed spacer. Thus, one of the restriction fragments generated contains non-transcribed spacer sequences only and is not detected by gel transfer hybridization if labeled rRNA is used as the hybridization probe. A second type of repeating unit lacks one of the EcoRI cleavage sites within the non-transcribed spacer. This indicates that sequence heterogeneity exists in human rDNA spacers. R-loop mapping of high molecular weight rDNA in the electron microscope reveals that the majority of repeats are rather uniform in length. The average size of 22 repeats was 43.65(±1.27) kb. Two repeats were found with lengths of 28.6 and 53.9 kb, respectively. This, and additional evidence from gels, indicates that some length heterogeneity does exist in the non-transcribed spacer. The structure of the human rDNA repeat is summarized in Figure 10.  相似文献   

12.
13.
14.
Drosophila hydei rRNA genes from different chromosomes and from different stocks have been studied by restriction enzyme analysis. In DNA from wild-type females, about half of the X chromosomal rRNA genes are interrupted by an intervening sequence within the 28S coding region. In contrast to D. melanogaster, the intervening sequences belong to a single size class of 6.0 kb. Although there are two nucleolus organizers on the Y chromosome, genes containing the intervening sequence seem to be restricted to the X chromosome. — As shown in four cloned rDNA fragments, the nontranscribed spacers differ in length by having varying numbers of a 242 base pair sequence located in tandem in the right section of the spacer. In genomic rDNA, the spacers also differ in length by a regular 0.25 kb interval. Spacers with between 5 and 15 subrepeats occur frequently within the X and Y chromosomal nucleolus organizers in different D. hydei stocks; shorter and longer spacers are also present but are relatively rare. — Although each genotype is characterized by different frequencies of some spacer classes, the prominent spacer length heterogeneity pattern is similar among the different nucleolus organizers and, therefore, seems to be conserved during evolution.This paper is dedicated to Professor Dr. W. Beermann on the occasion of his 60th birthday  相似文献   

15.
16.
The ribosomal DNA of the cactophilic yeast species Clavispora opuntiae was studied in order to clarify the global distribution of the yeast. Over 500 strains, including isolates from several new localities worldwide, were characterized by rDNA restriction mapping. An unusual restriction pattern previously encountered only in one strain, from Conception Island in the Bahamas, was found in several Brazilian isolates. Sequences of the D1/D2 and D7/D8 divergent domains of the large subunit (LSU) and of the intergenic spacers (IGS) confirmed that these strains represent a genetically distinct variety of Clavispora opuntiae. This divergence had previously been hypothesized on the basis of reduced genetic recombination in inter-varietal crosses and the presence of a polymorphic ApaI restriction site located in the LSU. The exact position of the ApaI site in the D8 divergent domain and the nature of the variation that it reveals were determined. The complete sequences of 12 intergenic spacers clarified the significance of the species-wide variation uncovered by restriction mapping. Most of the polymorphic sites occur in the IGS1 and IGS2 regions, on either side of the 5S gene, and the variation is largely due to differences in the numbers and the sequences of internal repeats. Two other polymorphic sites are located in the external transcribed spacer (ETS) region. The reliability of various sites as indicators of overall spacer sequence divergence differed from one case to another. Variety-specific probes were devised and used to screen 120 strains for the presence of recombinant rDNA spacers. Three strains gave ambiguous results, but these did not constitute evidence that inter-varietal recombination has taken place in nature. The hypothesis that the global movement of Clavispora opuntiae has been influenced by the worldwide biological control of prickly pear with Cactoblastis cactorum, a moth of Argentinian origin, has received additional support from the demonstration that Argentinian strains have rDNAs similar to those found where the moth has been introduced. A dramatic founder effect was identified in a yeast population collected in cacti (Maui, Hawaii) in a site where the moth had been recently introduced.  相似文献   

17.
18.
19.
Summary An Eco RI fragment spanning the spacer region separating two adjacent radish rDNA units was isolated and partially characterized. Although previous studies did not reveal obvious length heterogeneity in radish rDNA units, we observed the presence of several short repeats within this spacer, thus demonstrating that these repeats are not typical of species with variable length rDNA spacer. A short fragment containing two and one-half repeats was sequenced and used as a probe to demonstrate that this short sequence is highly specific for the genus Raphanus. We used these rDNA spacer sequences in preliminary assays for variability among 14 rapeseed cultivars and for introgression of radish rDNA in rapeseed to illustrate the usefulness of these probes.  相似文献   

20.
The nuclear 18S, 5.8S and 25S rRNA genes exist as thousands of rDNA repeats in the Scots pine genome. The number and location of rDNA loci (nucleolus organizers, NORs) were studied by cytological methods, and a restriction map from the coding region of the Scots pine rDNA repeat was constructed using digoxigenin-labeled flax rDNA as a probe. Based on the maximum number of nucleoli and chromosomal secondary constrictions, Scots pine has at least eight NORs in its haploid genome. The size of the Scots pine rDNA repeat unit is approximately 27 kb, two- or threefold larger than the typical angiosperm rDNA unit, but similar in size to other characterized conifer rDNA repeats. The intergenic spacer region (IGS) of the rDNA repeat unit in Scots pine is longer than 20 kb, and the transcribed spacer regions surrounding the 5.8S gene (ITS1 and ITS2) span a region of 2.9 kb. Restriction analysis revealed that although the coding regions of rDNA repeats are homogeneous, heterogeneity exists in the intergenic spacer region between individuals, as well as among the rDNA repeats within individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号