首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light and dark adaptation of halorhodopsin   总被引:1,自引:0,他引:1  
Dark incubation of envelope vesicles derived from a strain of Halobacterium halobium that lacks bacteriorhodopsin but contains halorhodopsin and a third rhodopsin-like pigment caused a decrease in the flash yield [the amplitude of a transient absorbance change of flash reactive component(s) by flash] of halorhodopsin but not the rhodopsin-like pigment. The flash yield decreased to reach a low steady level after incubation for about 4 days in the dark. The flash yield of halorhodopsin at any stage of dark incubation was increased by actinic illumination of the vesicles. The flash yield at 490 nm (absorbance increase) was found to be approximately proportional to that at 590 nm (absorbance decrease). These results indicate that halorhodopsin in the envelope vesicles has two forms, dark and light adapted, and that the halorhodopsin phototransient absorbing at 490 nm is originated from the light-adapted form. A difference spectrum between these two forms of halorhodopsin shows that the light-adapted halorhodopsin was red-shifted from the dark-adapted form. The light-induced membrane potential was measured by tetraphenylphosphonium uptake. The uptake by the dark-adapted vesicles was slower than that by the light-adapted vesicles, suggesting that only the light-adapted halorhodopsin has ion-transporting activity.  相似文献   

2.
Light and dark adaptation in Phycomyces phototropism   总被引:3,自引:1,他引:2       下载免费PDF全文
Light and dark adaptation of the phototropism of Phycomyces sporangiophores were analyzed in the intensity range of 10(-7)-6 W X m- 2. The experiments were designed to test the validity of the Delbruck- Reichardt model of adaptation (Delbruck, M., and W. Reichardt, 1956, Cellular Mechanisms in Differentiation and Growth, 3-44), and the kinetics were measured by the phototropic delay method. We found that their model describes adequately only changes of the adaptation level after small, relatively short intensity changes. For dark adaptation, we found a biphasic decay with two time constants of b1 = 1-2 min and b2 = 6.5-10 min. The model fails for light adaptation, in which the level of adaptation can overshoot the actual intensity level before it relaxes to the new intensity. The light adaptation kinetics depend critically on the height of the applied pulse as well as the intensity range. Both these features are incompatible with the Delbruck-Reichardt model and indicate that light and dark adaptation are regulated by different mechanisms. The comparison of the dark adaptation kinetics with the time course of the dark growth response shows that Phycomyces has two adaptation mechanisms: an input adaptation, which operates for the range adjustment, and an output adaptation, which directly modulates the growth response. The analysis of four different types of behavioral mutants permitted a partial genetic dissection of the adaptation mechanism. The hypertropic strain L82 and mutants with defects in the madA gene have qualitatively the same adaptation behavior as the wild type; however, the adaptation constants are altered in these strains. Mutation of the madB gene leads to loss of the fast component of the dark adaptation kinetics and to overshooting of the light adaptation under conditions where the wild type does not overshoot. Another mutant with a defect in the madC gene shows abnormal behavior after steps up in light intensity. Since the madB and madC mutants have been associated with the receptor pigment, we infer that at least part of the adaptation process is mediated by the receptor pigment.  相似文献   

3.
The properties of calcium channels were studied at the period of neurogenesis in the early embryonic chick retina. The whole neural retina was isolated from embryonic day 3 (E3) chick and loaded with a Ca2+-sensitive fluorescent dye (Fura-2). The retinal cells were depolarized by puff application of high-K+ solutions. Increases in intracellular Ca2+ concentrations were evoked by the depolarization through calcium channels. The type of calcium channel was identified as l-type by the sensitivity to dihydropyridines. The Ca2+ response was completely blocked by 10 μM nifedipine, whereas it was remarkably enhanced by 5 μM Bay K 8644. Then we sought a factor to activate the calcium channel and found that GABA could activate it by membrane depolarization at the E3 chick retina. Puff application of 100 μM GABA raised intracellular Ca2+ concentrations, and this Ca2+ response to GABA was also sensitive to the two dihydropyridines. Intracellular potential recordings verified clear depolarization by bath-applied 100 μM GABA. The Ca2+ response to GABA was mediated by GABAA receptors, since the GABA response was blocked by 10 μgM bicuculline or 50 μM picrotoxin, and mimicked by muscimol but not by baclofen. Neither glutamate, kainate, nor glycine evoked any Ca2+ response. We conclude that l-type calcium channels and GABAA receptors are already are already expressed before differentiation of retinal cells and synapse formation in the chick retina. A possibility is proposed that GABA might act as a trophic factor by activating l-type calcium channels via GABAA receptors during the early period of retinal neurogenesis. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Light and dark adaptation in Phycomyces light-growth response   总被引:1,自引:1,他引:1       下载免费PDF全文
Sporangiophores of the fungus Phycomyces exhibit adaptation to light stimuli over a dynamic range of 10(10). This range applies to both phototropism and the closely related light-growth response; in the latter response, the elongation rate is modulated transiently by changes in the light intensity. We have performed light- and dark- adaptation experiments on growing sporangiophores using an automated tracking machine that allows a continuous measurement of growth velocity under controlled conditions. The results are examined in terms of the adaptation model of Delbruck and Reichardt (1956, Cellular Mechanisms in Differentiation and Growth, 3-44). The "level of adaptation," A, was inferred from responses to test pulses of light by means of a series of intensity-response curves. For dark adaptation to steps down in the normal intensity range (10(-6)-10(-2) W/m2), A decays exponentially with a time constant b = 6.1 +/- 0.3 min. This result is in agreement with the model. Higher-order kinetics are indicated, however, for dark adaptation in the high-intensity range (10(-2)-1 W/m2). Adaptation in this range is compared with predictions of a model relating changes in A to the inactivation and recovery of a receptor pigment. In response to steps up in intensity in the normal range, A was found to increase rapidly, overshoot the applied intensity level, and then relax to that level within 40 min. These results are incompatible with the Delbruck-Reichardt model or any simple generalizations of it. The asymmetry and overshoot are similar to adaptation phenomena observed in systems as diverse as bacterial chemotaxis and human vision. It appears likely that light and dark adaptation in Phycomyces are mediated by altogether different processes.  相似文献   

5.
6.
6-Hydroxydopamine administered intravitreously to light-adapted rats appears to prevent the recovery of retinal sensitivity during subsequent dark adaptation through its interaction with the photochemical mechanisms.  相似文献   

7.
8.
The effects of tagetone on flunitrazepam (FNTZ) binding to synaptosomal membranes from chick brains in the presence and absence of allosteric modulations induced by gamma-aminobutyric acid (GABA) were investigated. Tagetone, at 50 mu g/ml (final concentration), decreased the binding affinity of [3H]FNTZ to synaptosomal membranes form chick brain (Kd=3.34 +/- 0.36 nM without tagetone and Kd,t=5.86 +/- 0.86 nM with tagetone; p<0.05, two tailed Student's t-test) without affecting maximal binding (Bmax=488 +/- 24 fmoles/mg protein, and Bmax,t=500 +/- 25 fmoles/ mg protein in the absence and in the presence of tagetone respectively). The potency of GABA to stimulate [3H]FNTZ binding increased in the presence of tagetone (EC50 values were 2.78 and 1.12 mu M with and without tagetone respectively). GABA was able to decrease merocyanine Delta A570-610 values in a concentration dependent manner; half maximal effect was attained at a GABA concentration of 34 +/- 13 mu M. Tagetone, at a concentration of 50 mu g/ml and in the presence of GABA 30 mu M or 60 mu M, enhanced the ability of GABA alone on decreasing Delta A570-610. Tagetone alone did not change Delta A570-610 values. FNTZ, a well known GABA modulator, could also potentiate the effect of GABA. Theoretical calculations indicate that the effects on merocyanine Delta A value are mainly exerted at the membrane potential level (Delta Psim). The present results strongly suggest that tagetone affected the function of GABAA receptor in a complex way: on the one hand it impaired FNTZ binding; on the other hand tagetone improved both the coupling between FNTZ and GABA binding sites and it enhanced GABA-induced chloride permeability. Changes in the geometrical and electrostatic properties of the self-organized membrane structure may account for these effects of tagetone.  相似文献   

9.
10.
The effects of tagetone on flunitrazepam (FNTZ) binding to synaptosomal membranes from chick brains in the presence and absence of allosteric modulations induced by gamma-aminobutyric acid (GABA) were investigated. Tagetone, at 50 micrograms/ml (final concentration), decreased the binding affinity of [3H]FNTZ to synaptosomal membranes form chick brain (Kd = 3.34 +/- 0.36 nM without tagetone and Kd,t = 5.86 +/- 0.86 nM with tagetone; p < 0.05, two tailed Student's t-test) without affecting maximal binding (Bmax = 488 +/- 24 fmoles/mg protein, and Bmax,t = 500 +/- 25 fmoles/mg protein in the absence and in the presence of tagetone respectively). The potency of GABA to stimulate [3H]FNTZ binding increased in the presence of tagetone (EC50 values were 2.78 and 1.12 microM with and without tagetone respectively). GABA was able to decrease merocyanine delta A570-610 values in a concentration dependent manner; half maximal effect was attained at a GABA concentration of 34 +/- 13 microM. Tagetone, at a concentration of 50 micrograms/ml and in the presence of GABA 30 microM or 60 microM, enhanced the ability of GABA alone on decreasing delta A570-610. Tagetone alone did not change delta A570-610 values. FNTZ, a well known GABA modulator, could also potentiate the effect of GABA. Theoretical calculations indicate that the effects on merocyanine delta A570-610 value are mainly exerted at the membrane potential level (delta psi m). The present results strongly suggest that tagetone affected the function of GABAA receptor in a complex way: on the one hand it impaired FNTZ binding: on the other hand tagetone improved both the coupling between FNTZ and GABA binding sites and it enhanced GABA-induced chloride permeability. Changes in the geometrical and electrostatic properties of the self-organized membrane structure may account for these effects of tagetone.  相似文献   

11.
The effect of depolarizing potassium concentration on the release of [14C]glycine, [3H]GABA, and [35S]taurine was investigated in the whole chick retina and in a synaptosomal fraction prepared from the chick retina. In the whole retina, increasing potassium concentration above 40 mM resulted in an increased release of the three amino acids. The release of glycine was the most stimulated and that of taurine, the least. The potassium-evoked release of glycine and GABA was calcium dependent. In the synaptosomal fraction, 68.5 mM potassium significantly stimulated the efflux of GABA and glycine by a calcium-dependent mechanism. The release of taurine from this fraction was unaffected by high potassium.  相似文献   

12.
The peptide hormone insulin binds its cognate cell-surface receptors to activate a coordinated biochemical-signaling network and to induce intracellular events. The retina is an integral part of the central nervous system and is known to contain insulin receptors, although their function is unknown. This article, describes recent studies that link the photobleaching of rhodopsin to tyrosine phosphorylation of the insulin receptor and subsequent activation of phosphoinositide 3-kinase (PI3K). We recently found a light-dependent increase in tyrosine phosphorylation of the insulin receptor-β-subunit (IRβ) and an increase in PI3K enzyme activity in isolated rod outer segments (ROS) and in anti-phosphotyrosine (PY) and anti-IRβ immunoprecipitates of retinal homogenates. The light effect, which was localized to photoreceptor neurons, is independent of insulin secretion. Our results suggest that light induces tyrosine phosphorylation of IRβ in outersegment membranes, which leads to the binding of p85 through its N-terminal SH2 domain and the generation of PI-3,4,5-P3. We suggest that the physiological role of this process may be to provide neuroprotection of the retina against light damage by activating proteins that protect against stress-induced apoptosis. The studies linking PI3K activation through tyrosine phosphorylation of IRβ now provide physiological relevance for the presence of these receptors in the retina.  相似文献   

13.
14.
R-cognin, a cell recognition molecule, and insulin are known to play significant roles in GABAergic differentiation in the developing chick retina. In the present study, the effects of insulin and R-cognin on post-synaptic (GABAceptive) differentiation were investigated. In ovo binding of [3H]GABA and [3H]flunitrazepam ([3H]Flu) to the GABA and benzodiazepine (BZD) receptors, respectively, remained at low levels during early embryogenesis but increased sharply from mid-embryogenesis through hatching, increases which also occur in cultured neurons from early-embryonic (E7) and mid-embryonic (E11) chick retina. E7 neurons respond to insulin treatment (100 ng/ml) with increased [3H]Flu binding but no change in [3H]GABA binding. Cognin antibody (10 g/ml) treatment of E7 neurons caused no significant inhibition of the developmental increases in binding of either radioligand. Insulin in E11 cultures led to greater developmental increases in binding sites for both radioligands, but exposure to cognin antibody was without significant effect. These data, along with previous studies, indicate that GABAergic differentiation in developing chick retina is regulated, in part, by insulin and cognin-mediated cell signaling. Insulin also regulates post-synaptic (GABAceptive) differentiation whereas cognin-mediated interactions are relatively insignificant.Abbreviations BZD benzodiazepine - ChAT choline acetyltransferase - Flu flunitrazepam - GABA -aminobutyric acid - GAD glutamate decarboxylase (glutamic acid decarboxylase)  相似文献   

15.
The frog retina was stimulated with light flashes homogeneous in space but not time. The time heterogeneity of stimulation was created by abrupt change of a referent stimulus for a stimulus with different luminance. Such changes form a time pattern, as well as sharp borders of luminance between the neighbor areas of the visual field form a spatial pattern. The electroretinogram recorded in response to presentation of a triad of stimuli: the onset of a short flash of homogeneous light after long dark (or light) adaptation of a retina, brief sequence of the referent and test light flashes varied in luminance, and the offset, with returning to the initial level of adaptation. It was shown that responses of the retina under conditions of time heterogeneity of stimulation could be divided in two types as well as under conditions of spatial heterogeneity. Such a dual change in amplitude confirms our earlier hypothesis on the existence of two mechanisms of luminance coding in the frog retina. The first mechanism encodes power characteristics of light, it forms the information on the absolute level of the environmental luminance. Its activity is connected basically with receptors and cells of the external plexiform layer of the frog's retina. It is responsible for the b-wave of the electroretinogram. The other mechanism associated with RERG is based on a vector code of stimuli. This mechanism forms the information on spatial and time differentiation of the light flow in the visual field and is connected basically with cells of the internal plexiform layer. The results suggest that the frog retina has the individual mechanism for time pattern detection, distinguishing it from the homogeneous light flow in a similar way as in case of spatial light pattern detection. It is possible that the first mechanism is responsible for the detection of any new stimulus in general, irrespective of its specificity, whereas the second mechanism serves for the measurement of suprathreshold differences between stimuli.  相似文献   

16.

Background  

Many studies in the vertebrate retina have characterized the differentiation of amacrine cells as a homogenous class of neurons, but little is known about the genes and factors that regulate the development of distinct types of amacrine cells. Accordingly, the purpose of this study was to characterize the development of the cholinergic amacrine cells and identify factors that influence their development. Cholinergic amacrine cells in the embryonic chick retina were identified by using antibodies to choline acetyltransferase (ChAT).  相似文献   

17.
18.
The ultrastructure of the dorsal ocelli of two arctiid moths (Arctia caja (A. caja) and Creatonotos transiens (C. transiens) was investigated. The two ocelli are positioned laterally on the vertex of the head posterior to the antennae, close to the dorsal margin of the compound eyes. The biconvex corneal lens is located at the apex of a cone-shaped cuticular elevation, which encapsulates the retina. The corneagenous cell layer and the cup-like retina with about 100-130 receptor cells in A. caja (70-90 receptor cells in C. transiens) are adjoined proximally. The retina is completely enclosed by the perineurium and thus separated from the corneagenous cells and the surrounding hemolymph. Irregularly shaped rhabdomeres, consisting of densely packed microvilli, are present in the distal region of the receptor cells. Up to three cells may form a rhabdom. Thus a loose network of photoreceptive structures over the whole retina results. A unique feature of these arctiid ocelli are photoreceptor vacuoles containing microvilli. The function of these organelles is unknown. The rhabdomeric arrangement within the light and dark adapted retina differs considerably. The ultrastructure of the rhabdomeres indicates an intense membrane turnover. However, changes in adaptation state are not accompanied by dramatic changes in the photoreceptive area of an ocellus.  相似文献   

19.
Summary N-acetyltransferase activity has similar circadian rhythms controlled by environmental lighting in the eyes and pineal glands of chicks (Gallus domesticus). The interactions of the two eyes and the pineal gland were examined by using patches of black tape to reduce the intensity of light reaching the eyes and/or the pineal gland. Suppression of N-acetyltransferase activity (normally 80%) by extending the light into the dark-time was used to test the effects of light. On the basis of the test, the eyes respond to light independently of each other and of the pineal gland; the pineal gland, however, responds to light perceived by the eyes.  相似文献   

20.
We have investigated the localization of basic fibroblast growth factor (bFGF) binding sites during the development of the neural retina in the chick embryo. The specificity of the affinity of bFGF for its receptors was assessed by competition experiments with unlabelled growth factor or with heparin, as well as by heparitinase treatment of the samples. Two different types of binding sites were observed in the neural retina by light-microscopic autoradiography. The first type, localized mainly to basement membranes, was highly sensitive to heparitinase digestion and to competition with heparin. It was not developmentally regulated. The second type of binding site, resistant to heparin competition, appeared to be associated with retinal cells from the earliest stages studied (3-day-old embryo, stages 21-22 of Hamburger and Hamilton). Its distribution was found to vary during embryonic development, paralleling layering of the neural retina. Binding of bFGF to the latter sites was observed throughout the retinal neuroepithelium at early stages but displayed a distinct pattern at the time when the inner and outer plexiform layers were formed. During the development of the inner plexiform layer, a banded pattern of bFGF binding was observed. These bands, lying parallel to the vitreal surface, seemed to codistribute with the synaptic bands existing in the inner plexiform layer. The presence of intra-retinal bFGF binding sites whose distribution varies with embryonic development suggests a regulatory mechanism involving differential actions of bFGF on neural retinal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号