首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ornithine decarboxylase (ODC, EC 4.1.1.17) expression is subject to negative feedback regulation by the polyamines. The results of previous studies favor either translational or post-translational regulation. To facilitate further analysis of the mechanism by which polyamines affect ODC expression we have used a cell line (L1210-DFMOr) that overproduces ODC. This cell line was isolated by selection for resistance to the antiproliferative effect of the ODC inhibitor alpha-difluoromethylornithine (DFMO). These cells respond similarly to polyamine depletion and repletion as do their wild-type counterparts. When L1210-DFMOr cells were grown in the presence of 20 mM DFMO (i.e., when their polyamine content was reduced to an extent that still permitted a normal growth rate) ODC represented 4-5% of the soluble protein synthesized. After transfer of the cells to a medium lacking DFMO (i.e., when their polyamine pools were repleted), the rate of incorporation of [35S]methionine into ODC was one order of magnitude lower. Since this difference in incorporation of radioactivity into ODC remained the same irrespective of the pulse-label time used (between 2 and 20 min) it is likely to represent a true difference in ODC synthesis rate. Consequently, the pulse-label experiments cannot be explained by rapid degradation of the enzyme during the labeling period. The difference in ODC synthesis rate was not accompanied by a corresponding difference in the steady-state level of ODC mRNA. Analyses of the distribution of ODC mRNA in polysome profiles did not demonstrate any major difference between cells grown in the absence or presence of DFMO, even though the ODC synthesis rate differed by as much as 10-fold. However, the distribution of the ODC mRNA in the polysome profiles indicated that the message was poorly translated. Thus, most of the ODC mRNA was present in fractions containing ribosomal subunits or monosomes. Inhibition of elongation by cycloheximide treatment resulted in a shift of the ODC mRNA from the region of the gradient containing ribosomal subunits to that containing mono- and polysomes, indicating that most of the ODC mRNA was accessible to translation. Taken together these data lend support to a translational control mechanism which involves both initiation and elongation.  相似文献   

2.
Cell growth and differentiation require the presence of optimal concentrations of polyamines. Ornithine decarboxylase (ODC) catalyses the first and rate-controlling step in polyamine synthesis. In studies using cultures of Ehrlich ascites-tumour cells, we have shown that the expression of ODC is subject to feedback regulation by the polyamines. A decrease in the cellular polyamine concentration results in a compensatory increase in the synthesis of ODC, whereas an increase in polyamine concentration results in suppression of ODC synthesis. These changes in ODC synthesis were attributed to changes in the efficiency of ODC mRNA translation, because the steady-state amount of ODC mRNA remained constant. We now show that the number of ribosomes associated with ODC mRNA is low, and that the increase in ODC mRNA translation takes place without a shift in the distribution of ODC mRNA towards larger polysomes. This finding indicates that the polyamines regulate the efficiency of ODC mRNA translation by co-ordinately affecting the rates of initiation and elongation. By analysing ODC mRNA translation in vitro, using a rabbit reticulocyte lysate, polyadenylated RNA from a cell line with an amplified ODC gene, and a monospecific anti-ODC antibody, we also show that spermidine, but not putrescine, exerts a direct regulatory effect on ODC synthesis.  相似文献   

3.
Ornithine decarboxylase (ODC) mRNA was elevated ninefold by 6 h following concanavalin A (ConA) stimulation of bovine lymphocytes. Comparison of the increases in ODC mRNA and ODC activity revealed a fivefold discrepancy, which is consistent with a change in efficiency of translation of ODC mRNA. In resting cells, 45% of the total ODC mRNA was associated with particles sedimenting at about 40 S, and therefore was not translated. The untranslated ODC mRNA in resting cells could be completely shifted into polysomes by a 15-min treatment of the cells with appropriate concentrations of cycloheximide. In activated cells, the proportion of ODC mRNA in untranslated material was reduced to 18%. This shift in distribution of ODC mRNA occurred between 6 h and 12 h following mitogen stimulation with no increase in the cellular level of this message. The rate of synthesis of ODC protein was found in increase twofold between 6 h and 12 h, paralleling the increase in the amount of ODC mRNA associated with polysomes. Thus, in this time frame, a decrease in the amount of untranslated ODC mRNA with a corresponding increase in the amount associated with polysomes leads to an increase in the biosynthesis of ODC with no change in the cellular level of the message. These changes in translational efficiency were not observed with actin mRNA.  相似文献   

4.
Changes in both synthesis rate and degradation rate of ornithine decarboxylase (ODC) were pursued in primary cultures of adult rat hepatocytes during the process of ODC induction caused by asparagine and glucagon and also during the process of rapid ODC decay caused by putrescine. The synthesis rate of ODC was determined by [35S]methionine incorporation into the enzyme, which was separated afterwards by immunoprecipitation and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The degradation rate of ODC was determined by following the decay of prelabeled ODC. The enzyme induction caused by asparagine (10 mM) and glucagon (1 microM) was due both to an increase in the synthesis rate and to a decrease in the degradation rate. Addition of 10 mM putrescine caused a rapid decay of ODC activity, which was faster than ODC decay in the presence of cycloheximide. This rapid decay in ODC activity was accompanied by slightly slower decay in ODC protein, which was due both to partial suppression of ODC synthesis and to several fold acceleration of ODC degradation.  相似文献   

5.
Administration of phenobarbital to rats increases the rate of synthesis of certain microsomal drug-metabolizing enzymes in a selective manner and promotes proliferation of smooth endoplasmic reticulum in the liver. Phenobarbital increased a number of factors by which protein synthesis could be enhanced in the liver. It produced a 30% increase in the amount of ribosomes and mRNA per cell. The proportion of ribosomes associated with polysomes was increased by 5-10% over normal liver. There was a 10-30% increase in the rate of ploypeptide elongation and a small increase or no change in polysome size, indicating that the rate of polypeptide initiation was increased proportionately. The product of these effects accounts for the 1.5-fold increase in the rate of total protein synthesis previously reported. The average polysome size, and the size of free polysomes in particular, was maintained when actinomycin D was administered to phenobarbital-pretreated rats, suggesting that the rate of mRNA degradation was decreased selectively. Phenobarbital did not, however, affect the distribution of ribosomes between the free and membrane-bound states or the activity of ribonucleases associated with isolated free and bound polysomes. Thus, we conclude that phenobarbital stimulates protein synthesis by expanding the mRNA pool, at least partially through effects on mRNA degradation, and by augmenting the rate of mRNA translation.  相似文献   

6.
We investigated the possibility that insulin could stimulate translation of ornithine decarboxylase (ODC) mRNA in a murine fibroblast cell line that expresses large numbers of human insulin receptors (HIR 3.5 cells). Within 3 h after exposure to 70 nM insulin, ODC enzyme activity increased approximately 50-fold and mRNA accumulation 3-fold in the HIR 3.5 cells but not in normal fibroblasts. Pretreatment of cells with cycloheximide completely inhibited insulin-stimulated ODC expression; actinomycin D partially inhibited this effect. To determine the influence of the 5' untranslated region (5'UTR) of ODC mRNA on insulin-regulated ODC expression, plasmids were constructed which contained sequences from the 5'UTR of a rat ODC mRNA interposed between the ferritin promoter and the coding region of the human growth hormone gene. These constructions were then expressed transiently in HIR 3.5 cells. Insulin stimulated a 2-4-fold change in growth hormone accumulation in the medium of cells transiently expressing plasmids containing the entire 5'UTR of ODC mRNA or just the 5'-most 115 bases, a G/C-rich conserved sequence predicted to form a stem-loop structure and shown previously to be responsible for constitutive inhibition of translation. There was a direct correlation between the extent of insulin stimulation and the predicted secondary structure of the added 5'UTR sequences. To determine whether this effect might be due to insulin activation of initiation factors responsible for melting mRNA secondary structure, we examined the effect of insulin on the phosphorylation states of two such factors, eucaryotic initiation factors eIF-4B and eIF-4E. Insulin stimulated the phosphorylation of both initiation factors; this stimulation was evident at 15 min and maximal by 60 min. These results suggest a potential general mechanism by which insulin could preferentially stimulate translation of mRNAs whose 5'UTRs exhibit significant secondary structure by activating initiation factors involved in melting such secondary structures.  相似文献   

7.
Slow cooling of fertilized chicken eggs permits the elongation and termination of nascent polypeptides in the polysomes but prevents the initiation of new protein chains. This leads to polysome disaggregation during the first 30 min of cooling, and to the formation, of a pool of inactive ribosomes prone to crystallization. After 2 hr these ribosomes began to form tetramers, which do not contain any labeled proteins synthesized during cooling. If protein synthesis is inhibited by cycloheximide, added to eggs before cooling, tetramer formation in the embryos is prevented. Puromycin, on the other hand, leads to polysome disassembly and does not prevent tetramer formation. Rapid cooling of explanted embryos after short incubation at 37°C, with or without cycloheximide, largely prevents polysome disaggregation and the formation of tetramers. On the other hand, the addition of puromycin to explanted embryos promotes tetramer formation after rapid cooling. When cooled eggs are rewarmed, tetramers are disassembled into monomers, even if protein synthesis is inhibited. When those embryos were rapidly recooled tetramers reformed spontaneously from tetramer-derived monomers, even in the presence of cycloheximide. We conclude that the formation of tetramers at low temperature is an inherent property of the normal ribosomes.  相似文献   

8.
The kinetics of labeled histone mRNA entry into polysomes was studied in nuclease-treated reticulocyte lysates. Added mRNA rapidly bound 1 or 2 ribosomes. However, the formation of full size polysomes required at least 16 min. The amount of mRNA bound to ribosomes reached a maximum (73%) within 2 min after mRNA addition and then declined slowly for the remainder of the experiment. Two initiation inhibitors, aurintricarboxylic acid and 7-methylguanosine 5'-triphosphate, were found to affect polysome size and the fraction of mRNA in polysomes in an opposite manner. These results suggest that initiation and reinitiation events may be intrinsically different. The relatively long time period required for the formation of large polysomes can be explained by large polysomes having higher initiation and/or reinitiation rates or slower elongation rates. These possibilities are not mutually exclusive. The results suggest that there exist several levels of control which can regulate polysome size and the fraction of mRNA in polysomes.  相似文献   

9.
Kempf BJ  Barton DJ 《Journal of virology》2008,82(12):5847-5859
Poliovirus (PV) 2A protease (2A(Pro)) cleaves eukaryotic initiation factors 4GI and 4GII (eIF4GI and eIF4GII) within virus-infected cells, effectively halting cap-dependent mRNA translation. PV mRNA, which does not possess a 5' cap, is translated via cap-independent mechanisms within viral protease-modified messenger ribonucleoprotein (mRNP) complexes. In this study, we determined that 2A(Pro) activity was required for viral polysome formation and stability. 2A(Pro) cleaved eIF4GI and eIF4GII as PV polysomes assembled. A 2A(Cys109Ser) (2A(Pro) with a Cys109Ser mutation) protease active site mutation that prevented cleavage of eIF4G coordinately inhibited the de novo formation of viral polysomes, the stability of viral polysomes, and the stability of PV mRNA within polysomes. 2A(Cys109Ser)-associated defects in PV mRNA and polysome stability correlated with defects in PV mRNA translation. 3C(Pro) activity was not required for viral polysome formation or stability. 2A(Pro)-mediated cleavage of eIF4G along with poly(rC) binding protein binding to the 5' terminus of uncapped PV mRNA appear to be concerted mechanisms that allow PV mRNA to form mRNP complexes that evade cellular mRNA degradation machinery.  相似文献   

10.
11.
eIF5A has a function in the elongation step of translation in yeast   总被引:1,自引:0,他引:1  
The putative translation factor eIF5A is essential for cell viability and is highly conserved throughout evolution. Here, we describe genetic interactions between an eIF5A mutant and a translation initiation mutant (eIF4E) or a translation elongation mutant (eEF2). Polysome profile analysis of single and double mutants revealed that mutation in eIF5A reduces polysome run-off, contrarily to translation initiation mutants. Moreover, the polysome profile of an eIF5A mutant alone is very similar to that of a translation elongation mutant. Furthermore, depletion of eIF5A causes a significant decrease in total protein synthesis and an increase of the average ribosome transit time. Finally, we demonstrate that the formation of P bodies is inhibited in an eIF5A mutant, similarly to the effect of the translation elongation inhibitor cycloheximide. Taken together, these results not only reinforce a role for eIF5A in translation but also strongly support a function for eIF5A in the elongation step of protein synthesis.  相似文献   

12.
P1798 murine lymphosarcoma cells cease to proliferate upon exposure to 10(-7) M dexamethasone and exhibit a dramatic inhibition of rRNA and ribosomal protein synthesis (O. Meyuhas, E. Thompson, Jr., and R. P. Perry, Mol. Cell Biol. 7:2691-2699, 1987). These workers demonstrated that ribosomal protein synthesis is regulated primarily at the level of translation, since dexamethasone did not alter mRNA levels but shifted the mRNAs from active polysomes into inactive messenger ribonucleoproteins. We have examined the effects of dexamethasone on the biosynthesis of initiation factor proteins in the same cell line. The relative protein synthesis rates of eIF-4A and eIF-2 alpha were inhibited by about 70% by the hormone, a reduction comparable to that for ribosomal proteins. The mRNA levels of eIF-4A, eIF-4D, and eIF-2 alpha also were reduced by 60 to 70%, indicating that synthesis rates are proportional to mRNA concentrations. Analysis of polysome profiles showed that the average number of ribosomes per initiation factor polysome was only slightly reduced by dexamethasone, and little or no mRNA was present in messenger ribonucleoproteins. The results indicate that initiation factor gene expression is coordinately regulated with ribosomal protein synthesis but is controlled primarily by modulating mRNA levels rather than mRNA efficiency.  相似文献   

13.
14.
The effects of 6-benzylaminopurine (BAP, 5.10?5M) treatment of pumpkin cotyledons and their starvation after excision upon polysome/monosome ratio and translational capacity of polysomes in cell-free system were studied. It has been found that starvation causes a progressive polysome degradation. Polysome translation in a wheat germ cell-free proteinsynthesizing system reveals that the translation capacity of polysome preparations decreases with the time after cotyledon excision much more sharply than polysome/monosome ratio. This indicates the starvation damage in elongation steps of protein synthesis. The decrease of postribosomal supernatants activity in the system of poly(U)-directed polyphenylalanine synthesis confirms this conclusion. BAP treatment brings about a very rapid monosome mobilization into polysomes and activation of cell-free translation of ribosome preparations which is however closely parallel to the polysome percentage in them. That means that during this initial period of BAP action only protein synthesis initiation is under BAP control. The experiments with aurintricarboxylic acid (ATA) support this idea.  相似文献   

15.
Cell-free protein synthesis (CFPS) is becoming increasingly used for protein production as yields increase and costs decrease. CFPS optimization efforts have focused primarily on energy supply and small molecule metabolism, though little is known about the protein synthesis machinery or what limits protein synthesis rates. Here, quantitative polysome profile analysis was used to characterize cell-free translation, thereby elucidating many kinetic parameters. The ribosome concentration in Escherichia coli-based CFPS reactions was 1.6 +/- 0.1 microM, with 72 +/- 4% actively translating at maximal protein synthesis rate. A translation elongation rate of 1.5 +/- 0.2 amino acids per second per ribosome and an initiation rate of 8.2 x 10(-9) +/- 0.3 x 10(-9) M/s, which correlates to, on average, one initiation every 60 +/- 9 s per mRNA, were determined. The measured CFPS initiation and elongation rates are an order of magnitude lower than the in vivo rates and further analysis identified elongation as the major limitation. Adding purified elongation factors (EFs) to CFPS reactions increased the ribosome elongation rate and protein synthesis rates and yields, as well as the translation initiation rate, indicating a possible coupling between initiation and elongation. Further examination of translation initiation in the cell-free system showed that the first initiation on an mRNA is slower than subsequent initiations. Our results demonstrate that polysome analysis is a valid tool to characterize cell-free translation and to identify limiting steps, that dilution of translation factors is a limitation of CFPS, and that CFPS is a useful platform for making novel observations about translation.  相似文献   

16.
Ornithine decarboxylase (ODC) is subject to feedback regulation by the polyamines. Thus, addition of putrescine, spermidine or spermine to cells causes inhibition of ODC mRNA translation. Putrescine and spermine are readily converted into spermidine. Therefore, it is conceivable that the inhibition of ODC synthesis observed in putrescine- and spermine-supplemented cells is instead an effect of spermidine. To examine this possibility we have used two analogs of putrescine and spermine, namely 1,4-dimethylputrescine and 5,8-dimethylspermine, which cannot be converted into spermidine. Both analogs were found to inhibit the incorporation of [35S]methionine into ODC protein to approximately the same extent, suggesting that putrescine as well as spermine exert a negative feedback control of ODC mRNA translation in the cell. In addition to suppressing ODC synthesis, both analogs were found to increase the turnover rate of the enzyme. 5,8-Dimethylspermine caused a marked decrease in the activity of S-adenosylmethionine decarboxylase (AdoMetDC). This effect was not obtained with 1,4-dimethylputrescine, indicating that spermine, but not putrescine, exerts a negative control of AdoMetDC. Treatment with 1,4-dimethylputrescine caused extensive depletion of the cellular putrescine and spermidine content, but accumulation of spermine. 5,8-Dimethylspermine treatment, on the other hand, effectively depleted the spermine content and had less effect on the putrescine and spermidine content, at least initially. Nevertheless, the total polyamine content was more extensively reduced by treatment with 5,8-dimethylspermine than with 1,4-dimethylputrescine. Accordingly, only 5,8-dimethylspermine treatment exerted a significant inhibitory effect on Ehrlich ascites tumor cell growth.  相似文献   

17.
Ornithine decarboxylase (ODC; EC 4.1.1.17) could be induced in primary cultured hepatocytes of the frog, Xenopus laevis, by a hypotonic treatment. Addition of 10 mM putrescine caused a rapid decay of preinduced ODC after a lag period of 30 min. The putrescine-induced ODC decay was faster than the ODC decay in the presence of cycloheximide. Simultaneous addition of cycloheximide blocked the putrescine-induced acceleration of ODC decay, indicating an involvement of protein synthesis. Addition of putrescine to normal medium caused complete loss of ODC activity in 2 h and then ODC-inhibitory activity appeared and progressively increased. The inhibitory factor was non-dialysable and temperature-sensitive and showed a time-independent and stoichiometric pattern of ODC inhibition. On the basis of these observations the inhibitory factor was identified as ODC antizyme. These results indicated that in frog hepatocytes, like in mammalian cells and tissues, ODC is under negative feedback regulation mediated by antizyme.  相似文献   

18.
A method was developed using sucrose gradients containing acrylamide which greatly simplifies the measurement of the polysomal distribution of messages. After centrifugation, the acrylamide was polymerized, forming a "polysome gel". RNA gel blots of polysome gels were used to determine the polysomal distributions of alpha-tubulin and total polyadenylated mRNA in growing, starved (nongrowing) and starved-deciliated Tetrahymena and the number of messages loaded onto polysomes was calculated. These measurements indicated that the translational efficiencies of alpha-tubulin mRNA and total polyadenylated mRNA are largely unaffected when the rates of tubulin and total protein synthesis vary dramatically. Thus, differential regulation of alpha-tubulin mRNA translation initiation does not contribute to the greater than 100-fold induction of tubulin synthesis observed during cilia regeneration and in growing cells. The major translation-level process regulating tubulin synthesis in Tetrahymena appears to be a change in message loading mediated by a non-specific message recruitment or unmasking factor.  相似文献   

19.
The time course of polysome formation was studied in a long-term wheat germ cell-free translation system using sedimentation and electron microscopy techniques. The polysomes were formed on uncapped luciferase mRNA with translation-enhancing 5′ and 3′ UTRs. The formation of fully loaded polysomes was found to be a long process that required many rounds of translation and proceeded via several phases. First, short linear polysomes containing no more than six ribosomes were formed. Next, folding of these polysomes into short double-row clusters occurred. Subsequent gradual elongation of the clusters gave rise to heavy-loaded double-row strings containing up to 30–40 ribosomes. The formation of the double-row polysomes was considered to be equivalent to circularization of polysomes, with antiparallel halves of the circle being laterally stuck together by ribosome interactions. A slow exchange with free ribosomes and free mRNA observed in the double-row type polysomes, as well as the resistance of translation in them to AMP-PNP, provided evidence that most polysomal ribosomes reinitiate translation within the circularized polysomes without scanning of 5′ UTR, while de novo initiation including 5′ UTR scanning proceeds at a much slower rate. Removal or replacements of 5′ and 3′ UTRs affected the initial phase of translation, but did not prevent the formation of the double-row polysomes during translation.  相似文献   

20.
Glycoprotein mRNA (G mRNA) of vesicular stomatitis virus is synthesized in the cytosol fraction of infected HeLa cells. Shortly after synthesis, this mRNA associates with 40S ribosomal subunits and subsequently forms 80S monosomes in the cytosol fraction. The bulk of labeled G mRNA is then found in polysomes associated with the membrane, without first appearing in the subunit or monomer pool of the membrane-bound fraction. Inhibition of the initiation of protein synthesis by pactamycin or muconomycin A blocks entry of newly synthesized G m RNA into membrane-bound polysomes. Under these circumstances, labeled G mRNA accumulates into the cytosol. Inhibition of the elongation of protein synthesis by cucloheximide, however, allows entry of 60 percent of newly synthesized G mRNA into membrane-bound polysomes. Furthermore, prelabeled G mRNA associated with membrane-bound polysomes is released from the membrane fraction in vivo by pactamycin or mucomycon A and in vitro by 1mM puromycin - 0.5 M KCI. This release is not due to nonspecific effects of the drugs. These results demonstrate that association of G mRNA with membrane-bound polysomes is dependent upon polysome formation and initiation of protein synthesis. Therefore, direct association of the 3' end of G mRNA with the membrane does not appear to be the initial event in the formation of membrane-bound polysomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号