首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Calorimetric studies of the reduction of free oxygen in solution by sodium dithionite are in agreement with a stoichiometry of 2 moles Na2S2O4 per mole of oxygen. The reaction is biphasic with ΔHt - 118±7 kcal mol?1 (?494 ± 29 kJ mol?1). The initial phase of the reaction proceeds with an enthalpy change of ca ?20 kcal (?84 kJ) and occurs when 0.5 moles of dithionite have been added per mole dioxygen present. This could be interpreted as the enthalpy change for the addition of a single electron to form the superoxide anion. Further reduction of the oxygen to water by one or more additional steps is accompanied by an enthalpy change of ca ?100 kcal (?418. 5 kJ). Neither of these reductive phases is consistent with the formation of hydrogen peroxide as an intermediate. The reduction of hydrogen peroxide by dithionite in 0.1 M phosphate buffer, pH 7.15, is a much slower process and with an enthalpy change of ca ? 74 kcal mol?1 (?314 kJ mol?1). Dissociation of oxyhemoglobin induced by the reduction of free oxygen tension with dithionite also shows a stoichiometry of 2 moles dithionite per mole oxygen present and an enthalpy change of ca. ?101 ±9 kcal mol?1 (?423± 38 kJ mol?1). The difference in the observed enthalpies (reduction of dioxygen vs. oxyhemoglobin) has been attributed to the dissociation of oxyhemoglobin, which is 17 kcal mol?1 (71 kJ mol?1).  相似文献   

2.
Calorimetric studies of the effect of superoxide dismutase and/or catalase on the reduction of dioxygen into water by dithionite in oxyhemoglobin have been carried out and the results compared with those in red cell hemolysates. In the absence of the enzymes the stoichiometry (moles dithionite/mole dioxygen) is less than the value of 2:1 which was found previously in red cell hemolysates [Forlani et al., J. Inorg. Biochem. 20, 147-155 (1984)]. In the presence of either superoxide dismutase or catalase alone the stoichiometry increases but is still less than 2:1. In the presence of both enzymes the stoichiometry and the shape of the thermogram is that previously observed for hemolysates, suggesting the presence of a hemoglobin-catalase-superoxide dismutase integrated system. The absence of a calorimetric signal for hydrogen peroxide in the reduction of oxyhemoglobin in the presence of superoxide dismutase suggests a wider biological role of superoxide dismutase than previously thought.  相似文献   

3.
Hemoglobin MSaskatoon (α2Aβ263tyr) has two α chains in the normal ferrous state, while its two β chains are in the ferric state. The reaction of hemoglobin MSaskatoon with carbon monoxide at pH 7 and 20 °C in the presence and absence of dithionite was studied. In the absence of dithionite only the α chains react and the combination rate is slow and similar to that of normal deoxyhemoglobin. After the addition of dithionite the rate of reaction is greatly increased initially and then decreases to a rate similar to that seen in the absence of dithionite. The dissociation of oxygen from hemoglobin MSaskatoon at pH 7 and 20 °C was found for the α subunits to be similar to that seen for normal oxyhemoglobin. This similarity in the kinetic properties of normal hemoglobin and the α subunits of hemoglobin MSaskatoon in both ligand combination and dissociation reactions indicates that the α subunits of hemoglobin MSaskatoon undergo a structural transition from a low to high affinity form on liganding. Since the β subunits react rapidly with carbon monoxide even when the α subunits are unliganded, it appears that the ligand binding sites of the β chains are uncoupled from the state of liganding of the α subunits.  相似文献   

4.
We have studied the stimulation by EDTA of methemoglobin reduction in hemolysates of human erythrocytes. The EDTA effect has been shown not to be the result of an allosteric interaction of EDTA with hemoglobin or the result of a photochemical reduction. The effect does not appear to be due to a direct interaction of free EDTA with either of the catalytic components of the erythrocyte methemoglobin reduction system. The EDTA stimulation seen in hemolysates is due to the formation of an iron-EDTA complex, which transfers electrons from the reductase to methemoglobin.  相似文献   

5.
In order to investigate magnetic field effects on blood flow, changes in the flow of erythrocytes in a model branched vessel were observed in an inhomogeneous magnetic field. The magnetic field was applied perpendicular to the straight vessel before branching. When the suspension containing paramagnetic erythrocytes with high spin methemoglobin or deoxygenated hemoglobin flowed in the model vessel, the erythrocytes were attracted towards the stronger magnetic field (i.e. to the side branch) and an excess flow of erythrocytes to the side branch was detected. This excess flow of erythrocytes to the side branch was the highest at a hematocrit of about 5% for the suspension containing erythrocytes with high spin methemoglobin. In the case of mixed suspensions containing erythrocytes with high spin methemoglobin and oxygenated erythrocytes, the excess flow of erythrocytes to the side branch reached its maximum at the "partial hematocrit" for the paramagnetic erythrocyte of around 5% and remained nearly constant with a further increase of the "partial hematocrit." The effect of magnetic field decreased as the flow velocity increased. These results are explained with the paramagnetism of erythrocytes and with the assumption of a hydrodynamic interaction among erythrocytes which are pulled in the direction of the magnetic field. It is suggested that a strong inhomogeneous magnetic field is not totally negligible to the blood circulation.  相似文献   

6.
The dissociation of nitric oxide from hemoglobin, from isolated subunits of hemoglobin, and from myoglobin has been studied using dithionite to remove free nitric oxide. The reduction of nitric oxide by dithionite has a rate of 1.4 X 10(3) M-1 S-1 at 20 degrees in 0.05 M phosphate, pH 7.0, which is small compared with the rate of recombination of hemoglobin with nitric oxide (25 X 10(6) M-1 S-1 (Cassoly, R., and Gibson, Q. H. (1975) J. Mol. Biol. 91, 301-313). The rate of NO combination with chains and myoglobin was found to be 24 X 10(6) M-1 S-1 and 17 X 10(6) M-1 S-1, respectively. Hence, the observed progress curve of the dissociation of nitric oxide is dependent upon the dithionite concentration and the total heme concentration. Addition of excess carbon monoxide to the dissociation mixture reduces the free heme yielding a single exponential process for chains and for myoglobin which is dithionite and heme concentration independent over a wide range of concentrations. The rates of dissociation of nitric oxide from alpha chains, from beta chains, and from myoglobin are 4.6 X 10(-5) S-1, 2.2 X 10(-5) S-1, and 1.2 X 10(4) S-1, respectively, both in the presence and in the absence of carbon monoxide at 20 degrees in 0.05 M phosphate, pH 7.0. Analogous heme and dithionite concentration dependence is found for the dissociation of nitric oxide from tetrameric hemoglobin. The reaction is cooperative, the intrinsic rate constants for the dissociation of the 1st and 4th molecules of NO differing about 100-fold. With hemoglobin, replacement of NO by CO at neutral pH is biphasic in phosphate buffers. The rate of the slow phase is 1 X 10(-5) S-1 and is independent of pH. The amplitude of the fast phase increases with lowering of pH. By analogy with the treatment of the HbCO + NO reaction given by Salhany et al. (Salhany, J.M., Ogawa, S., and Shulman, R.G. (1975) Biochemistry 14, 2180-2190), the fast phase is attributed to the dissociation of NO from T state molecules and the slow phase to dissociation from R state molecules. Analysis of the data gives a pH-independent value of 0.01 for the allosteric constant c (c = Kr/Kt where Kr and Kt are the dissociation constants for NO from the R and T states, respectively) and pH-dependent values of L (2.5 X 10(7) at pH 7 in 0.05 M phosphate buffer). The value of c is considerably greater than that for O2 and CO. Studies of the difference spectrum induced in the Soret region by inositol hexaphosphate are also reported. This spectrum does not arise directly from the change of conformation between R and T states. The results show that if the equilibrium binding curve for NO could be determined experimentally, it would show cooperativity with Hill's n at 50% saturation of about 1.6.  相似文献   

7.
We tested a new routine to eliminate leukocytes for blood rheology measurements using commercial leukocyte absorbing filters (here PALL RC400). These filters were punched out and fitted in smaller chambers through which blood was filtered under controlled suction pressure (< 30 mm Hg). This technique resulted in a very effective leukocyte elimination to 0.0022% but also a platelet reduction to 0.2%. The process causes a small but significant hemolysis with free hemoglobin, of the order of 0.06% of the filtered erythrocytes. A small fraction of the erythrocytes were retained in the filter, versus plasma, to reduce the hematocrit on the order of 1.4%. The leukocyte filtration did not cause any detectable functional trauma to the erythrocytes, measured as micro-pore filterability of normal and glutaraldehyde (GA) hardened erythrocytes. However, when 10% of the erythrocytes were hardened with GA, which caused an increase in pore clogging slope (p < 0.05), the additional passage through the leukocyte elimination filter removed this measured change in clogging. This observation suggests that the leukocyte elimination filter may selectively remove, not only leukocytes and platelets, but also hardened erythrocytes. Reticulocyte counting did not reveal any selective removal of young erythrocytes. In general, we find the presented method reproducible, efficient and easy for eliminating leukocytes for blood rheology research although the risk of removing undeformable erythrocytes must be considered.  相似文献   

8.
The interaction of phenyldichloroarsine with erythrocytes   总被引:1,自引:0,他引:1  
The purpose of the study was to identify binding sites of organic arsenic in the erythrocyte and to explain species differences in binding. Washed erythrocytes were exposed to graded concentrations of [U-14C]phenyldichloroarsine (PDA) in phosphate-buffered saline containing 0.1% glucose and 0.1% bovine serum albumin. At low PDA concentrations, all cells bound the arsenical rapidly (within 10 min) and quantitatively. Human, pig, hamster, guinea pig, and mouse erythrocytes approached saturation at 0.02-0.3 mumol PDA/10(9) cells, depending on the species. Saturation points correlated well with each respective species' erythrocyte glutathione content. In contrast, rat erythrocytes showed no sign of saturation at PDA loads as high as 3.0 mumol/10(9) cells. Hemolysates of PDA-treated erythrocytes were subjected to Sephadex G-75 gel filtration chromatography. 14C from rat hemolysate was distributed between the hemoglobin and small molecular weight (glutathione-containing) fractions. In all other species, the 14C eluted almost exclusively with the glutathione-containing fractions. In equilibrium dialysis experiments, human hemoglobin did not bind PDA, whereas rat hemoglobin bound 2 PDA/mol with Kd approximately 5 microM. In conclusion, glutathione is the principal binding site of phenyldichloroarsine in erythrocytes. In most species, the arsenical does not bind to hemoglobin, even though it has free (titratable) sulfhydryls considerably in excess of the glutathione concentration. In rat erythrocytes, phenlydichloroarsine binds both to glutathione and to hemoglobin. Arsenical binding by rat hemoglobin is presumably due to the unique location of the extra titratable cysteine in that protein.  相似文献   

9.
The crystal state binding of sodium dithionite to deoxyhemoglobin is reported. Dithionite has been used extensively to deoxygenate hemoglobin and myoglobin and there has been considerable interest among users of dithionite about its effect on protein structure and binding site(s). We have determined that dithionite binds to deoxygenated hemoglobin crystals at the interface of two molecules in the crystal lattice. Specific residues involved in hydrogen bonds or salt interactions with dithionite include His116 and His117 of the beta 2 subunit and Lys16 of the alpha 1 subunit of the adjacent hemoglobin molecule. No binding was observed at the symmetry related His116 and 117 beta 1 residues. We have shown that dithionite does not affect the native hemoglobin structure or the binding of several allosteric inhibitors to hemoglobin and can be used to mount T state crystals in the air.  相似文献   

10.
A dichroic microspectrophotometer was used to measure isotropic and dichroic absorbance spectra of this unique cytoplasmic hemoglobin and its derivatives. A perfusion slide enabled changing the media bathing the Mermis head. The native spectrum, which has an exceptionally low alpha-band extinction, was shown to be entirely due to oxyhemoglobin. The CO-hemoglobin spectrum is more typical, however, the alpha- and beta-bands are unusually closely spaced. A ferric hemochrome was formed on oxidation with ferricyanide or hydroxylamine and was readily converted to ferric hemoglobin cyanide on adding cyanide. Aquoferric hemoglobin and ferric hemoglobin fluoride were not easily formed. Deoxyhemoglobin, identified by its typical absorption spectrum, was formed only under the extremely low O2 pressures attainable in the presence of dithionite. A glucose oxidase, catalase solution deoxygenated hemoglobin in human erythrocytes but not in adjacent Mermis preparations. The affinity for O2 is much greater than for CO. Also, spectral evidence points to an oxyheme environment that is different than in vertebrate hemoglobin and myoglobin. The polarization ratio (PR) magnitude and the PR spectrum were unaffected by perfusion with high refractive index solvents; therefore, form dichroism due to the rodlike crystals is negligible. Maximum extinction is approximately perpendicular to the long axis of the microscopic crystals, which are oriented parallel to the body axis within the hypodermal cells. The PR spectra of the hemoglobin derivatives strongly resemble the corresponding spectra previously reported of single crystals made of horse hemoglobin, whale myoglobin, or Aplysia myoglobin and change appropriately when the ligand is changed. This confirms that the intracellular crystals of Mermis are of oxyhemoglobin.  相似文献   

11.
Nitric oxide is unique among the higher oxides of nitrogen in its reactivity and efficiency for the oxidation of oxygen-bound hemoproteins. Dinitrogen trioxide serves as a nitric oxide donor, but dinitrogen tetroxide does not exhibit similar reactivity. Details are provided of the stoichiometric transformation through which nitric oxide is converted to nitrate with accompanying oxidation of myoglobin or hemoglobin to the corresponding iron(III) hemoprotein, including an estimate of the rate constant for nitric oxide oxidation of oxygen-associated myoglobin and the effect of unassociated oxygen on the stoichiometry and rates for nitric oxide oxidation. Evidence is presented to establish the mechanism of oxidation in the direct combination of nitric oxide with iron(II)-bound dioxygen.  相似文献   

12.
In eleven patients with dementia senilis circadian rhythms of hematocrit, hemoglobin, erythrocytes, leukocytes, serum iron and transferrin were studied by means of the cosinor method. An evident circadian rhythm was observed for all blood components, except leukocytes. There were no significant differences between patients with dementia senilis and healthy aged persons as far as hematocrit, hemoglobin, erythrocytes, and leukocytes are concerned. Acrophase for serum iron and transferrin occurs a little earlier and mesor is lower than in healthy aged persons.  相似文献   

13.
J Mayer  Z Pospísil  J Litzman 《Biorheology》1992,29(2-3):261-271
The authors deduced the equation that describes the sedimentation of erythrocytes as the function of time, hematocrit, hemoglobin and some plasma protein concentrations and the citrate viscosity and density. This values served to describe plasma and erythrocyte density, plasma viscosity, erythrocyte aggregation and the influence of suspension concentration on the erythrocyte sedimentation rate. The influence of citrate on blood dilution (the reduction of hematocrit and plasma protein concentrations) was also considered. A good agreement between the observed and predicted values was obtained.  相似文献   

14.
Methemoglobin (metHb), an oxidized form of hemoglobin, is unable to bind and carry oxygen. Erythrocytes are continuously subjected to oxidative stress and nitrite exposure, which results in the spontaneous formation of metHb. To avoid the accumulation of metHb, reductive pathways mediated by cytochrome b5 or flavin, coupled with NADH-dependent or NADPH-dependent metHb reductases, respectively, keep the level of metHb in erythrocytes at less than 1% of the total hemoglobin under normal conditions. In this work, a mathematical model has been developed to quantitatively assess the relative contributions of the two major metHb-reducing pathways, taking into consideration the supply of NADH and NADPH from central energy metabolism. The results of the simulation experiments suggest that these pathways have different roles in the reduction of metHb; one has a high response rate to hemoglobin oxidation with a limited reducing flux, and the other has a low response rate with a high capacity flux. On the basis of the results of our model, under normal oxidative conditions, the NADPH-dependent system, the physiological role of which to date has been unclear, is predicted to be responsible for most of the reduction of metHb. In contrast, the cytochrome b5-NADH pathway becomes dominant under conditions of excess metHb accumulation, only after the capacity of the flavin-NADPH pathway has reached its limit. We discuss the potential implications of a system designed with two metHb-reducing pathways in human erythrocytes.  相似文献   

15.
The effect of a static magnetic field on human erythrocytes at different hemoglobin states (normal, oxidized and reduced hemoglobin) was investigated. Three different blood samples, normal, iron deficiency anemic and beta thalassemia minor, were studied. Measurements of the magnetization curves of the erythrocytes for all blood samples in all states showed diamagnetic behavior; however, oxidation was found to enhance this behavior. These measurements have also shown that the normal and iron deficiency samples in the reduced states exhibit a less diamagnetic response in comparison with the normal state. This result indicates that the reduction process gave rise to a paramagnetic component of the magnetization. Analysis of the measured paramagnetic behavior, using a Brillouin function, gave an effective magnetic moment of 8 muB per reduced hemoglobin molecule for both normal and anemic samples. This result shows that both anemic and normal blood have similar magnetic behavior and the only difference is the number of hemoglobin molecules per erythrocyte. For the beta thalassemia minor blood sample, magnetic measurements showed that both the normal and reduced states have almost the same diamagnetic behavior. However, this diamagnetic response is less than that for the normal state of the iron deficiency anemic sample. This result may indicate a low oxygen intake for the blood in the normal state for the beta thalassemia minor blood. All magnetic measurements were made using a vibrating sample magnetometer using field steps of 0.001 T from 1 T to -1 T.  相似文献   

16.
Inhibitory effect of iron on the uptake of lead by erythrocytes.   总被引:1,自引:0,他引:1  
It is well known that more than 90% of the lead found in blood is associated with the erythrocytes. The present in vitro experiments show that the uptake of lead-203 by rabbit erythrocytes is inhibited by the presence of non-radioactive lead or iron or by reduction of the incubation temperature. The inhibitory effect of iron on radioactive lead uptake by erythrocytes is also demonstrable in vivo.When lead-203 is incorporated into erythrocytes in vitro, about 10% of the radioactivity is attached to the membrane and the remainder is found in the cytoplasm associated with hemoglobin and an unidentified low molecular weight intracellular component. In the presence of 25 μg/ml of added iron (Fe+++) the uptake of radioactive lead by erythrocytes is reduced to 21.7±5.1% and membrane binding accounts for approximately 5% of this total. Chromatographic analyses of hemolysates show that the reduction in cytoplasmic labeling is directly related to decreased lead binding to the low molecular weight component, since hemoglobin binding remains unchanged.This work suggests that in addition to the interaction between iron and lead which occurs during the biosynthesis of heme, these metals may directly compete for specific erythrocyte binding sites.  相似文献   

17.
Malcolm Dixon 《BBA》1971,226(2):259-268
1. For comparison with flavoprotein oxidases, a study has been made of free flavins in the reduced form with respect to the specificity and stoichiometry of their oxidation by a series of acceptors.

2. Reduced flavins uncombined with proteins show very little acceptor specificity and react very rapidly with nearly all the commonly used acceptors. Their behaviour resembles that of dithionite very closely indeed, and it differs considerably from that of flavoproteins. Like dithionite, free reduced flavins reduce O2 quantitatively to H2O2; this oxidizes a further molecule of flavin.

3. H2O2 and cytochrome c react more slowly than most acceptors with reduced flavins. Nitrate and NDA+ do not act at all and require special activation.

4. Catalase can act as a catalyst for the aerobic oxidation of flavins by converting slowly-reacting H2O2 into rapidly-reacting O2.

5. In the absence of catalytic metals ascorbate reacts with acceptors much more slowly than reduced flavins do.  相似文献   


18.
The properties of the component 'X' identified as the primary electron acceptor of Photosystem I in spinach was investigated by electron-paramagnetic-resonance spectroscopy and the complete spectrum obtained for the first time. Component 'X' has gx = 1.78, gy = 1.88 and gz = 2.08; it can be observed only at very low temperatures (8--13K) and high microwave powers. Component X was identified in Photosystem I particles prepared with the French press or with Triton X-100. In samples reduced with ascorbate, illumination at low temperatures results in the photo-oxidation of P700 and reduction of a bound iron-sulphur protein; this is irreversible at low temperature. In samples in which the iron-sulphur proteins are reduced by sodium dithionite, illumination at low temperature results in the oxidation of P700 and the reduction of component 'X'; this is reversible at low temperature. The light-induced P700 signal is the same size with either ascorbate or dithionite as reducing agent, showing that all of the P700 involved in reduction of bound ferredoxin also functions in the reduction of component 'X'.  相似文献   

19.
The temperature and cell volume dependence of the NMR water proton line-width, spin-lattice, and spin-spin relaxation times have been studied for normal and sickle erythrocytes as well as hemoglobin A and hemoglobin S solutions. Upon deoxygenation, the spin-spin relaxation time (T2) decreases by a factor of 2 for sickle cells and hemoglobin S solutions but remains relatively constant for normal cells and hemoglobin A solutions. The spin-lattice relaxation time (T1) shows no significant change upon deoxygenation for normal or sickle packed red cells. Studies of the change in the NMR linewidth, T1 and T2 as the cell hydration is changed indicate that these parameters are affected only slightly by a 10-20% cell dehydration. This result suggests that the reported 10% cell dehydration observed with sickling is not important in the altered NMR properties. Low temperature studies of the linewidth and T1 for oxy and deoxy hemoglobin A and hemoglobin S solutions suggest that the "bound" water possesses similar properties for all four species. The low temperature linewidth ranges from about 250 Hz at -15 degrees C to 500 Hz at -36 degrees C and analysis of the NMR curves yield hydration values near 0.4 g water/g hemoglobin for all four species. The low temperature T1 data go through a minimum at -35 degrees C for measurements at 44.4 MHz and -50 degrees C for measurements at 17.1 MHz and are similar for oxy and deoxy hemoglobin A and hemoglobin S. These similarities in the low temperature NMR data for oxy and deoxy hemoglobin A and hemoglobin S suggest a hydrophobically driven sickling mechanism. The room temperature and low temperature relaxation time data for normal and sickle cells are interpreted in terms of a three-state model for intracellular water. In the context of this model the relaxation time data imply that type III, or irrotationally bound water, is altered during the sickling process.  相似文献   

20.
Salhany JM 《Biochemistry》2008,47(22):6059-6072
The reaction of deoxyhemoglobin with nitrite was characterized in the presence of dithionite using hemoglobin in solution or bound to the cytoplasmic domain of band 3 (CDB3). Deoxyhemoglobin was generated by predeoxygenation (nitrogen flushing followed by addition of dithionite), or transiently, by rapidly mixing oxyhemoglobin with nitrite and dithionite simultaneously. Wavelength-dependent kinetic studies confirmed the formation of nitrosyl hemoglobin. Furthermore, the rate of reaction was independent of dithionite concentration, indicating that dithionite does not reduce nitrite to nitric oxide directly. Model simulation studies showed that superoxide anion generated by dithionite reduction of molecular oxygen was not a factor in the reaction kinetics. CDB3-bound hemoglobin reacted faster with nitrite than did hemoglobin in solution. This difference was most pronounced for predeoxygenated hemoglobin and least pronounced for rapidly deoxygenated hemoglobin. The smaller difference observed in the rapid deoxygenation experiment was associated with much faster kinetics compared to the predeoxygenation experiment. Model simulation studies showed, and literature evidence indicates, that faster kinetics in the rapid deoxygenation experiment were related to the initial presence of R-state Hb(II)O 2 alphabeta dimers, both in dilute solution and when bound to CDB3. Thus, rapidly deoxygenated CDB3-bound hemoglobin alphabeta dimers react 5-fold faster with nitrite than predeoxygenated tetrameric hemoglobin in solution. Faster nitrite reductase kinetics for CDB3-bound hemoglobin suggests the possibility of preferential nitric oxide generation at the inner surface of the erythrocyte membrane, thus coupling the release of oxygen from hemoglobin to the production and successful release of nitric oxide from the erythrocyte, and the regulation of blood flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号