首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous animals use chemical cues within their environments to execute various behaviors. One of these behaviors is orientation to an odor source. Crayfish, in particular, can orient to food sources under a number of different conditions. It has not been determined, however, what kind of search strategy these animals employ to successfully locate a food source. To determine the role of antennae and antennules in this behavior and to investigate different modes of orientation behavior, the orientation patterns of crayfish with complete and partial antennal lesions were examined. Detailed analysis of orientation paths confirmed that crayfish could not locate odor sources with either bilateral or unilateral lesions. This suggests that crayfish are using the spatial information obtained from these appendages to successfully orient. Animals using information from the bilaterally paired appendages in the control group exhibited increased walking speed, increased speed to source and decreased heading angles towards the source compared to these measurements taken from lesioned groups. There was no significant difference in any parameters between animals with unilateral or bilateral lesions. This strongly suggests that these animals are reliant on the spatial comparison of differences between bilaterally paired olfactory appendages for successful orientation.  相似文献   

2.
Hydroxyurea (HU) treatment of first instar honeybee larvae was previously shown to cause mushroom body (MB) ablations. Predominantly, either one or both median MB subunits were ablated. This prompted us to analyze the effects of asymmetrical or symmetrical HU‐induced MB ablation on both the morphology of the brain and on the level of three proteins (synapsin, PKA RII, and PKC), which are considered to play a role in synaptic plasticity, learning, and memory. In brains with one median MB subunit missing the volume of the overall MB calyx neuropil in the lesioned side was diminished by 35%. This strong reduction occurred although the remaining lateral MB calyx of the lesioned brain side was found to be significantly larger than that of the intact side. Accordingly, in brains with both median MB subunits missing the size of the remaining lateral calyces increased. The various types of MB ablation differentially affected the amounts of synapsin, PKA RII, and PKC expressed in the central brain. In animals with bilateral and thus symmetrical MB ablation (both median calyces ablated) the protein amount was found to be similar to that in control animals. However, unilateral MB ablation causes an increase in the amounts of the tested proteins in the intact brain side, while the levels in the ablated side were the same as in control animals. These findings not only show that HU‐induced ablation of MB subunits is accompanied by volume changes and by changes in protein expression, but also suggest that these processes are highly regulated between the brain sides. The latter is of general importance in understanding the potential contribution of the MB subunits to learning and memory and their interaction between the brain sides. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 31–44, 2002  相似文献   

3.
Hydroxyurea (HU) treatment of first instar honeybee larvae was previously shown to cause mushroom body (MB) ablations. Predominantly, either one or both median MB subunits were ablated. This prompted us to analyze the effects of asymmetrical or symmetrical HU-induced MB ablation on both the morphology of the brain and on the level of three proteins (synapsin, PKA RII, and PKC), which are considered to play a role in synaptic plasticity, learning, and memory. In brains with one median MB subunit missing the volume of the overall MB calyx neuropil in the lesioned side was diminished by 35%. This strong reduction occurred although the remaining lateral MB calyx of the lesioned brain side was found to be significantly larger than that of the intact side. Accordingly, in brains with both median MB subunits missing the size of the remaining lateral calyces increased. The various types of MB ablation differentially affected the amounts of synapsin, PKA RII, and PKC expressed in the central brain. In animals with bilateral and thus symmetrical MB ablation (both median calyces ablated) the protein amount was found to be similar to that in control animals. However, unilateral MB ablation causes an increase in the amounts of the tested proteins in the intact brain side, while the levels in the ablated side were the same as in control animals. These findings not only show that HU-induced ablation of MB subunits is accompanied by volume changes and by changes in protein expression, but also suggest that these processes are highly regulated between the brain sides. The latter is of general importance in understanding the potential contribution of the MB subunits to learning and memory and their interaction between the brain sides.  相似文献   

4.
Olfactory systems undergo continuous growth and turnover in many animals. Many decapod crustaceans, such as lobsters and crayfish, have indeterminate growth, and in these animals, turnover of both peripheral and central components of the olfactory system occurs continuously throughout life. In this study, we examine the dynamics of olfactory receptor neuron (ORN) proliferation in the antennule of the Caribbean spiny lobster, Panulirus argus, using in vivo incorporation of the cell proliferation marker BrdU. We show that addition of ORNs occurs in a "proximal proliferation zone" (PPZ), which exists on the proximo-lateral margin of the existing ORN population. The PPZ is spatially and temporally dynamic in that it travels as a wave in the proximal and lateral directions in the antennule. This wave results in continuous addition of ORNs throughout the molt cycle. The rate of proliferation, as measured by the size and shape of the PPZ, changes depending on the animal's molt stage. The rate is highest during premolt and lowest during intermolt. ORNs are the most prominent cell-type produced in the PPZ, but other cell types, including glia, are also produced. Patches of proliferating epithelial cells occur immediately proximal to the PPZ, suggesting that neuronal and glial precursors reside in this region. Possible mechanisms for peripheral and central modulation of ORN development are discussed.  相似文献   

5.
The origin and ultrastructural localization of NADPH-diaphorase (NADPH-d) in the olfactory afferent pathway of the crayfishPacifastacus leniusculus was investigated by means of histochemical techniques. Sensory axons in the antennular nerve and the olfactory lobe glomeruli of normal animals expressed NADPH-d staining properties. The NADPH-d staining of each glomerulus was regionalized showing pronounced staining in the apical cap-region. Following ablation of the chemosensory input for 30 days, the staining properties of the antennular nerve and the glomeruli were reduced. At the electron microscopic level, the NADPH-d precipitate was found to be distributed on various membranes in neuronal profiles and glial cells. Stained neuronal profiles were frequently observed in the glomeruli, whereas the number of positive glial cells was low. Almost all NADPH-d positive profiles in the neuropil had an intraglomerular localization. The present findings suggest that NADPH-d in the crayfish olfactory lobe neuropil is localized to terminals of olfactory sensory axons.  相似文献   

6.
3,4-Dihydroxyphenyl- l -alanine (l- DOPA)-induced dyskinesia often develops as a side effect of chronic l -DOPA therapy. This study was undertaken to investigate dopamine (DA) release upon l -DOPA treatment. Chronoamperometric measurements were performed in unilaterally DA-depleted rats, chronically treated with l -DOPA, resulting in dyskinetic and non-dyskinetic animals. Normal and lesioned l -DOPA naïve animals were used as controls. Potassium-evoked DA releases were significantly reduced in intact sides of animals undertaken chronic l -DOPA treatment, independent on dyskinetic behavior. Acute l -DOPA further attenuated the amplitude of the DA release in the control sides. In DA-depleted striata, no difference was found in potassium-evoked DA releases, and acute l -DOPA did not affect the amplitude. While immunoreactivity to serotonin uptake transporter was higher in lesioned striata of animals displaying dyskinetic behavior, no correlation could be documented between serotonin transporter-positive nerve fiber density and the amplitude of released DA. In conclusions, the amplitude of potassium-evoked DA release is attenuated in intact striatum after chronic intermittent l -DOPA treatment. No change in amplitude was found in DA-denervated sides of either dyskinetic or non-dyskinetic animals, while release kinetics were changed. This indicates the importance of studying DA release dynamics for the understanding of both beneficial and adverse effects of l -DOPA replacement therapy.  相似文献   

7.
New neurons are added to two bilateral clusters of neurons in crayfish brain throughout their lives. These interneurons are associated with the olfactory and accessory lobes, areas of the brain that receive primary olfactory information and higher order inputs from the visual and tactile receptor systems. The rate of cell proliferation in these four clusters, revealed by BrdU labeling, is sensitive to the living conditions of the animals: individuals isolated in small spaces (impoverished condition) exhibit a lower rate of cell proliferation in comparison to their siblings living together in larger areas (enriched condition), although both groups were fed to satiation. Reduction in the rate of proliferation can be measured 1 to 2 weeks after the animals are subjected to the impoverished condition. Counts of the labeled neurons that survive after 4 weeks of subjection to the two conditions show that fewer new neurons survive in the brains of animals that have lived for 2 weeks in the impoverished condition in comparison to their siblings living in the enriched conditions. Factors such as surface area, depth of water, and social interaction can all play a role in determining both the rate of new neuron production and the incorporation of the new neurons into the brain of freshwater crayfish. The results indicate a high degree of neuronal plasticity in the crayfish brain that is highly sensitive to the conditions under which the animals are kept.  相似文献   

8.
Specific binding of 3H-atropine to crude synaptosomal membrane fractions of the rat striatum was measured at different times after unilateral 6-hydroxydopamine lesions of the nigrostriatal dopaminergic neurones. In a group of rats killed between 4 to 15 days after lesioning the right side, specific 3H-atropine binding was reduced by 20 percent compared to the right side of unlesioned rats. There was a concomitant increase (20 percent) of specific 3H-atropine binding in the contralateral side compared to control animals. These changes in muscarinic receptor binding depended on the time after which the lesions were made : maximum effects occured about 8 days after lesioning but almost completely disappeared 13 days later. Dissociation constants for 3H-atropine in the right and left striata of control and lesioned rats were not significantly different. The decrease in muscarinic receptor binding in the ipsilateral striatum of lesioned animals may result from an activation of cholinergic neurones produced by removal of the inhibitory dopaminergic terminals.  相似文献   

9.
New neurons are added to two bilateral clusters of neurons in crayfish brain throughout their lives. These interneurons are associated with the olfactory and accessory lobes, areas of the brain that receive primary olfactory information and higher order inputs from the visual and tactile receptor systems. The rate of cell proliferation in these four clusters, revealed by BrdU labeling, is sensitive to the living conditions of the animals: individuals isolated in small spaces (impoverished condition) exhibit a lower rate of cell proliferation in comparison to their siblings living together in larger areas (enriched condition), although both groups were fed to satiation. Reduction in the rate of proliferation can be measured 1 to 2 weeks after the animals are subjected to the impoverished condition. Counts of the labeled neurons that survive after 4 weeks of subjection to the two conditions show that fewer new neurons survive in the brains of animals that have lived for 2 weeks in the impoverished condition in comparison to their siblings living in the enriched conditions. Factors such as surface area, depth of water, and social interaction can all play a role in determining both the rate of new neuron production and the incorporation of the new neurons into the brain of freshwater crayfish. The results indicate a high degree of neuronal plasticity in the crayfish brain that is highly sensitive to the conditions under which the animals are kept. © 2000 John Wiley & Sons, Inc. J Neurobiol 45: 215–226, 2000  相似文献   

10.
The firing rate of efferent sympathetic nerves to brown adipose tissue was measured on 18 h or 18 d following lateral hypothalamic lesions (LH). Eighteen hours following acute lateral hypothalamic lesions, sympathetic firing rate was significantly increased. Following chronic LH lesions there was a decrease in food intake and a fall in body weight which had stabilized by four days. Eleven days after surgery a group of control animals were food restricted and subsequently pair fed twice daily to maintain a body weight comparable to that of the LH lesioned animals. Food intake was lower in the pair-gained animals on all but one day of the experiment. When studied 18 days following LH lesions, sympathetic firing rates were significantly higher than in either the ad lib or pair-fed controls. Sympathetic firing rate in pair fed rats, on the other hand, was significantly lower than in the sham lesioned rats. These data are consistent with the hypothesis that the LH lesion removes an inhibitory control over sympathetic firing rate both acutely and in chronically lesioned animals and that this increased sympathetic firing rate may play an important role in the maintenance of a lower body weight.  相似文献   

11.
Mitotically active regions persist in the brains of decapod crustaceans throughout their lifetimes, as they do in many vertebrates. The most well-studied of these regions in decapods occurs within a soma cluster, known as cluster 10, located in the deutocerebrum. Cluster 10 in crayfish and lobsters is composed of the somata of two anatomically and functionally distinct classes of projection neurons: olfactory lobe (OL) projection neurons and accessory lobe (AL) projection neurons. While adult-generated cells in cluster 10 survive for at least a year, their final phenotypes remain unknown. To address this question, we combined BrdU labeling of proliferating cells with specific neuronal and glial markers and tracers to examine the differentiation of newborn cells in cluster 10 of the crayfish, Cherax destructor. Our results show that large numbers of adult-generated cells in cluster 10 differentiate into neurons expressing the neuropeptide crustacean-SIFamide. No evidence was obtained suggesting that cells differentiate into glia. The functional phenotypes of newborn neurons in cluster 10 were examined by combining BrdU immunocytochemistry with the application of dextran dyes to different brain neuropils. These studies showed that while the majority of cells born during the early postembryonic development of C. destructor differentiate in AL projection neurons, neurogenesis in adult crayfish is characterized by the addition of both OL and AL projection neurons. In addition to our examination of neurogenesis in the olfactory pathway, we provide the first evidence that adult neurogenesis is also a characteristic feature of the optic neuropils of decapod crustaceans.  相似文献   

12.
While levodopa-induced neurochemical changes have been studied in animal models of Parkinson's disease, very little is known regarding the effects of levodopa administration in normal animals. The present study investigates the effects normal and MPTP-lesioned mice chronically treated with two different doses of levodopa. We assess changes in striatal dopamine (DA) receptor binding, striatal DA receptor mRNA levels and striatal neuropeptide precursor levels (preproenkephalin-A [PPE-A]; preprotachykinin [PPT]; preproenkephalin-B [PPE-B]). The extent of the lesion was measured by striatal DA transporter binding and stereological estimation of the number of tyrosine hydroxylase immunoreactive neurones in the substantia nigra pars compacta (SNc). In non-lesioned animals, chronic levodopa treatment induced an increase in PPE-A mRNA, whereas both D3R binding and PPE-B mRNA levels were dramatically increased in the lesioned animals in a dose dependent manner. The present results show that chronic levodopa administration may induce pathophysiological changes, even in the absence of a lesion of the nigro-striatal pathway, suggesting that the sensitization process involves predominantly the indirect striatofugal pathway in non-lesioned animals, whereas the direct pathway is primarily involved in lesioned animals.  相似文献   

13.
Whole brains from Rhodnius prolixus treated with glyoxylic acid display catecholamine histofluorescence in eleven bilaterally distributed clusters of neurones, and in three circumscribed neuropile regions. This simple method offers resolution of some features not detected in studies on sectioned insect tissue; cephalic neurosecretory cells in chronically starved animals are histofluorescent and diverse catecholamine-handling fibres converge within the brain of this insect.  相似文献   

14.
In adult Xenopus, the nasal cavity is divided into separate middle (MC) and principal (PC) cavities; the former is used to smell water-borne odorants, the latter air-borne odorants. Recent work has shown that olfactory neurons of each cavity express a distinct subclass of odorant receptors. Moreover, MC and PC axons project to distinct regions of the olfactory bulb. To examine the developmental basis for this specificity in the olfactory projection, we extirpated the developing MC from early metamorphic (stage 54–57) tadpoles and raised the animals through metamorphosis. In most lesioned animals, the MC partly regenerated. Compared with the unlesioned side, reduction of the region of the glomerular layer of the olfactory bulb receiving MC afferents ranged from 70% to 95%. PC afferents did not occupy regions of the olfactory bulb deprived of MC afferents. These results support a model in which intrinsic cues in the olfactory bulb control the projection pattern attained by ingrowing olfactory axons. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 213–222, 1997.  相似文献   

15.
1. Intracellular recording and staining was used to characterize neurons in the crayfish (Procambarus clarkii) brain that respond to chemical stimuli applied to the major olfactory organs, the antennules. 2. Two distinct morphological types of neurons that have major projections in the olfactory lobes (OLs) of the brain were characterized anatomically (Figs. 1, 2, 3; Table 2) and physiologically (Figs. 4, 5, 6; Table 3). 3. Different individual neurons of one type, with similar 'tree-like' projections in the OLs, have somata distributed in at least 5 different cell body clusters of the brain (Fig. 3) and link different subsets of neuropilar lobes through their distributed arbors (Fig. 1, Table 2). 4. Excitatory, inhibitory and mixed responses were recorded in different neurons when odorant mixtures or individual components of these mixtures were applied to the antennules. Response spectra to individual components were broad and overlapping, but not identical in the neurons tested (Fig. 4; Table 3). Mixture interactions appear to be additive in most of the neurons that we tested, but evidence was obtained for mixture suppression in several cases (Fig. 6). 5. Most of the neurons recorded in this study responded only to stimulation of the ipsilateral antennule (Fig. 5), although subthreshold activity to stimuli applied contralaterally was recorded in several neurons that were strongly excited by ipsilateral stimuli. 6. Chemoresponsive neurons without projections in OL's that have all of their branches confined to the brain, or that project an axon in the circumesophageal connective, are described (Fig. 7).  相似文献   

16.
We recorded electrical activity from three different classes of broad-spectrum, multiglomerular neurons in the crayfish (Procambarus clarkii, P. blandingi) olfactory midbrain. Responses were obtained to odorants and electrical stimuli applied to the antennules of isolated, perfused head preparations. All three neuronal types responded to a complex mixture of five amino acids as well as to solutions of a commercial fish food. At least two classes also responded to individual amino acids and to sugars. The response properties and the morphologies of the neurons were unique to each type. Responses of Type I cells were stimulus-dependent excitatory postsynaptic potentials and superimposed impulse trains; those in Type II were stimulus-dependent inhibitory postsynaptic potentials; those in Type III were compound responses consisting of short latency hyperpolarizations, followed by depolarizing post-synaptic potentials and impulses. All three cell types had extensive, multiglomerular dendritic arbors in the olfactory lobe, but each of their respective branching pattern morphologies was distinctive. Two types had additional dendrite branches in the lateral antennular neuropil and the olfactory-globular tract neuropil. We conclude that these broad-spectrum neurons are part of a parallel olfactory pathway that is separate from the putative quality coding circuitry in the crayfish olfactory system.Abbreviations AL accessory lobe - LAN lateral antennular neuropil - OGT olfactory globular tract - OGTN olfactory globular tract neuropil - OL olfactory lobe  相似文献   

17.
When 2-day-old rats were inoculated subcutaneously with the R2 strain of reovirus type 3 or with a class B (352) or class C (447) temperature-sensitive (ts) mutant, 5 to 10% of the animals died from acute encephalitis within 12 days. Approximately half of the survivors recovered rapidly and grew normally, but the remainder became runted. Two phases of infection are distinguished in the animals: an acute phase during which infectious virus reaches a maximum titer in brain and other tissues by 10 days p.i. and thes runting of the rats and the slow disappearance of virus from their brains over a period of 2 months or so. Virus isolated from chronically infected brains generally retained the genetic character (ts or wild type) of the inoculated virus, but two exceptions to this are described. Defective virions lacking the L1 segment of the viral genome (L1 defectives) were generated in rat brains during the acute phase of infection. Defective virus was also generated during the chronic phase, but during this period defectives were found with multiple segments deleted from the genome in addition to L1 defectives. In another type of experiment defective virus exerted a marked protective effect when inoculated intracerebrally with R2 virus. In the absence of defectives all animals died, but in their presence 17 of 23 animals survived and 15 of 23 became runted and chronically infected. The formation and evolution of defective particles in the brains of these rats were similar to those found in rats chronically infected after subcutaneous inoculation of reovirus. We conclude that the formation of defective virus particles may play a role in the initiation and maintenance of chronic neutropic infections with reovirus.  相似文献   

18.
In both intact (4 animals) and lesioned (2 preparations with contralateral motor cortex ablation and 1 animal with transection of the rostral two thirds of the corpus callosum) cats, three different types of efferent zones were identified in the face motor cortex by the technique of microstimulation: contralateral, ipsilateral and bilateral efferent zones. The three types of efferent zones had different organizational features such as location, thresholds of effective sites and latencies of motor responses. Mean thresholds of effective sites from ipsilateral and bilateral efferent zones in lesioned animals were not significantly higher than those in intact preparations. In both intact and lesioned animals, neurons endowed with contralateral, bilateral and ipsilateral receptive fields were isolated from the three types of efferent zones.  相似文献   

19.
Drugs of abuse, such as phencyclidine (PCP), methamphetamine (METH), and cocaine (COC) are known to affect several behaviors in rats, such as motor activity, stereotypy, and circling. In this study, we evaluated whether these drugs produce circling preferences in the presence or absence of unilateral 6-hydroxydopamine (6-OHDA)-induced lesions of the caudate nucleus. Adult male CD rats were lesioned with 10 μg 6-OHDA/site. Animals were dosed with PCP (15 mg/kg, ip), its congener, (+) MK-801 (0.15 mg/kg, ip), METH (2 mg/kg, ip), COC (60 mg/kg, ip), or apomorphine (0.2 mg/kg, ip). circling preference was recorded in control and lesioned rats for 2 h before animals were sacrificed to determine monoamine levels by HPLC/EC. In control animals, administration of these drugs produced 60–70% left circling. In, lesioned animals, these drugs produced 78–90% ipsilateral (toward the lesion) circling, except apomorphine, which produced 60–80% contralateral (away from the lesion) circling. Dopamine (DA) and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) concentrations significantly decreased ipsilaterally in lesioned caudate nucleus (CN) and substantia nigra (SN). However, no significant changes were observed in nucleus accumbens (NA) and olfactory tubercles (OT). These data demonstrate that drugs of abuse like PCP, its congener (+) MK-801, METH, and COC produce a greater preference to turn toward the left than the right, a finding similar to that found in human psychosis. Since 6-OHDA lesions enhanced the circling bias and depleted DA and its metabolites DOPAC and HVA, it also suggests that the dopaminergic system may be involved in the circling behavior.  相似文献   

20.
The ability to orient to and track moving electrolocation targets was assessed in normal Apteronotus leptorhynchus and in those with unilateral lesions of the nucleus praeeminentialis dorsalis.
  1. Each fish was trained to hover between two vertical metal rods and track their movement. Two aspects of this behavior were measured: a) the hovering position of the fish relative to stationary rods; b) the latency between the onset of rod motion and the fish's tracking response. Control fish hovered midway between stationary rods, while lesioned fish hovered closer to the rod ipsilateral to the lesion. Response latency varied negatively with rod diameter in both sets of fish, and lesioned fish exhibited shorter latencies than control fish. While the response latencies of control fish were shortest when their starting position was midway between the rods, lesioned animals' latencies were shortest when they hovered closer to the rod ipsilateral to their lesion.
  2. Control fish responded to the approach of a single metal ball to either side of the body with nearly equal latencies and fish-to-object distances. After lesioning, response latency increased and fish-to-object distance decreased for approaches to the side ipsilateral to the lesion; opposite changes occurred for contralateral approaches.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号