首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between the 1-47 N-terminus fragment of the cholecystokinin receptor and the nonsulfated cholecystokinin octapeptide, CCK8, is monitored by fluorescence emission. Quenching of the fluorescence intensities is observed on binding. Dissociation constants calculated by these data are in the same submicromolar range as found for the binding of linear CCK8 analogues to B-type receptors. Although detailed structural information cannot be obtained, fluorescence emission is more sensitive than other techniques and permits fast detection of receptor-ligand interaction.  相似文献   

2.
Abstract: This study was directed at the issue of whether or not subpopulations of cholecystokinin (CCK) receptors exist within the CNS. This was achieved through the use of two radiolabelled probes, namely [125I] Bolton-Hunter (BH) CCK 8 and [3H]pentagastrin (Boc-β-Ala CCK 4), in comparative studies under identical conditions. Both probes bound with high affinity to the mouse cerebral cortical CCK receptor binding site with apparent equilibrium dissociation constants (KD) of 1.9 nM and 1.4 nM for [3H]pentagastrin and [125I]BH CCK 8, respectively. The maximal binding capacity was 1.05 and 1.15 pmol/g weight for the tritium and iodinated probes, respectively. Hill analysis yielded Hill numbers close to unity, suggesting the absence of more than one binding site and the lack of cooperativity of CCK receptor binding. Kinetic studies revealed binding site homogeneity in that no evidence of multiphasic dissociation curves was seen. Computerised analysis of displacement binding data using LIGAND established that both radiolabelled probes bound to a single site, with the one-site model providing the best fit of the data. Similar rank orders of potency were obtained for various fragments of CCK 8 in competing for the CCK receptor, labelled with either probe. Both CCK 8 and CCK 4 bound with roughly equinanomolar affinity. These studies demonstrate that both CCK 8 and its shorter C-terminal fragment CCK 4 bind to a single class of high-affinity binding site, with as yet no evidence of CNS CCK receptor multiplicity.  相似文献   

3.
The (neuro)hormones gastrin and cholecystokinin (CCK) share a common C-terminal tetrapeptide amide sequence that has been recognized as the message portion while the N-terminal extensions are responsible for the CCK(A) and CCK(B) receptor subtype selectivity and avidity. 1,4-Benzodiazepine derivatives are potent and selective antagonists of these receptors, and according to comparative molecular field analysis, the structures of these nonpeptidic compounds could well mimic the message sequence of the peptide agonists at least in terms of spatial array of the aromatic residues. Docking of a larger series of low molecular weight nonpeptide antagonists to a homology modeling derived CCK(B) receptor structure revealed a consensus binding mode that is further validated by data from site-directed mutagenesis studies of the receptors. Whether this putative binding pocket of the nonpeptide antagonists is identical to that of the message portion of the peptide agonists, or whether it is distinct and spatially separated, or overlapping, but with distinct interaction sites, is still object of debate. Using a 1,4-benzodiazepine core amino-functionalized at the C3 position, related tryptophanyl derivatives were synthesized as mimics of the tetrapeptide and subsequently extended N-terminally with gastrin and CCK address sequences. All hybrid constructs were recognized as antagonists by the CCK(A) and CCK(B) receptors, but their address portions were incapable of enhancing in significant manner selectivity and avidity. Consequently, the binding of the peptide/benzodiazepine hybrids has to be dictated mainly by the benzodiazepine moiety, which apparently prevents optimal interactions of the address peptides with extracellular receptor subdomains. These findings would strongly support the view of distinct binding sites for the message portion of the peptide agonists and the benzodiazepine-based nonpeptide antagonists.  相似文献   

4.
We investigated the importance of sulfation of gastrin or cholecystokinin (CCK) on influencing their affinity for gastrin or CCK receptors by comparing the abilities of sulfated gastrin-17 (gastrin-17-II), desulfated gastrin-17 (gastrin-17-I), CCK-8 and desulfated CCK-8 [des(SO3)CCK-8] to interact with CCK or gastrin receptors on guinea pig pancreatic acini. For inhibiting binding of 125I-gastrin to gastrin receptors, gastrin-17-II (Kd 0.08 nM) greater than CCK-8 (Kd 0.4 nM) greater than gastrin-17-I (Kd 1.5 nM) greater than des(SO3)CCK-8 (Kd 28 nM). For inhibiting binding of 125I-Bolton Hunter-labeled CCK-8 to CCK receptors the relative potencies were: CCK-8 much greater than des(SO3)CCK-8 = gastrin-17-II greater than gastrin-17-I. Each peptide interacted with both high and low affinity CCK binding sites. The relative abilities of each peptide to interact with high affinity CCK receptors showed a close correlation with their abilities to cause half-maximal stimulation of enzyme secretion. These results demonstrate that, in contrast to older studies, sulfation of both CCK and gastrin increase their affinities for both gastrin and CCK receptors. Moreover, the gastrin receptor is relatively insensitive to the position of the sulfate moiety, whereas the CCK receptor is extremely sensitive to both the presence and exact position of the sulfate moiety.  相似文献   

5.
Chiu T  Rozengurt E 《FEBS letters》2001,489(1):101-106
Addition of gastrin or cholecystokinin octapeptide (CCK-8) to cultures of Rat-1 cells stably transfected with the CCK2 (CCK(B)/gastrin) receptor induced protein kinase D (PKD) activation that was detectable within 1 min and reached a maximum ( approximately 10-fold) after 2.5 min of hormonal stimulation. Half-maximal PKD activation for both CCK-8 and gastrin was achieved at 10 nM. Treatment with various concentrations of the selective PKC inhibitors Ro 31-8220 or GF-I potently blocked PKD activation induced by subsequent addition of CCK-8 in a concentration-dependent fashion. Our results indicate that PKC-dependent PKD activation is a novel early event in the action of gastrin and CCK-8 via CCK2 receptors.  相似文献   

6.
In order to develop a model system for identifying signaling pathways and cell cycle events involved in gastrin-mediated mitogenesis, we have used high efficiency retroviral-mediated transfection of cholecystokinin (CCK)(B)/gastrin receptor into Swiss 3T3 cells. The retrovirally-transfected CCK(B)/gastrin receptor binds 125I-CCK-8 with high affinity (Kd = 1.1 nM) and is functionally coupled to intracellular signaling pathways including rapid and transient increase in Ca2+ fluxes, protein kinase C-dependent protein kinase D activation, and MEK-dependent ERK1/2 activation. In the presence of insulin, CCK-8 or gastrin induced a 66.5 +/- 8.8-fold (mean +/- SEM, n = 24 in eight independent experiments) increase in cellular DNA synthesis, reaching a level similar to that achieved by stimulation with a saturating concentration of fresh serum, and much greater than the response to each agonist added alone. CCK-8 also induced a striking increase in the expression of cyclins D1, D3, and E and hyperphosphorylation of Rb acting synergistically with insulin. Similar effects were observed when CCK(B)/gastrin receptor was activated in the presence of EGF or bombesin. Our results demonstrate that activation of CCK(B)/gastrin receptor retrovirally-transfected into Swiss 3T3 induces a potent synergistic effect on DNA synthesis, accumulation of cyclins D1, D3, and E and hyperphosphorylation of Rb in combination with insulin, EGF, or bombesin. Thus, the CCK(B)/gastrin receptor transfected into Swiss 3T3 cells provides a novel model system to elucidate mitogenic signal transduction pathways and cell cycle events activated via this receptor.  相似文献   

7.
Fractionation on Sephadex G50 gel of methanol extracts of rat intestine revealed two molecular forms of cholecystokinin (CCK) of about equal immunopotency: one form has an elution volume between CCK33 and CCK12; the other elutes in the salt region as does authentic CCK8. Purification and sequencing have demonstrated that the smaller molecular form is CCK8 with a sequence identical to the pork and sheep CCK8's that had previously been sequenced. Purification and sequencing of the larger molecular form reveals that it is a 22 amino acid C-terminal CCK fragment identical with pig CCK22 except that glycine instead of serine is present at the nineteenth residue from the C-terminus. This sequence is consistent with that predicted by cloned cDNA encoding preprocholecystokinin from a rat medullary thyroid carcinoma. CCK22 has not previously been reported to be a prominent molecular form in either pig or dog intestines.  相似文献   

8.
9.
Although SB202190 and SB203580 are described as specific p38 MAP kinase inhibitors, several reports have indicated that other enzymes are also sensitive to SB203580. Using a pharmacological approach, we report for the first time that compounds SB202190 and SB203580 were able to directly and selectively interact with a G-protein-coupled receptor, namely the cholecystokinin receptor subtype CCK1, but not with the CCK2 receptor. We demonstrated that these compounds were non-competitive antagonists of the CCK1 receptor at concentrations typically used to inhibit protein kinases. By chimeric construction of the CCK2 receptor, we determined the involvement of two CCK1 receptor intracellular loops in the binding of SB202190 and SB203580. We also showed that two CCK antagonists, L364,718 and L365,260, were able to regulate p38 mitogen-activated protein (MAP) kinase activity. Using a reporter gene strategy and immunoblotting experiments, we demonstrated that both CCK antagonists inhibited selectively the enzymatic activity of p38 MAP kinase. Kinase assays suggested that this inhibition resulted from a direct interaction with both CCK antagonists. Molecular modeling simulations suggested that this interaction occurs in the ATP binding pocket of p38 MAP kinase. These results suggest that SB202190 and SB203580 bind to the CCK1 receptor and, as such, these compounds should be used with caution in models that express this receptor. We also found that L364,718 and L365,260, two CCK receptor antagonists, directly interacted with p38 MAP kinase and inhibited its activity. These findings suggest that the CCK1 receptor shares structural analogies with the p38 MAP kinase ATP binding site. They open the way to potential design of either a new family of MAP kinase inhibitors from CCK1 receptor ligand structures or new CCK1 receptor ligands based on p38 MAP kinase inhibitor structures.  相似文献   

10.
A broad spectrum of radiolabeled peptides with high affinity for receptors expressed on tumor cells is currently under preclinical and clinical investigation for scintigraphic imaging and radionuclide therapy. The present paper evaluates two (99m)Tc-labeled forms of the C-terminal octapeptide of cholecystokinin (CCK8): sulfated (s)CCK8, with high affinity for CCK1 and CCK2 receptors, and nonsulfated (ns)CCK8, with high affinity for CCK2 receptors but low affinity for CCK1 receptors. Peptides were conjugated with the bifunctional chelator N-hydroxysuccinimidyl hydrazino niconitate (s-HYNIC). (99m)Tc-labeling, performed in the presence of nicotinic acid and tricine, was highly efficient (approximately 95%) and yielded products with a high specific activity (approximately 700 Ci/mmol) and good stability (approximately 5% release of radiolabel during 16 h incubation in phosphate buffered saline at 37 degrees C). Chinese hamster ovary cells stably expressing the CCK1 receptor (CHO-CCK1 cells) internalized approximately 3% of added (99m)Tc-sCCK8 per confluent well during 2 h at 37 degrees C. Internalization was effectively blocked by excess unlabeled sCCK8. CHO-CCK1 cells did not internalize (99m)Tc-nsCCK8. Displacement of (99m)Tc-sCCK8 and -nsCCK8 by unlabeled CCK-8 (performed at 0 degrees C to prevent internalization) revealed 50% inhibitory concentrations (IC(50)) of 8 nM and >1 microM, respectively. CHO-CCK2 cells internalized approximately 25% and approximately 5% of added (99m)Tc-sCCK8 and -nsCCK8, respectively. In both cases internalization was blocked by excess unlabeled peptide. IC(50) values for the displacement of (99m)Tc-sCCK8 and -nsCCK8 were 3 nM and 10 nM, respectively. CHO-CCK1 cell-derived tumors present in one flank of athymic mice accumulated 2.0% of injected (99m)Tc-sCCK8 per gram tissue at 1 h postinjection. This value decreased to 0.6% following coinjection with excess unlabeled peptide. Uptake of (99m)Tc-nsCCK8 was low (0.2%) and not did change by excess unlabeled peptide (0.3%). Accumulation of (99m)Tc-sCCK8 and -nsCCK8 by CHO-CCK2 cell-derived tumors (present in the other flank) amounted to 4.2% and 0.6%, respectively. In both cases uptake was significantly reduced by excess unlabeled peptide to 1.0% and 0.4% for sCCK8 and nsCCK8, respectively. Accumulation of (99m)Tc-sCCK8 was also high in pancreas (11.7%), stomach (2.0%), and kidney (2.1%), whereas uptake of (99m)Tc-nsCCK8 was high in stomach (0.7%) and kidney (1.4%). Both radiolabeled peptides showed a rapid blood clearance. In conclusion, these data show that CCK8 analogues can be efficiently labeled with (99m)Tc using s-HYNIC as chelator and nicotinic acid/tricine as coligand system without compromising receptor binding. Furthermore, the present study demonstrates that CCK1 tumors hardly accumulate (99m)Tc-nsCCK8, CCK2 tumors accumulate 2 times more (99m)Tc-sCCK8 than CCK1 tumors, and CCK2 tumors accumulate 15 times more (99m)Tc-sCCK8 than (99m)Tc-nsCCK8. Although accumulation in some nontarget organs was also higher with (99m)Tc-sCCK8, this may not reflect the human situation due to a different receptor expression pattern in humans as compared to mice. Therefore, further studies are warranted to investigate the possible use of (99m)Tc-sCCK8 for scintigraphic imaging of CCK receptor-positive tumors in humans.  相似文献   

11.
A novel CCK8 derivative bearing a chelating agent at its N- end and its oxo-rhenium(V) complex have been synthesized and characterized. The chelating agent N-[N-13-(diphenylphosphino)propionyl]glycyl]cysteine (PN2S) ligand, the coordination set of which is made by the phosphorus atom of phosphine, the nitrogen atoms of the two amido groups and the sulphur atom of cysteine, has been used due to its high affinity towards the oxo-rhenium(V) moiety. Molecular modelling studies indicate that the CCK8 peptide adopts the right conformation for cholecystokinin receptor binding, and that modifications on the N-terminal side of CCK8 obtained by introducing chelating agents and its metal complexes should not affect the interaction with CCK(A) receptor.  相似文献   

12.
We have developed a binding assay for 125I-Bolton-Hunter-labeled cholecystokinin octapeptide (125I-(BH)CCK8) using mouse cerebral cortex membrane preparations. This ligand interacts with cortical membrane preparations in a saturable, high-affinity manner, satisfying the requirements for specific cholecystokinin receptor labeling. Salt is required for maximal binding and BSA is specifically inhibitory with cerebral cortical but not with pancreatic sites. Cholecystokinin peptides as small as CCK30-33 displace binding at low nanomolar concentrations. Dissociation of 125I-(BH)CCK8 is biphasic in both mouse and guinea pig cortex. Pretreatment of membranes at 37 degrees C results in a marked loss of recognition sites, suggesting that the sites may be rapidly metabolized in vivo. After 37 degrees C pretreatment, the loss of CCK recognition sites corresponds to a selective loss of the slow component of dissociation curves. This selective elimination of one dissociation population, as well as the biphasic dissociation kinetics, suggests that at least two distinct CCK receptor subtypes exist in the brain.  相似文献   

13.
Previous binding studies have suggested the existence of two affinity states for type B cholecystokinin receptors (CCK(B)R), which could correspond to different coupling states of the receptor to G proteins. To test this hypothesis, we have further investigated signal transduction pathways coupled to rat CCK(B)R stably transfected in Chinese hamster ovary cells. We show that CCK(B)R are coupled to two distinct transduction pathways involving two different G proteins, a pertussis toxin-insensitive/phospholipase C pathway leading to the production of inositol phosphate and arachidonic acid, and a pertussis toxin-sensitive/phospholipase A2 pathway leading to the release of arachidonic acid. We further demonstrate that the relative degree of activation of each effector pathway by different specific CCK(B)R agonists is the same, and that a specific CCK(B)R antagonist, RB213, can differentially antagonize the two signal transduction pathways elicited by these agonists. Taken all together, these data could be explained by the recently proposed theory assuming that the receptor can exist in a three-state model in which two active conformations corresponding to the complex formed by the receptor with two different G proteins coexist. According to this model, agonists or antagonists could recognize preferentially either conformation of the activated receptor, leading to variable behavior in a system containing a single receptor type.  相似文献   

14.
The cholecystokinin (CCK) receptor in purified plasma membranes prepared from mouse pancreatic acini had a binding affinity of 1.8 nM, an acid pH optimum between 6.0 and 6.5, and an analog specificity of CCK8 greater than CCK33 greater than desulphated CCK8 greater than CCK4. Binding of CCK to its receptor was abolished by pretreatment of plasma membranes with trypsin. When [125I]CCK was cross-linked to its receptors with disuccinimidyl suberate, and the preparation solubilized and subjected to gel electrophoresis and autoradiography, the hormone was associated with Mr 80 000 protein in both the presence and absence of the reducing agent dithiothreitol.  相似文献   

15.
The cholecystokinin receptor type 1 (CCK1R) is a G protein-coupled receptor (GPCR) that is involved in several biological processes including the regulation of the secretion of digestive enzymes. The peptide hormone cholecystokinin (CCK) binds to CCK1R, which is an important pharmacological target for several diseases, including obesity. Interestingly, nutritional dietary peptides also appear to activate CCK1R, and may play a role in CCK1R signaling in the gut. In this study, a novel technique to screen for CCK1R ligands based on affinity-selection is described. Functional expressed CCK1R is reconstituted into membrane nanoparticles called NABBs (nanoscale apo-lipoprotein bound bilayers). NABBs are native-like bilayer membrane systems for incorporation of GPCRs. CCK1R-NABBs were characterized using a fluorescently labeled CCK analog and can be used as a cutting-edge technology to screen for CCK1R ligands using affinity-selection mass spectrometry.  相似文献   

16.
Abstract: The characteristics of cholecystokinin (CCK) binding to its receptors in a particulate membrane fraction of mouse cerebral cortex were studied by employing biologically active radioiodinated CCK prepared by conjugation with 125I-Bolton-Hunter (125I-BH) reagent. At 24°C binding was rapid, reversible, and linearly related to protein content. Binding was maximal at acidic pH (6.5) and reduced by the presence of monovalent cations. Under physiological conditions (pH 7.4, 118 mM-NaC1, 4.7 mM-KCl) Scatchard plots of CCK binding were linear with a K D value of 1.27 nM and binding capacity of 115 fmol/mg protein. Optimal binding required the presence of both Mg2+ and EGTA, and was inhibited by the addition of micromolar concentrations of Cu2+ (ID50= 30 μM). The cortical receptor recognized all major forms of CCK, with an order of potency of cholecystokinin octapeptide (CCK8) > CCK > cholecystokinin tetrapeptide (CCK4). Desulfated cholecystokinin octapeptide (dCCK8) had a 10-fold lower affhity than CCK8. Dibutyryl cyclic GMP, a potent competitive inhibitor of CCK binding to receptors in pancreas, was not a specific inhibitor of CCK binding to brain receptors. These present results support the concept that CCK may function as a regulatory peptide in brain, and that the cortical CCK receptor is different from the receptors mediating the peripheral action of CCK.  相似文献   

17.
Attempts to biochemically characterize the pancreatic cholecystokinin (CCK) receptor by affinity labeling have utilized either 125I-Bolton-Hunter-CCK-33 ("long" probes) or decapeptide analogues of the carboxyl terminus of CCK ("short" probes), and covalent attachment via the amino-terminal regions of these probes. The long probe has identified a protein of Mr = 80,000 while "shorter" probes, which have their site of cross-linking closer to the receptor binding region of the probes, have labeled a distinct protein of Mr = 85,000-95,000. To extend and complement these observations, we have designed and synthesized a new probe for the CCK receptor which incorporates a photolabile p-nitrophenylalanine moiety within the theoretical receptor-binding region of the hormone, as its carboxyl-terminal residue. This "intrinsic" photoaffinity labeling probe has been shown to possess full biological activity, with potency and efficacy in stimulating amylase secretion by dispersed rat pancreatic acini similar to that of CCK-8 (CCK-26-33). When iodinated oxidatively, this probe binds rapidly, in a temperature-dependent, reversible, saturable, specific, high affinity manner to enriched pancreatic plasma membranes. In this work, we have used this probe to specifically label the CCK binding site on rat pancreatic plasma membranes. The Mr = 85,000-95,000 protein previously identified with amino-terminal cross-linking of short probes appears to be the protein labeled with this reagent as well. This provides strong evidence that this pancreatic plasma membrane protein contains the CCK-binding domain of the CCK receptor. This intrinsic photoaffinity labeling probe should be quite useful for the characterization of the active site of this receptor and for other CCK and gastrin receptors in many species.  相似文献   

18.
The segment 32-47 of the N-terminal extracellular domain of the type A cholecystokinn receptor, CCK(A)-R(32-47), was synthesized and structurally characterized in a membrane mimicking environment by CD, NMR and molecular dynamics calculations. The region of CCK(A)-R(32-47) encompassing residues 39-46 adopted a well-defined secondary structure in the presence of DPC micelles, whereas the conformation of the N-terminal region (segment 32-37) could not be uniquely defined by the NOE derived distance constraints because of local flexibility. The conformation of the binding domain of CCK(A)-R(32-47) was different from that found for the Intact N-terminal receptor tail, CCK(A)-R(1-47). To assess whether CCK(A)-R(32-47) was still able to bind the nonsulfated cholecystokinin C-terminal octapeptide, CCK8, a series of titrations was carried out in SDS and DPC micelles, and the binding interaction was followed by fluorescence spectroscopy. These titrations gave no evidence for complex formation, whereas a high binding affinity was found between CCK(A)-R(1-47) and CCK8. The different affinities for the ligand shown by CCK(A)-R(32-47) and CCK(A)-R(1-47) were paralleled by different interaction modes between the receptor segments and the micelles.The interaction of CCK(A)-R(32-47) with DPC micelles was much weaker than that of CCK(A)-R(1-47), because the former receptor segment lacks proper stabilizing contacts with the micelle surface. In the case of SDS micelles CCK(A)-R(32-47] was found to form non-micellar adducts with the detergent that prevented the onset of a functionally significant Interaction between the receptor segment and the micelle. It is concluded that tertiary structure interactions brought about by the 1-31 segment play a key role in the stabilization of the membrane bound, biologically active conformation of the N-terminal extracellular tail of the CCKA receptor.  相似文献   

19.
A series of six-membered heterocycle carboxamides were synthesized and evaluated as cholecystokinin 1 receptor (CCK1R) agonists. A pyrimidine core proved to be the best heterocycle, and SAR studies resulted in the discovery of analog 5, a potent and structurally diverse CCK1R agonist.  相似文献   

20.
Studies demonstrated that cholecystokinin (CCK) system involved in morphine dependence and withdrawal. Our previous study showed that endogenous CCK system were up-regulated after chronic morphine exposure. Additionally, CCK1 receptor significantly blocked the inhibitory effect of exogenous CCK-8 on morphine dependence, but CCK2 receptor appears to be necessary for low concentrations of endogenous CCK to potentiate morphine dependence. Therefore, CCK1R and CCK2R function differently in chronic morphine dependence, but the mechanism is still unclear. In this study, HEK-293 cells co-transfected with µ-opioid receptors (HEK293-hMOR) and CCK1R or CCK2R were established. Cells were treated with 10 µM morphine for 6, 12, 16, 24 h and 100 µM naloxone precipitation for 15 min. cAMP overshoot was appeared at 12 h and was increased time dependently after morphine exposure in HEK293-hMOR cells. The cAMP overshoot did not appear in CCK1R-overexpressing HEK293-hMOR cells, while still appeared in CCK2R-overexpressing HEK293-hMOR cells. Over-expression of CCK1R reversed CREB and ERK1/2 activation in HEK293-hMOR cells exposed to morphine. Our study identifies over-expression of CCK1R significantly blocked morphine dependence, which was related with phosphorylation of CREB, and ERK1/2 signaling activation. While over-expression of CCK2R promoted morphine dependence, which was related with phosphorylation of CREB but not ERK1/2 signaling activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号