首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Combining the motif discovery and disorder protein segment identification in PDB allows us to create the first and largest library of disordered patterns. At present the library includes 109 disordered patterns. Here we offer a comprehensive analysis of the occurrence of selected disordered patterns and 20 homorepeats of 6 residues long in 123 proteomes. 27 disordered patterns occur sparsely in all considered proteomes, but the patterns of low-complexity-homorepeats-appear more often in eukaryotic than in bacterial proteomes. A comparative analysis of the number of proteins containing homorepeats of 6 residues long and the disordered selected patterns in these proteomes has been performed. The matrices of correlation coefficients between numbers of proteins where at least once a homorepeat of six residues long for each of 20 types of amino acid residues and 109 disordered patterns from the library appears in 9 kingdoms of eukaryota and 5 phyla of bacteria have been calculated. As a rule, the correlation coefficients are higher inside the considered kingdom than between them. The largest fraction of homorepeats of 6 residues belongs to Amoebozoa proteomes (D. discoideum), 46%. Moreover, the longest uninterrupted repeats belong to S306 from D. discoideum (Amoebozoa). Homorepeats of some amino acids occur more frequently than others and the type of homorepeats varies across different proteomes, . For example, E6 appears most frequent for all considered proteomes for Chordata, Q6 for Arthropoda, S6 for Nematoda. The averaged occurrence of multiple long runs of 6 amino acids in a decreasing order for 97 eukaryotic proteomes is as follows: Q6, S6, A6, G6, N6, E6, P6, T6, D6, K6, L6, H6, R6, F6, V6, I6, Y6, C6, M6, W6, and for 26 bacterial proteomes it is A6, G6, P6, and the others occur seldom. This suggests that such short similar motifs are responsible for common functions for nonhomologous, unrelated proteins from different organisms.  相似文献   

2.
Side-chain hydroxyl residues in protein crystal structures often form hydrogen bonds with main-chain atoms. The most common bond arrangement is a four to five residue motif in which a serine or threonine is the first residue forming two characteristic hydrogen bonds to residues ahead of it in sequence. We call them ST-motifs, by analogy with the term Asx-motif we suggested for the related motifs with aspartate and asparagine residues. ST-motifs are common, there being just under one and a half in a typical protein subunit. Asx-motifs are even more common, such that 9 % of the residues of an average protein consist of Asx or ST-motifs. Of the ST-motifs, three-quarters are at helical N termini, and the rest occur by themselves or in conjunction with beta-bulge loops. A third of all alpha-helices have either ST-motifs or Asx-motifs at their N termini. Previous work has emphasised the occurrence of the capping box at alpha-helical N termini, but the capping box occurs in only 5 % of alpha-helical N termini; also, we point out that it can be regarded as a subset of the ST-motif (or, occasionally, of the Asx-motif). By comparing related sequences, the rates which amino acid residues at the first position of ST or Asx-motifs interchange during evolution are examined. Serine <==> threonine, and aspartate <==> asparagine, interchange is rapid; inter-pair exchange is slower, but much faster than exchange with other amino acid residues. This is consistent with the general similarity of ST-motifs and Asx-motifs combined with some subtle structural differences between them that are described.  相似文献   

3.
The hydrogen-bonding motifs of the proton on the N delta atom of iron-coordinated histidine residues in heme proteins have been classified into three categories: (1) Those in which the hydrogen-bond acceptor is either an amino acid residue (serine) directly adjacent to the histidine or a carbonyl group of the polypeptide chain less than five residues away from the histidine; (2) those in which the hydrogen-bonding acceptor is a carbonyl group of the polypeptide backbone associated with an amino acid residue 8 to 17 residues away from the histidine; and (3) those in which the hydrogen-bonding acceptor is an exogenous water molecule or an amino acid residue located far from the histidine in the amino acid sequence. Some biological functions are defined by this classification, whereas others span all classes.  相似文献   

4.
Here we present evidence that domains in soluble proteins containing either the GXXXG or GXXXA motif are stabilized by the interaction of a beta-strand with the following alpha-helix. As an example, we characterized a beta-strand-helix interaction from the FAD or NAD(P)-binding Rossmann fold. The Rossmann fold is one of the three most highly represented folds in the Protein Data Bank (PDB). A subset of the proteins that adopt the Rossmann fold also bind to nucleotide cofactors such as FAD and NAD(P) and function as oxidoreductases. These Rossmann folds can often be identified by the short amino acid sequence motif, GX(1-2)GXXG. Here, we present evidence that in addition to this sequence motif, Rossmann folds that bind FAD and NAD(P) also typically contain either GXXXG or GXXXA motifs, where the first glycyl residue of these motifs and the third glycyl residue of the GX(1-2)GXXG motif are the same residue. These two motifs appear to stabilize the Rossmann fold: the first glycyl residue of either the GXXXG or GXXXA motif contacts the carbonyl oxygen atom from the first glycyl residue of the GX(1-2)GXXG motif consistent with the formation of a C(alpha)-H cdots, three dots, centered O hydrogen bond. In addition, both the glycyl and alanyl residues of the GXXXG or GXXXA motifs form van der Waals interactions with either a valine or isoleucine residue located either seven or eight residues further back along the polypeptide chain from the first glycine of the GXXXG or GXXXA motifs. Therefore, we combine both the GX(1-2)GXXG and GXXXG/A motifs into an extended motif, V/IXGX(1-2)GXXGXXXG/A, that is more strongly indicative than previously described motifs of Rossmann folds that bind FAD or NAD(P). The V/IXGX(1-2)GXXGXXXG/A motif can be used to search genomic sequence data and to annotate the function of proteins containing the motif as oxidoreductases, including proteins of previously unknown function.  相似文献   

5.
Amino acid analysis of purified dextransucrase (sucrose: 1,6-alpha-D-glucan 6-alpha-D-glucosyltransferase EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F was carried out. The enzyme is virtually devoid of cysteine residue there being only one cysteine residue in the whole enzyme molecule comprising over 1500 amino acid residues. The enzyme is rich in acidic amino acid residues. The number of amino acid residues was calculated based on the molecular weight of 188,000 (Goyal and Katiyar 1994). Amino sugars were not found, implying that the enzyme is not a glycoprotein. It has been shown earlier that the cysteine residue in dextransucrase is not essential for enzyme activity (Goyal and Katiyar 1998). The presence of only one cysteine residue per enzyme molecule illustrates that its tertiary structure is solely dependent on other types of non-covalent interactions such as hydrogen bonding, ionic and nonpolar hydrophobic interactions.  相似文献   

6.
Hanson RM  Kohler D  Braun SG 《Proteins》2011,79(7):2172-2180
We describe here definitions of "local helical axis" and "straightness" that are developed using a simple quaternion-based analysis of protein structure without resort to least-squares fitting. As part of this analysis, it is shown how quaternion differences can be visualized to depict accurately the local helical axis relating any two adjacent amino acid residues in standard, nonidealized proteins. Three different options for the definition of amino acid residue orientation in terms of quaternion frames are described. Two of these, the "C(α) frame" and the "P frame," are shown to be correlated strongly with a simple approximate measure derived solely from Ramachandran angles. The relationship between quaternion-based straightness and recognized DSSP-derived secondary structure motifs is discussed.  相似文献   

7.
Discovery of local packing motifs in protein structures   总被引:1,自引:0,他引:1  
We present a language for describing structural patterns of residues in protein structures and a method for the discovery of such patterns that recur in a set of protein structures. The patterns impose restrictions on the spatial position of each residue, their order along the amino acid chain, and which amino acids are allowed in each position. Unlike other methods for comparing sets of protein structures, our method is not based on the use of pairwise structure comparisons which is often time consuming and can produce inconsistent results. Instead, the method simultaneously takes into account information from all structures in the search for conserved structure patterns which are potential structure motifs. The method is based on describing the spatial neighborhoods of each residue in each structure as a string and applying a sequence pattern discovery method to find patterns common to subsets of these strings. Finally it is checked whether the similarities between the neighborhood strings correspond to spatially similar substructures. We apply the method to analyze sets of very disparate proteins from the four different protein families: serine proteases, cuprodoxins, cysteine proteinases, and ferredoxins. The motifs found by the method correspond well to the site and motif information given in the annotation of these proteins in PDB, Swiss-Prot, and PROSITE. Furthermore, the motifs are confirmed by using the motif data to constrain the structural alignment of the proteins obtained with the program SAP. This gave the best superposition/alignment of the proteins given the motif assignment.  相似文献   

8.
Acommon focus among molecular and cellular biologists is the identification of proteins that interact with each other. Yeast two-hybrid, cDNA expression library screening, and coimmunoprecipitation experiments are powerful methods for identifying novel proteins that bind to one's favorite protein for the purpose of learning more regarding its cellular function. These same techniques, coupled with truncation and mutagenesis experiments, have been used to define the region of interaction between pairs of proteins. One conclusion from this work is that many interactions occur over short regions, often less than 10 amino acids in length within one protein. For example, mapping studies and 3-dimensional analyses of antigen-antibody interactions have revealed that epitopes are typically 4-7 residues long (1). Other examples include protein-interaction modules, such as Src homology (SH) 2 and 3 domains, phosphotyrosine binding domains (PTB), postsynaptic density/disc-large/ZO1 (PDZ) domains, WW domains, Eps15 homology (EH) domains, and 14-3-3 proteins that typically recognize linear regions of 3-9 amino acids. Each of these domains has been the subject of recent reviews published elsewhere (2 3 4 5 6 7). Among the primary structures of many ligands for protein-protein interactions, the amino acid proline is critical. In particular, SH3, WW, and several new protein-interaction domains prefer ligand sequences that are proline-rich. In addition, even though ligands for EH domains and 14-3-3 domains are not proline-rich, they do include a single proline residue. This review highlights the analysis of those protein-protein interactions that involve proline residues, the biochemistry of proline, and current drug discovery efforts based on proline peptidomimetics.-Kay, B. K., Williamson, M. P., Sudol, M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains.  相似文献   

9.
The environment of amino acid residues in protein tertiary structures and three types of interfaces formed by protein-protein association--in complexes, homodimers, and crystal lattices of monomeric proteins--has been analyzed in terms of the propensity values of the 20 amino acid residues to be in contact with a given residue. On the basis of the similarity of the environment, twenty residues can be divided into nine classes, which may correspond to a set of reduced amino acid alphabet. There is no appreciable change in the environment in going from the tertiary structure to the interface, those participating in the crystal contacts showing the maximum deviation. Contacts between identical residues are very prominent in homodimers and crystal dimers and arise due to 2-fold related association of residues lining the axis of rotation. These two types of interfaces, representing specific and nonspecific associations, are characterized by the types of residues that partake in "self-contacts"--most notably Leu in the former and Glu in the latter. The relative preference of residues to be involved in "self-contacts" can be used to develop a scoring function to identify homodimeric proteins from crystal structures. Thirty-four percent of such residues are fully conserved among homologous proteins in the homodimer dataset, as opposed to only 20% in crystal dimers. Results point to Leu being the stickiest of all amino acid residues, hence its widespread use in motifs, such as leucine zippers.  相似文献   

10.
In the native folded conformation of a globular protein, amino acid residues distant along the polypeptide chain come together to form the compact structure. This spatial structure is such that most of the polar residues are on the surface and have contact with the solvent medium and the nonpolar residues buried in the interior which have contact with similar nonpolar side chains. This cooperativity and mutual interaction among the randomly aligned amino acid residues suggest that each type of residue may prefer to have a specific environment. To gain more insight into this aspect of residue-residue cooperativity, a detailed analysis of the preferred environment associated with each of the 20 different amino acid residues in a number of protein crystals has been carried out. The variation of nonpolar nature computed for different sizes of spheres shows that the spatial region between radii of 6 and 8 Å is more favored for hydrophobic interactions and indicates that the influence of each residue over the surrounding medium extends predominantly up to a distance of 8 Å. The analysis of the surrounding amino acid residues associated with each type of residue shows that there is a definite tendency for each type of residue to have association with specific residues. The variation in environment is found even within the polar group as well as in the nonpolar group of residues. The surrounding residues associated with isoleucine, leucine, and valine are purely nonpolar. Proline, a nonpolar residue, is often surrounded by polar residues. The surrounding nonpolar nature of the tryptophan and tyrosine residues implies that even a single polar atom in a nonpolar side chain is sufficient to reduce their hydrophobic environment. There exists a high degree of mutual residue-residue cooperativity between the pairs glutamic acid-lysine, methionine-arginine, asparagine-tryptophan, and glutamine-proline, and the mutual residue-residue noncooperativity is high for the pairs methionine-aspartic acid, cysteine-glutamic acid, histidine-glutamine, and leucine-asparagine. The formation of secondary and tertiary structures is discussed in terms of the preferred environment and mutual cooperativity among various types of amino acid residues.  相似文献   

11.
Comparison of ARM and HEAT protein repeats   总被引:18,自引:0,他引:18  
ARM and HEAT motifs are tandemly repeated sequences of approximately 50 amino acid residues that occur in a wide variety of eukaryotic proteins. An exhaustive search of sequence databases detected new family members and revealed that at least 1 in 500 eukaryotic protein sequences contain such repeats. It also rendered the similarity between ARM and HEAT repeats, believed to be evolutionarily related, readily apparent. All the proteins identified in the database searches could be clustered by sequence similarity into four groups: canonical ARM-repeat proteins and three groups of the more divergent HEAT-repeat proteins. This allowed us to build improved sequence profiles for the automatic detection of repeat motifs. Inspection of these profiles indicated that the individual repeat motifs of all four classes share a common set of seven highly conserved hydrophobic residues, which in proteins of known three-dimensional structure are buried within or between repeats. However, the motifs differ at several specific residue positions, suggesting important structural or functional differences among the classes. Our results illustrate that ARM and HEAT-repeat proteins, while having a common phylogenetic origin, have since diverged significantly. We discuss evolutionary scenarios that could account for the great diversity of repeats observed.  相似文献   

12.
Amino acid analysis of purified dextransucrase (sucrose: 1,6-α-D-glucan 6-α-D-glucosyltransferase EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F was carried out. The enzyme is virtually devoid of cysteine residue there being only one cysteine residue in the whole enzyme molecule comprising over 1500 amino acid residues. The enzyme is rich in acidic amino acid residues. The number of amino acid residues was calculated based on the molecular weight of 188,000 (Goyal and Katiyar 1994). Amino sugars were not found, implying that the enzyme is not a glycoprotein. It has been shown earlier that the cysteine residue in dextransucrase is not essential for enzyme activity (Goyal and Katiyar 1998). The presence of only one cysteine residue per enzyme molecule illustrates that its tertiary structure is solely dependent on other types of non-covalent interactions such as hydrogen bonding, ionic and nonpolar hydrophobic interactions.  相似文献   

13.
Motifs that are evolutionarily conserved in proteins are crucial to their structure and function. In one of our earlier studies, we demonstrated that the conserved motifs occurring invariantly across several organisms could act as structural determinants of the proteins. We observed the abundance of glycyl residues in these invariantly conserved motifs. The role of glycyl residues in highly conserved motifs has not been studied extensively. Thus, it would be interesting to examine the structural perturbations induced by mutation in these conserved glycyl sites. In this work, we selected a representative set of invariant signature (IS) peptides for which both the PDB structure and mutation information was available. We thoroughly analyzed the conformational features of the glycyl sites and their local interactions with the surrounding residues. Using Ramachandran angles, we showed that the glycyl residues occurring in these IS peptides, which have undergone mutation, occurred more often in the L-disallowed as compared with the L-allowed region of the Ramachandran plot. Short range contacts around the mutation site were analyzed to study the steric effects. With the results obtained from our analysis, we hypothesize that any change of activity arising because of such mutations must be attributed to the long-range interaction(s) of the new residue if the glycyl residue in the IS peptide occurred in the L-allowed region of the Ramachandran plot. However, the mutation of those conserved glycyl residues that occurred in the L-disallowed region of the Ramachandran plot might lead to an altered activity of the protein as a result of an altered conformation of the backbone in the immediate vicinity of the glycyl residue, in addition to long range effects arising from the long side chains of the new residue. Thus, the loss of activity because of mutation in the conserved glycyl site might either relate to long range interactions or to local perturbations around the site depending upon the conformational preference of the glycyl residue.  相似文献   

14.
Hitherto the mechanisms controlling the selective cleavage of peptide bonds by the 20 S proteasome have been poorly understood. The observation that peptide bond cleavage may eventually occur at the carboxyl site of either amino acid residue rules out a simple control of cleavage preferences by the P1 residue alone. Here, we follow the rationale that the presence of specific cleavage-determining amino acids motifs (CDAAMs) around the scissile peptide bond are required for the attainment of substrate conformations susceptible to cleavage. We present an exploratory search for these putative motifs based on empirical regression functions relating the cleavage probability for a given peptide bond to some selected side-chain properties of the flanking amino acid residues. Identification of the sequence locations of cleavage-determining residues relative to the scissile bond and of their optimal side-chain properties was carried out by fitting the cleavage probability to (binary) experimental observations on peptide bond cleavage gathered among a set of seven different peptide substrates with known patterns of proteolytic degradation products. In this analysis, all peptide bonds containing the same residue in the P1 position were assumed to be cleaved by the same active sites of the proteasome, and thus to be under control of the same CDAAMs. We arrived at a final set of ten different CDAAMs, accounting for the cleavage of one to five different groups of peptide bonds with an overall predictive correctness of 93 %. The CDAAM is composed of two to four "anchor" positions preferentially located between P5 and P5' around the scissile bond. This implies a length constraint for the usage of cleavage sites, which could considerably suppress the excision of shorter fragments and thus partially explain for the observed preponderance of medium-size cleavage products.  相似文献   

15.
16.
17.
White- and Yolk-riboflavin binding proteins were isolated from hen eggs, and characterized as to their chemical properties. White- and Yolk-RBPs had almost same amino acid compositions except for glutamic acid, but their carbohydrate compositions were different from each other. The complete amino acid sequence of White-RBP was determined by conventional methods. White-RBP comprised 219 amino acid residues, and the amino-terminus was pyroglutamic acid (pyrrolidonecarboxylic acid). Two amino acids, lysine and asparagine, were found at the fourteenth residue from the amino-terminus. Carbohydrate chains were linked to asparagine residues at positions 36 and 147. Both White- and Yolk-RBPs were phosphorylated. In White-RBP either six or seven of nine serine residues between Ser(185) and Ser(197) were phosphorylated. The amino acid sequences around phosphoserines showed that phosphorylation might occur at a serine residue in one of the following sequences; Ser-X-Glu or Ser-X-Ser(P).  相似文献   

18.
Folding and oligomerization of integral membrane proteins frequently depend on specific interactions of transmembrane helices. Interacting amino acids of helix-helix interfaces may form complex motifs and exert different types of molecular forces. Here, a set of strongly self-interacting transmembrane domains (TMDs), as isolated from a combinatorial library, was found to contain basic and acidic residues, in combination with polar nonionizable amino acids and C-terminal GxxxG motifs. Mutational analyses of selected sequences and reconstruction of high-affinity interfaces confirmed the cooperation of these residues in homotypic interactions. Probing heterotypic interaction indicated the presence of interhelical charge-charge interactions. Furthermore, simple motifs of an ionizable residue and GxxxG are significantly overrepresented in natural TMDs, and a specific combination of these motifs exhibits high-affinity heterotypic interaction. We conclude that intramembrane charge-charge interactions depend on sequence context. Moreover, they appear important for homotypic and heterotypic interactions of numerous natural TMDs.  相似文献   

19.
The lack of ordered structure in “natively unfolded” proteins raises a general question: Are there intrinsic properties of amino acid residues that are responsible for the absence of fixed structure at physiological conditions? In this article, we demonstrate that the competence of a protein to be folded or to be unfolded may be determined by the property of amino acid residues to form a sufficient number of contacts in a globular state. The expected average number of contacts per residue calculated from the amino acid sequence alone (using the average number of contacts for 20 amino acid residues in globular proteins) can be used as one of the simple indicators of natively unfolded proteins. The prediction accuracy for the sets of 80 folded and 90 natively unfolded proteins reaches 89% if the expected average number of contacts is used as a parameter and 83% in the case of hydrophobicity. An optimal set of artificial parameters for 20 amino acid residues obtained by Monte Carlo algorithm to maximally separate the sets of 90 natively unfolded and 80 folded proteins demonstrates the upper limit for prediction accuracy, which is 95%.  相似文献   

20.
Cysteine (Cys) is an enigmatic amino acid residue. Although one of the least abundant, it often occurs in the functional sites of proteins. Whereas free Cys is a polar amino acid, Cys in proteins is often buried, and its classification on the hydrophobicity scale is ambiguous. We hypothesized that the deviation of Cys residues from the properties of a free amino acid is due to their reactivity and addressed this possibility by examining Cys in large protein structure data sets. Compared to other amino acids, Cys was characterized by the most extreme conservation pattern, with the majority of Cys being either highly conserved or poorly conserved. In addition, clustering of Cys with another Cys residue was associated with high conservation, whereas exposure of Cys on protein surfaces was associated with low conservation. Moreover, although clustered Cys behaved as polar residues, isolated Cys was the most buried residue of all, in disagreement with known chemical properties of Cys. Thus, the anomalous hydrophobic behavior and conservation pattern of Cys can be explained by elimination of isolated Cys from protein surfaces during evolution and by clustering of other Cys residues. These findings indicate that Cys abundance is governed by Cys function in proteins rather than by the sheer chemical-physical properties of free amino acids, and suggest that a high tendency of Cys to be functionally active can considerably limit its abundance on protein surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号