首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholesterol is an essential component of eukaryotic cell membranes, regulating fluidity and permeability of the bilayer. Outside the membrane, cholesterol is esterified to fatty acids forming cholesterol esters (CEs). Metabolism of CEs is characterized by recurrent hydrolysis and esterification as part of the CE cycle; however, since recombinant 15-lipoxygenase (15-LO) was shown to oxidize cholesteryl linoleate of LDL, there has been interest in CE oxidation, particularly in the context atherogenesis. Studies of oxidized CE (oxCE) metabolism have focused on hydrolysis and subsequent reverse cholesterol transport with little emphasis on the fate the newly released oxidized fatty acyl component. Here, using mass spectrometry to analyze lipid oxidation products, CE metabolism in murine peritoneal macrophages was investigated. Ex vivo macrophage incubations revealed that cellular 15-LO directly oxidized multiple CE substrates from intracellular stores and from extracellular sources. Freshly harvested murine macrophages also contained 15-LO-specific oxCEs, suggesting the enzyme may act as a CE-oxidase in vivo. The metabolic fate of oxCEs, particularly the hydrolysis and remodeling of oxidized fatty acyl chains, was also examined in the macrophage. Metabolism of deuterated CE resulted in the genesis of deuterated, oxidized phosphatidylcholine (oxPC). Further experiments revealed these oxPC species were formed chiefly from the hydrolysis of oxidized CE and subsequent reacylation of the oxidized acyl components into PC.  相似文献   

2.
Membrane lipids: where they are and how they behave   总被引:1,自引:0,他引:1  
Throughout the biological world, a 30 A hydrophobic film typically delimits the environments that serve as the margin between life and death for individual cells. Biochemical and biophysical findings have provided a detailed model of the composition and structure of membranes, which includes levels of dynamic organization both across the lipid bilayer (lipid asymmetry) and in the lateral dimension (lipid domains) of membranes. How do cells apply anabolic and catabolic enzymes, translocases and transporters, plus the intrinsic physical phase behaviour of lipids and their interactions with membrane proteins, to create the unique compositions and multiple functionalities of their individual membranes?  相似文献   

3.
Membranes of thermophilic Archaea are composed of unique tetraether lipids in which C40, saturated, methyl-branched biphytanyl chains are linked at both ends to polar groups. In this paper, membranes composed of bipolar lipids P2 extracted from the acidothermophile archaeon Sulfolobus solfataricus are studied. The biophysical basis for the membrane formation and thermal stability is investigated by using electron spin resonance (ESR) of spin-labeled lipids. Spectral anisotropy and isotropic hyperfine couplings are used to determine the chain flexibility and polarity gradients, respectively. For comparison, similar measurements have been carried out on aqueous dispersions of diacyl reference lipid dipalmitoyl phosphatidylcholine and also of diphytanoyl phosphatidylcholine, which has methyl-branched chains. At a given temperature, the bolaform lipid chains are more ordered and less flexible than in normal bilayer membranes. Only at elevated temperatures (80 degrees C) does the flexibility of the chain environment in tetraether lipid assemblies approach that of fluid bilayer membranes. The height of the hydrophobic barrier formed by a monolayer of archaebacterial lipids is similar to that in conventional fluid bilayer membranes, and the permeability barrier width is comparable to that formed by a bilayer of C16 lipid chains. At a mole ratio of 1:2, the tetraether P2 lipids mix well with dipalmitoyl phosphatidylcholine lipids and stabilize conventional bilayer membranes. The biological as well as the biotechnological relevance of the results is discussed.  相似文献   

4.
Li XM  Salomon RG  Qin J  Hazen SL 《Biochemistry》2007,46(17):5009-5017
Phagocytic removal of aged or oxidatively damaged cells and macromolecules is an indispensable homeostatic function of the innate immune system. A structurally conserved family of oxidized phospholipids that serve as endogenous high-affinity ligands for the macrophage scavenger receptor CD36 (oxPC(CD36)) was recently identified. Enriched within atherosclerotic plaque and senescent cell membranes, oxPC(CD36) promote the uptake of oxidized lipoproteins and cell membranes by macrophages when present at only a few molecules per particle. How macrophages recognize oxPC(CD36) within cellular membranes and lipoprotein surfaces remains unknown. Herein, we deduce the conformation of oxPC(CD36) near the hydrophobic-hydrophilic interface within membrane bilayers by determining multiple critical internuclear distances using nuclear Overhauser enhancement spectroscopy. The molecular model reveals a unique conformation for oxPC(CD36) within bilayers whereby the distal end of the sn-2 acyl chain harboring the structurally conserved CD36 recognition motif protrudes into the aqueous phase. The remarkable conformation elucidated for oxPC(CD36) produces a surface accessible phagocytic "eat me signal" to facilitate senescent cell and oxidized lipoprotein recognition by the scavenger receptor CD36 as part of its immune surveillance function.  相似文献   

5.
Polymyxin B in micromolar concentrations induces current fluctuations in liquid crystalline bilayer lipid membranes from dipalmitoylphosphatidic acid identified as ion channels. The appearance of ion channels correlates with phase separation of the lipid in the presence of peptide polycations detected by differential scanning calorimetry. Ca2+ also induces the formation of ion channels in liquid crystalline bilayer lipid membranes from dipalmitoylphosphatidic acid followed by the phase transition of the phospholipid. The capacitive current, which indicates the possibility of structural transformations of bilayer-non-bilayer type (hexagonal phase II), precedes the formation of Ca(2+)-induced channels in bilayer lipid membranes from dipalmitoylphosphatidic acid.  相似文献   

6.
The interactions of three polypeptide antibiotics (polymyxin B, gramicidin S, and valinomycin) with artificial lecithin membranes were studied by nuclear magnetic resonance (NMR). Combination of 31P and 2H NMR allowed observation of perturbations of the bilayer membrane structure induced by each of the antibiotics in the regions of the polar headgroups and acyl side chains of the phospholipids. The comparative study of the effects of these membrane-active antibiotics and the lipid bilayer structure demonstrated distinct types of antibiotic-membrane interactions in each case. Thus, the results showed the absence of interaction of polymyxin B with the dimyristoyllecithin membranes. In contrast, gramicidin S exhibited strong interaction with the lipid above the gel to liquid-crystalline phase transition temperature: disordering of the acyl side chains was evident. Increasing the concentration of gramicidin S led to disintegration of the bilayer membrane structure. At a molar ratio of 1:16 of gramicidin S to lecithin, the results are consistent with coexistence of gel and liquid-crystalline phases of the phospholipids near the phase transition temperature. Valinomycin decreased the phase transition temperature of the lipids and increased the order parameters of the lipid side chains. Such behavior is consistent with penetration of the valinomycin molecule into the interior of the lipid bilayers.  相似文献   

7.
The stabilizing effect of cholesterol on oxidized membranes has been studied in planar phospholipid bilayers and multilamellar 1-palmitoyl-2-linoleoyl-phosphatidylcholine vesicles also containing either 1-palmitoyl-2-glutaroyl-phosphatidylcholine or 1-palmitoyl-2-(13-hydroxy-9,11-octadecanedienoyl)-phosphatidylcholine oxidized phosphatidylcholine in variable ratio. Lipid peroxidation-dependent membrane alterations in the absence and in the presence of cholesterol were analyzed using Electron Paramagnetic Resonance spectroscopy of the model membranes spin labelled with either cholestane spin label (3-DC) or phosphatidylcholine spin label (5-DSPC). Cholesterol, added to lipid mixtures up to 40% final molar ratio, decreased the inner bilayer disorder as compared to cholesterol-free membranes and strongly reduced bilayer alterations brought about by the two oxidized phosphatidylcholine species. Furthermore, Sepharose 4B gel-chromatography and cryo electron microscopy of aqueous suspensions of the lipid mixtures clearly showed that cholesterol is able to counteract the micelle forming tendency of pure 1-palmitoyl-2-glutaroyl-phosphatidylcholine and to sustain multilamellar vesicles formation. It is concluded that membrane cholesterol may exert a beneficial and protective role against bilayer damage caused by oxidized phospholipids formation following reactive oxygen species attack to biomembranes.  相似文献   

8.
Phase separations in phospholipd membranes.   总被引:16,自引:0,他引:16  
Phase diagrams representing lateral phase separations in the plane of lipid bilayer membranes have been determined for binary mixtures containing dielaidoylphosphatidylcholine together with dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, dioleoylphosphatidylcholine, and dipalmitoylphosphatidylethanolamine. The phase diagrams were deduced from observations of the temperature dependence of the paramagnetic resonance spectra of low concentrations of spin-labels incorporated in these bilayer membranes. In one case, the binary mixture of dipalmitoylphosphatidylethamine and dielaidoylphosphatidylcholine, evidence has been obtained for fluid-fluid immiscibility, in specified temperature and compoistion ranges. This immiscibility could give a lateral phase separation into fluid domains in the plane of the membrane, and/or a transverse phase separation into an asymmetrical bilayer membrane, and/or possibly disco ntinuous bilayer membranes of different composition. An asymmetrical bilayer membrane can be expected on theoretical grounds to form a nonplanar membrane.  相似文献   

9.
Biophysical consequences of lipid peroxidation in membranes   总被引:8,自引:0,他引:8  
This article reviews the biophysical consequences of lipid peroxidation in biological membranes. In the lipid domain, lipid peroxidation (a) causes an increase in the order and "viscosity" of the membrane bilayer, particularly at the depth around acyl-carbon 12, (b) changes the thermotropic phase behaviour, (c) decreases the electrical resistance, and (d) facilitates phospholipid exchange between the two monolayers. Upon lipid peroxidation membrane proteins are crosslinked, and their rotational and lateral mobility is decreased. Studies with microsomal cytochrome P-450 suggest protein aggregation but not the increased lipid order to be the major cause of protein immobilization in peroxidized membranes.  相似文献   

10.
Previous studies have shown that oxidation of low-density lipoprotein (oxLDL) results in its recognition by scavenger receptors on macrophages. Whereas blockage of lysyl residues on apoB-100 of oxLDL by lipid peroxidation products appears to be critical for recognition by the scavenger receptor class A (SR-A), modification of the lipid moiety has been suggested to be responsible for recognition by the scavenger class B receptor, CD36. We studied the recognition by scavenger receptors of oxidized LDL in which lysyl residues are blocked prior to oxidation through methylation [ox(m)LDL]. This permits us to minimize any contribution of modified apoB-100 to the recognition of oxLDL, but does not disrupt the native configuration of lipids in the particle. We found that ox(m)LDL was recognized by receptors on mouse peritoneal macrophages (MPM) almost as well as oxLDL. Ox(m)LDL was recognized by CD36-transfected cells but not by SR-A-transfected cells. Oxidized phospholipids (oxPC) transferred from oxLDL or directly from oxPC to LDL, conveyed recognition by CD36-transfected cells, confirming that CD36 recognized unbound oxidized phospholipids in ox(m)LDL. Collectively, these results suggest that oxPC not adducted to apoB within the intact oxLDL particle are recognized by the macrophage scavenger receptor CD36, that these lipids are not recognized by SR-A, and that they can transfer from oxidized to unoxidized LDL and induce CD36 recognition.  相似文献   

11.
Gramicidin S (GS) is a cyclic decapeptide of primary structure [cyclo-(Val-Orn-Leu-D-Phe-Pro)(2)] secreted by Bacillus brevis. It is a powerful antimicrobial agent with potent cidal action on a wide variety of Gram-negative and Gram-positive bacteria as well as on several pathogenic fungi. Unfortunately, however, GS is rather non-specific in its actions and also exhibits a high hemolytic activity, limiting its use as an antibiotic to topical applications. In a wide variety of environments, the GS molecule exists as a very stable amphiphilic antiparallel beta-sheet structure with a polar and a non-polar surface. Moreover, the large number of structure-activity studies of GS analogs which have been carried out indicate that this 'sidedness' structure is required for its antimicrobial action. In this review, we summarize both published and unpublished biophysical studies of the interactions of GS with lipid bilayer model and with biological membranes. In general, these studies show that GS partitions strongly into liquid-crystalline lipid bilayers in both model and biological membranes, and seems to be located primarily in the glycerol backbone region below the polar headgroups and above the hydrocarbon chains. The presence of GS appears to perturb lipid packing in liquid-crystalline bilayers and GS can induce the formation of inverted cubic phases at lower temperatures in lipids capable of forming such phases at higher temperature in the absence of peptide. The presence of GS at lower concentrations also increases the permeability of model and biological membranes and at higher concentrations causes membrane destabilization. There is good evidence from studies of the interaction of GS with bacterial cells that the destruction of the integrity of the lipid bilayer of the inner membrane is the primary mode of the antimicrobial action of this peptide. The considerable lipid specificity of GS for binding to and destabilization of lipid bilayer model membranes indicates that the design of GS analogs with an improved antimicrobial potency and a markedly decreased toxicity for eukaryotic cell plasma membranes should be possible.  相似文献   

12.
Lipid compositions vary greatly among organelles, and specific sorting mechanisms are required to establish and maintain these distinct compositions. In this review, we discuss how the biophysical properties of the membrane bilayer and the chemistry of individual lipid molecules play a role in the intracellular trafficking of the lipids themselves, as well as influencing the trafficking of transmembrane proteins. The large diversity of lipid head groups and acyl chains lead to a variety of weak interactions, such as ionic and hydrogen bonding at the lipid/water interfacial region, hydrophobic interactions, and van-der-Waals interactions based on packing density. In simple model bilayers, these weak interactions can lead to large-scale phase separations, but in more complex mixtures, which mimic cell membranes, such phase separations are not observed. Nevertheless, there is growing evidence that domains (i.e., localized regions with non-random lipid compositions) exist in biological membranes, and it is likely that the formation of these domains are based on interactions similar to those that lead to phase separations in model systems. Sorting of lipids appears to be based in part on the inclusion or exclusion of certain types of lipids in vesicles or tubules as they bud from membrane organelles.  相似文献   

13.
Hydrolytic reactions in the presence of liposomes catalyzed by N epsilon-benzyloxycarbonylhistidine groups introduced into the side chains of poly[N-(3-aminopropyl)glycine] were studied. On increasing the hydrophobicity of the polypeptide catalyst by introducing dodecyl groups into the side chains, and in the presence of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes, p-nitrophenyl palmitate (PNPP) was hydrolyzed more rapidly than p-nitrophenyl acetate (PNPA). The addition of cholesterol or phosphatidylserine to lipid bilayer membranes accelerated the hydrolysis of PNPP catalyzed by the polypeptide catalyst more strongly than that of PNPA. The substrate selectivity and catalytic efficiency of the polypeptide catalyst were found to be controlled by the physical state of the lipid bilayer membranes.  相似文献   

14.
The macrophage scavenger receptor CD36 plays an important role in binding and uptake of oxidized forms of low-density lipoprotein (LDL), foam cell formation, and lesion development during atherosclerosis. The structural basis of CD36-lipoprotein ligand recognition is an area of intense interest. In a companion article we reported the characterization of a structurally conserved family of oxidized choline glycerophospholipids (oxPC(CD36)) that serve as novel high affinity ligands for cells stably transfected with CD36, mediating recognition of multiple oxidized forms of LDL (Podrez, E. A., Poliakov, E., Shen, Z., Zhang, R., Deng, Y., Sun, M., Finton, P., Shan, L., Gugiu, B., Fox, P. L., Hoff, H. F., Salomon, R. G., and Hazen, S. L. (July 8, 2002) J. Biol. Chem. 277, 10.1074/jbc.M203318200). Here we use macrophages from wild-type and CD36 null mice to demonstrate that CD36 is the major receptor on macrophages mediating recognition of oxPC(CD36) species when presented (+/- plasma) in pure form, within PC bilayers in small unilamellar vesicles, and within liposomes generated from lipid extracts of native LDL. We also show that oxPC(CD36) promote CD36-dependent recognition when present at only a few molecules per particle, resulting in macrophage binding, uptake, metabolism, cholesterol accumulation, and foam cell formation. Finally, using high performance liquid chromatography with on-line electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS), we demonstrate that oxPC(CD36) are generated in vivo and are enriched in atherosclerotic lesions. Collectively, our data suggest that formation of this novel family of oxidized phospholipids participates in CD36-mediated recognition of oxidized lipoproteins and foam cell formation in vivo.  相似文献   

15.
Oxysterols are oxygenated derivatives of cholesterol that form a class of potent regulatory molecules with diverse biological activity. Given the implications of oxysterols in several physiological/pathophysiological pathways of human diseases, it is important to identify how their presence affects the biophysical properties of cell membranes. In this article we first describe the structure, formation, and biological functions of oxysterols, and previous work on the effect of these molecules on the structure and phase behavior of lipid membranes. We then present results of our X-ray diffraction experiments on aligned multilayers of dipalmitoylphosphatidylcholine (DPPC) membranes containing ring-substituted oxysterols. The effect of these molecules on the phase behavior of DPPC membranes is found to be very similar to that of cholesterol. All the oxysterols studied induce a modulated phase in DPPC membranes, similar to that reported in DPPC–cholesterol membranes. However, some differences are observed in the ability of these molecules to suppress the main transition of the lipid and to induce chain ordering, which might be related to differences in their orientation in the bilayer.  相似文献   

16.
In this review article, we summarize the current state of biophysical knowledge concerning the phase behavior and organization of cardiolipin (CL) and CL-containing phospholipid bilayer model membranes. We first briefly consider the occurrence and distribution of CL in biological membranes and its probable biological functions therein. We next consider the unique chemical structure of the CL molecule and how this structure may determine its distinctive physical properties. We then consider in some detail the thermotropic phase behavior and organization of CL and CL-containing lipid model membranes as revealed by a variety of biophysical techniques. We also attempt to relate the chemical properties of CL to its function in the biological membranes in which it occurs. Finally, we point out the requirement for additional biophysical studies of both lipid model and biological membranes in order to increase our currently limited understanding of the relationship between CL structure and physical properties and CL function in biological membranes.  相似文献   

17.
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (HII phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the HII phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in HII phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and HII phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the HII phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.  相似文献   

18.
We have recently demonstrated that specific oxidized phospholipids (oxPC(CD36)) accumulate at sites of oxidative stress in vivo such as within atherosclerotic lesions, hyperlipidemic plasma, and plasma with low high-density lipoprotein levels. oxPC(CD36) serve as high affinity ligands for the scavenger receptor CD36, mediate uptake of oxidized low density lipoprotein by macrophages, and promote a pro-thrombotic state via platelet scavenger receptor CD36. We now report that oxPC(CD36) represent ligands for another member of the scavenger receptor class B, type I (SR-BI). oxPC(CD36) prevent binding to SR-BI of its physiological ligand, high density lipoprotein, because of the close proximity of the binding sites for these two ligands on SR-BI. Furthermore, oxPC(CD36) interfere with SR-BI-mediated selective uptake of cholesteryl esters in hepatocytes. Thus, oxidative stress and accumulation of specific oxidized phospholipids in plasma may have an inhibitory effect on reverse cholesterol transport.  相似文献   

19.
The pulsed field gradient (pfg)-NMR method for measurements of translational diffusion of molecules in macroscopically aligned lipid bilayers is described. This technique is proposed to have an appreciable potential for investigations in the field of lipid and membrane biology. Transport of molecules in the plane of the bilayer can be successfully studied, as well as lateral phase separation of lipids and their dynamics within the bilayer organizations. Lateral diffusion coefficients depend on lipid packing and acyl chain ordering and investigations of order parameters of perdeuterated acyl chains, using (2)H NMR quadrupole splittings, are useful complements. In this review we summarize some of our recent achievements obtained on lipid membranes. In particular, bilayers exhibiting two-phase coexistence of liquid disordered (l(d)) and liquid ordered (l(o)) phases are considered in detail. Methods for obtaining good oriented lipid bilayers, necessary for the pfg-NMR method to be efficiently used, are also briefly described. Among our major results, besides determinations of l(d) and l(o) phases, belongs the finding that the lateral diffusion is the same for all components, independent of the molecular structure (including cholesterol (CHOL)), if they reside in the same domain or phase in the membrane. Furthermore, quite unexpectedly CHOL seems to partition into the l(d)and l(o) phases to roughly the same extent, indicating that CHOL has no strong preference for any of these phases, i.e. CHOL seems to have similar interactions with all of the lipids. We propose that the lateral phase separation in bilayers containing one high-T(m) and one low-T(m) lipid together with CHOL is driven by the increasing difficulty of incorporating an unsaturated or prenyl lipid into the highly ordered bilayer formed by a saturated lipid and CHOL, i.e. the phase transition is entropy driven to keep the disorder of the hydrocarbon chains of the unsaturated lipid.  相似文献   

20.
Carrillo-Tripp M  Feller SE 《Biochemistry》2005,44(30):10164-10169
We have calculated the lateral pressure profile from well-converged, experimentally validated, molecular dynamics simulations of hydrated lipid bilayer membranes containing highly polyunsaturated fatty acids. The three simulations, each 30 ns in length, contain omega-3 fatty acids, omega-6 fatty acids, and a mixture of omega-3 fatty acids and cholesterol and were continued from previously published simulations that demonstrated excellent agreement with a wide variety of experimental measurements. We find that the distribution of lateral stress within the hydrophobic core of the membrane is sensitively dependent on the degree of chain unsaturation and on the presence of cholesterol. Replacing omega-3 fatty acids with omega-6 chains, or incorporating cholesterol into the membrane, shifts the repulsive lateral chain pressure away from the lipid/water interface toward the bilayer interior. This may support a previously proposed mechanism by which lipid composition may affect conformational equilibrium for integral membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号