首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present study was to develop transdermal patch for zolmitriptan, determine its in vivo absorption using the rabbit skin. Solvent evaporation technique prepared zolmitriptan patch was settled in two-chamber diffusion cell combined with excised rabbit abdomen skin for permeation study. A sufficient cumulative penetration amount of zolmitriptan (258.5 ± 26.9 μg/cm2 in 24 h) was achieved by the formulation of 4% zolmitriptan, 10% Azone, and adhesive of DURO-TAK® 87–4098. Pharmacokinetic parameters were determined via i.v. and transdermal administrations using animal model of rabbit. The results revealed that the absolute bioavailability was about 63%. Zolmitriptan could be detected with drug level of 88 ± 51 ng/mL after transdermal administration of 15 min. The in vivo absorption curve obtained by deconvolution approach using WinNonlin® program was correlated well with the in vitro permeation curve, the correlation coefficient R is 0.84, and the result indicated that in vitro skin permeation experiments were useful to predict the in vivo performance. In addition, little skin irritation was found in the irritation study. As a conclusion, the optimized zolmitriptan transdermal patches could effectively deliver adequate drug into systemic circulation in short time without producing any irritation phenomenon and worth to be developed.KEY WORDS: chemical enhancer, drug-in-adhesive patch, in vitro/in vivo correlation, pharmacokinetic, zolmitriptan  相似文献   

2.
Lornoxicam is a potent oxicam class of non steroidal anti-inflammatory agent, prescribed for mild to moderate pain and inflammation. Niosomal gel of lornoxicam was developed for topical application. Lornoxicam niosomes (Lor-Nio) were fabricated by thin film hydration technique. Bilayer composition of niosomal vesicles was optimized. Lor-Nio dispersion was characterized by DSC, XRD, and FT-IR. Morphological evaluation was performed by scanning electron microscopy (SEM). Lor-Nio dispersion was incorporated into a gel using 2% w/w Carbopol 980 NF. Rheological and texture properties of Lor-Nio gel formulation showed suitability of the gel for topical application. The developed formulation was evaluated for in vitro skin permeation and skin deposition studies, occlusivity test and skin irritation studies. Pharmacodynamic activity of the Lor-Nio gel was performed by carragenan-induced rat paw model. Optimized Lor-Nio comprised of Span 60 and cholesterol in a molar ratio of 3:1 with 30 μM dicetyl palmitate as a stabilizer. It had particle size of 1.125 ± 0.212 μm (d90), with entrapment efficiency of 52.38 ± 2.1%. DSC, XRD, and IR studies showed inclusion of Lor into niosomal vesicles. SEM studies showed spherical closed vesicular structure with particles in nanometer range. The in vitro skin permeation studies showed significant improvement in skin permeation and skin deposition for Lor-Nio gel (31.41 ± 2.24 μg/cm2, 30.079 ± 1.2 μg/cm2) over plain lornoxicam gel (7.37 ± 1.27 μg/cm2, 6.6 ± 2.52 μg/cm2). The Lor-Nio gel formulation showed enhanced anti-inflammatory activity by exhibiting mean edema inhibition (87.69 ± 1.43%) which was significantly more than the plain lornoxicam gel (53.84 ± 2.21%).KEY WORDS: anti-inflammatory activity, lornoxicam, niosomes, rheology, texture analysis  相似文献   

3.
Using tamsulosin (TAL) as a model drug, the aim of this study was to investigate and compare the percutaneous permeation behavior of two menthol derivatives, 2-isopropyl-5-methylcyclohexyl heptanoate (M-HEP) and 2-isopropyl-5-methylcyclohexyl decanoate (M-DEC). In vitro transdermal permeation study was carried out using porcine skin. The residual amount of enhancers in the skin after permeation experiment was determined by gas chromatographic (GC) method. The penetration depths of fluorescein were visualized by two-photon confocal laser scanning microscopy (2P-LSM) after the skin being treated with different enhancers. Furthermore, changes in the stretching frequency of functional group of ceramide were investigated by using attenuated total reflectance Fourier transform infrared (ATR-FTIR) technique. After M-HEP addition, the cumulative amount of TAL permeated in 8 h (Q8) reached 20.57 ± 0.54 μg/cm2 and the depth of fluorescein was 40 μm; the CH2 of ceramide symmetric stretching frequency was 4 cm−1 blue shifted. However, M-DEC has an opposite effect on TAL permeation compared with that of M-HEP. TAL is a crucial factor affecting permeation procedure, and microenvironment of lipid region determines promotion capability of the enhancers.Key words: enhancer, mechanism, menthol derivative, retardant, transdermal  相似文献   

4.
The aim of this study was to investigate the capability of two surfactants, Cremophor RH 40 (RH) and Cremophor EL (EL), to prepare liquid crystalline nanoparticles (LCN) and to study its influence on the topical delivery of finasteride (FNS). FNS-loaded LCN was formulated with the two surfactants and characterized for size distribution, morphology, entrapment efficiency, in vitro drug release, and skin permeation/retention. Influence of FNS-loaded LCN on the conformational changes on porcine skin was also studied using attenuated total reflectance Fourier-transform infrared spectroscopy. Transmission electron microscopical image confirmed the formation of LCN. The average particle size of formulations was in the range of 165.1–208.6 and 153.7–243.0 nm, respectively. The formulations prepared with higher surfactant concentrations showed faster release and significantly increased skin permeation. Specifically, LCN prepared with RH 2.5% presented higher permeation flux (0.100 ± 0.005 μgcm−2h−1) compared with lower concentration (0.029 ± 0.007 μgcm−2h−1). Typical spectral bands of lipid matrix of porcine skin were shifted to higher wavenumber, indicating increased degree of disorder of the lipid acyl chains which might cause fluidity increase of stratum corneum. Taken together, Cremophor surfactants exhibited a promising potential to stabilize the LCN and significantly augmented the skin permeation of FNS.KEY WORDS: Cremophor, finasteride, liquid crystalline nanoparticles, skin permeation–retention  相似文献   

5.
Curcuma comosa has long been used as a gynecological medicine. Several diarylheptanoids have been purified from this plant, and their pharmacological effects were proven. However, there is no information about the absorption of C. comosa components to support the formulation usage. In the present study, C. comosa hexane extract and the mixture of its two major compounds, (4E,6E)-1,7-diphenylhepta-4,6-dien-3-ol (DA1) and (6E)-1,7-diphenylhept-6-en-3-ol (DA2), were formulated into nanoemulsions. The physical properties of the nanoemulsions and the in situ intestinal absorptions of DA1 and DA2 were evaluated. The results demonstrated the mean particle sizes at 0.207 ± 0.001 and 0.408 ± 0.014 μm, and the zeta potential at −14.57 ± 0.85 and −10.47 ± 0.32 mV for C. comosa nanoemulsion (C.c-Nano) and mixture of diarlylheptanoid nanoemulsions (DA-Nano), respectively. The entrapments of DA1 and DA2 were 76.61% and 75.41%, and 71.91% and 71.63% for C.c-Nano and DA-Nano, respectively. The drug loading ratios of DA1 and DA2 were 351.47 and 614.53 μg/mg, and 59.48 and 126.72 μg/mg for C.c-Nano and DA-Nano. The intestinal absorption rates of DA1 and DA2 were 0.329 ± 0.015 and 0.519 ± 0.026 μg/min/cm2 in C.c-Nano, and 0.380 ± 0.006 and 0.428 ± 0.036 μg/min/cm2 in DA-Nano, which were five to ten times faster than those in oil. In conclusion, the formulation in nanoemulsion forms obviously increased the intestinal absorption rate of diarylheptanoids.KEY WORDS: Curcuma comosa, diarylheptanoids, intestinal absorption, nanoemulsion, phytoestrogen  相似文献   

6.
In this study, liquid crystalline nanoparticles (LCN) have been proposed as new carrier for topical delivery of finasteride (FNS) in the treatment of androgenetic alopecia. To evaluate the potential of this nanocarrier, FNS-loaded LCN was prepared by ultrasonication method and characterized for size, shape, in vitro release, and skin permeation–retention properties. The particle size ranged from 153.8 to 170.2 nm with a cubical shape and exhibited controlled release profile with less than 20% of the drug released in the first 24 h. The release profile was significantly altered with addition of different additives. Formulation with lower monoolein exhibited higher skin permeation with a flux rate of 0.061 ± 0.005 μg cm−2 h−1 in 24 h. The permeation however, significantly increased with glycerol, propylene glycol, and polyethylene glycol 400, while it declined for the addition of oleic acid. A similar trend was observed with skin retention study. In conclusion, FNS-loaded LCN could be advocated as a viable alternative for oral administration of the drug.Key words: androgenetic alopecia, finasteride, liquid crystalline nanoparticles, release, skin permeation–retention  相似文献   

7.
The aim of the present study was to increase the solubility of an anti-allergic drug loratadine by making its inclusion complex with β-cyclodextrin and to develop it’s thermally triggered mucoadhesive in situ nasal gel so as to overcome first-pass effect and consequently enhance its bioavailability. A total of eight formulations were prepared by cold method and optimized by 23 full factorial design. Independent variables (concentration of poloxamer 407, concentration of carbopol 934 P, and pure drug or its inclusion complex) were optimized in order to achieve desired gelling temperature with sufficient mucoadhesive strength and maximum permeation across experimental nasal membrane. The design was validated by extra design checkpoint formulation (F9) and Pareto charts were used to help eliminate terms that did not have a statistically significant effect. The response surface plots and possible interactions between independent variables were analyzed using Design Expert Software 8.0.2 (Stat Ease, Inc., USA). Faster drug permeation with zero-order kinetics and target flux was achieved with formulation containing drug: β-cyclodextrin complex rather than those made with free drug. The optimized formulation (F8) with a gelling temperature of 28.6 ± 0.47°C and highest mucoadhesive strength of 7,676.0 ± 0.97 dyn/cm2 displayed 97.74 ± 0.87% cumulative drug permeation at 6 h. It was stable for over 3 months and histological examination revealed no remarkable damage to the nasal tissue.  相似文献   

8.
The aim was to develop niosomal gel as a transdermal nanocarrier for improved systemic availability of lopinavir. Niosomes were prepared using thin-film hydration method and optimized for molar quantities of Span 40 and cholesterol to impart desirable characteristics. Comparative evaluation with ethosomes was performed using ex vivo skin permeation, fluorescence microscopy, and histopathology studies. Clinical utility via transdermal route was acknowledged using in vivo bioavailability study in male Wistar rats. The niosomal formulation containing lopinavir, Span 40, and cholesterol in a molar ratio of 1:0.9:0.6 possessed optimally high percentage of drug entrapment with minimum mean vesicular diameter. Ex vivo skin permeation studies of lopinavir as well as fluorescent probe coumarin revealed a better deposition of ethosomal carriers but a better release with niosomal carriers. Histopathological studies indicated the better safety profile of niosomes over ethosomes. In vivo bioavailability study in male Wistar rats showed a significantly higher extent of absorption (AUC0→∞, 72.87 h × μg/ml) of lopinavir via transdermally applied niosomal gel as compared with its oral suspension. Taken together, these findings suggested that niosomal gel holds a great potential of being utilized as novel, nanosized drug delivery vehicle for transdermal lopinavir delivery.KEY WORDS: ethosomes, lopinavir, niosomes, transdermal  相似文献   

9.
Curcumin has diverse biological activities including antioxidant and anti-inflammatory activity. However, its clinical use for topical application is limited due to its poor aqueous solubility and thus, minimal cutaneous bioavailability. Elastic vesicles (EVs) of curcumin were prepared to improve its cutaneous bioavailability and to use it for topical anti-inflammatory effect. Ex vivo skin permeation and retention studies were performed to check if incorporation of curcumin into EVs could improve its permeation into and retention in the skin. Evaluation of acute and chronic anti-inflammatory effect was done using xylene-induced acute ear edema in mice and cotton pellet-induced chronic inflammation in rats, respectively. A significant improvement in flux (nine times) across murine skin was observed when aqueous dispersion of curcumin (flux − 0.46 ± 0.02 μg/h/cm2) was compared with curcumin-loaded EVs (flux − 4.14 ± 0.04 μg/h/cm2 ). Incorporation of these curcumin-loaded EVs into a hydrophilic ointment base resulted in higher skin retention (51.66%) in contrast to free curcumin ointment (1.64%) and a marketed formulation (VICCO® turmeric skin cream). The developed ointment showed an effect similar (p < 0.05) to the marketed diclofenac sodium ointment (Omni-gel®) in suppression of acute inflammation in mouse; a significant inhibition (28.8% versus 3.91% for free curcumin) of cotton pellet-induced chronic inflammation was also observed. Thus, curcumin-loaded EVs incorporated in hydrophilic ointment is a promising topical anti-inflammatory formulation.KEY WORDS: anti-inflammatory, curcumin, elastic vesicles, topical formulation  相似文献   

10.
In order to regulate the skin permeation rate (flux) of escitalopram (ESP), ion-pair strategy was used in our work. Five organic acids with different physicochemical properties, benzoic acid (BA), ibuprofen (IB), salicylic acid (SA), benzenesulfonic acid (BSA), and p-aminobenzoic acid (PABA), were employed as counter-ions to regulate the permeation rate of ESP across the rabbit abdominal skin in vitro. The interaction between ESP and organic acids was characterized by FTIR and 13C NMR spectroscopy. Results showed that all organic acids investigated in this study performed a controlling effect on ESP flux. To further analyze the factors concerned with the permeation capability of ESP-acid complex, a multiple linear regression model was used. It is concluded that the steady-state flux (J) of ESP-acid complexes had a positive correlation with log K o/w (the n-octanol/water partition coefficient of ion-pair complex) and pK a (the acidity of organic acid counter-ion), but a negative correlation with MW (the molecular weight of ion-pair complex). The logK o/w of ion-pair complex is the primary one in all the factors that influence the skin permeation rate of ESP. The results demonstrated that organic acid with appropriate physicochemical properties can be considered as suitable candidate for the transdermal drug delivery of escitalopram.  相似文献   

11.
The present study reports an efficient in vitro micropropagation protocol for a medicinally important tree, Terminalia bellerica Roxb. from nodal segments of a 30 years old tree. Nodal segments taken from the mature tree in March-April and cultured on half strength MS medium gave the best shoot bud proliferation response. Combinations of serial transfer technique (ST) and incorporation of antioxidants (AO) [polyvinylpyrrolidone, PVP (50 mg l−1) + ascorbic acid (100 mg l−1) + citric acid (10 mg l−1)] in the culture medium aided to minimize browning and improve explant survival during shoot bud induction. Highest multiplication of shoots was achieved on medium supplemented with 6-benzyladenine (BA, 8.8 μM) and α-naphthalene acetic acid (NAA, 2.6 μM) in addition to antioxidants. Shoot elongation was obtained on MS medium containing BA (4.4 μM) + phloroglucinol (PG, 3.9 μM). Elongated shoots were transferred to half strength MS medium containing indole-3-butyric acid (IBA, 2.5 μM) for root development. The acclimatization of plantlets was carried out under greenhouse conditions. The genetic fidelity of the regenerated plants was checked using inter simple sequence repeats (ISSR) and randomly amplified polymorphic DNA (RAPD) analysis. Comparison of the bands among the regenerants and mother plant confirmed true-to-type clonal plants.  相似文献   

12.
The aim of this study was to design a novel felbinac (FEL) patch with significantly higher (P?<?0.05) skin permeation amount than the commercial product SELTOUCH® using ion-pair and chemical enhancer strategy, overcoming the disadvantage of the large application area of SELTOUCH®. Six complexes of FEL with organic amines diethylamine (DEA), triethylamine (TEA), N-(2′-hydroxy-ethanol)-piperdine (HEPP), monoethanolamine (MEtA), diethanolamine (DEtA), and triethanolamine (TEtA) were prepared by ion-pair interaction, and their formation were confirmed by differential scanning calorimetry (DSC), powder X-ray diffraction (pXRD), infared spectroscopy (IR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). Subsequently, the effect of ion-pair complexes and chemical enhancers were investigated through in vitro and in vivo experiments using rabbit abdominal skin. Results showed that FEL-TEA was the most potential candidate both in isopropyl palmitate (IPP) solution and transdermal patches. Combining use of 10% N-dodecylazepan-2-one (Azone), the optimized FEL-TEA patch achieved a flux of 18.29?±?2.59 μg/cm2/h, which was twice the amount of the product SELTOUCH® (J?=?9.18?±?1.26 μg/cm2/h). Similarly, the area under the concentration curve from time 0 to time t (AUC0-t ) in FEL-TEA patch group (15.94?±?3.58 h.μg/mL) was also twice as that in SELTOUCH® group (7.31?±?1.16 h.μg/mL). Furthermore, the in vitro skin permeation results of FEL-TEA patch was found to have a good correlation with the in vivo absorption results in rabbit. These findings indicated that a combination of ion-pair and chemical enhancer strategy could be useful in developing a novel transdermal patch of FEL.  相似文献   

13.
The aim of this work was to investigate the effect of backing films on transdermal delivery of donepezil (DP) from patches. Three backing films, CotranTM 9700, CotranTM 9701, and CotranTM 9726 were chosen as backing layers to prepare transdermal patches containing DP. The transdermal penetration and release amount of DP from each patch were evaluated by rabbit abdominal skin in vitro. The partitioning experiments and attentuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were performed to confirm the existence of interaction between backing films and DP. Results showed that the cumulative release amount of DP from patches with different backing films had the same order of cumulative amount penetrated, i.e. CotranTM 9701 < CotranTM 9700 < CotranTM 9726, which demonstrated that the permeation of DP was mainly limited by release behavior. Partitioning experiments and ATR-FTIR study indicated that CotranTM 9700 and CotranTM 9701 had interaction with DP by H bond formation which decreased the release of drug from the patches. By contrast, CotranTM 9726 could provide the highest flux of skin permeation of DP, because such interaction between them was not found. Moreover, the parameters of backing films were found to have relation to skin hydration, thus affecting the penetration behavior of DP from patches. In conclusion, the effect of backing films on the flux of DP permeation could be attributed to both the interaction of backing films and the changes of skin hydration. Backing films could be a key factor in formulation screening of DP patches.KEY WORDS: ATR-FTIR, backing films, donepezil, release, transdermal patches  相似文献   

14.
Drug delivery vehicles can influence the topical delivery and the efficacy of an active pharmaceutical ingredient (API). In this study, the influence of Pheroid™ technology, which is a unique colloidal drug delivery system, on the skin permeation and antimelanoma efficacy of 5-fluorouracil were investigated. Lotions containing Pheroid™ with different concentrations of 5-fluorouracil were formulated then used in Franz cell skin diffusion studies and tape stripping. The in vitro efficacy of 5-fluorouracil against human melanoma cells (A375) was investigated using a flow cytometric apoptosis assay. Statistically significant concentrations of 5-fluorouracil diffused into and through the skin with Pheroid™ formulations resulting in an enhanced in vitro skin permeation from the 4.0% 5-fluorouracil lotion (p < 0.05). The stratum corneum-epidermis and epidermis-dermis retained 5-fluorouracil concentrations of 2.31 and 6.69 μg/ml, respectively, after a diffusion study with the 4.0% Pheroid™ lotion. Subsequent to the apoptosis assay, significant differences were observed between the effect of 13.33 μg/ml 5-fluorouracil in Pheroid™ lotion and the effects of the controls. The results obtained suggest that the Pheroid™ drug delivery system possibly enhances the flux and delivery of 5-fluorouracil into the skin. Therefore, using Pheroid™ could possibly be advantageous with respect to topical delivery of 5-fluorouracil.KEY WORDS: A375 cells, cell culture, flow cytometry, melanoma, permeation enhancer  相似文献   

15.
Arnebia hispidissima, which belongs to the family Boraginaceae, is an important medicinal and dye yielding plant. The alkannin, a red dye, are root-specific secondary metabolites of A. hispidissima. Shoots were regenerated from callus derived from immature inflorescence explants obtained from field grown plants. MS medium containing 4.52 μM 2, 4-D and 3.33 μM BAP was found to be most effective for the proliferation of callus, induced on medium containing 4.52 μM 2, 4-D. Maximum number (43.1 ± 0.25) with average length (5.2 ± 0.23) of shoots regenerated when callus was transferred to MS medium supplemented with 1.11 μM BAP, 1.16 μM Kin and 0.57 μM IAA. About 75.5 % of in vitro regenerated shoots were rooted on half-strength MS medium supplemented with 9.84 μM of IBA and 200 mg l−1 of activated charcoal. In comparison to in vitro, higher percent (90.2 %) of shoots were rooted under ex vitro conditions when treated with IBA (0.98 mM) for 5 min. Plantlets rooted in vitro as well as ex vitro were acclimatized successfully under the green house conditions. Ex vitro rooted plants exhibited higher survival percentage (75 %) as compared to in vitro rooted plantlets (60 %). Present study may be applicable in the large-scale root-specific red dye (alkannin) production via root induction under ex vitro condition.  相似文献   

16.
The influence of formulation variables, i.e., a hydrophilic polymer (Methocel® E15) and a film-forming polymer (Eudragit® RL 100 and Eudragit® RS 100), on the physicochemical and functional properties of a transdermal film formulation was assessed. Several terpenes were initially evaluated for their drug permeation enhancement effects on the transdermal film formulations. d-Limonene was found to be the most efficient permeation enhancer among the tested terpenes. Transdermal film formulations containing granisetron (GRN) as a model drug, d-limonene as a permeation enhancer, and different ratios of a hydrophilic polymer (Methocel® E15) and a film-forming polymer (Eudragit® RL 100 or Eudragit® RS 100) were prepared. The prepared films were evaluated for their physicochemical properties such as weight variation, thickness, tensile strength, folding endurance, elongation (%), flatness, moisture content, moisture uptake, and the drug content uniformity. The films were also evaluated for the in vitro drug release and ex vivo drug permeation. The increasing ratios of Methocel®:Eudragit® polymers in the formulation linearly and significantly increased the moisture content, moisture uptake, water vapor transmission rate (WVTR), and the transdermal flux of GRN from the film formulations. Increasing levels of Methocel® in the formulations also increased the rate and extent of the GRN release and the GRN permeation from the prepared films.KEY WORDS: film-forming polymers, hydrophilic polymers, permeation enhancers, transdermal films  相似文献   

17.
This study describes a simple chromatographic method for the simultaneous analyses of phosphatidylcholine (PC) and its hydrolytic degradation products: lysophosphatidylcholine (LPC) and free fatty acids (FFA). Quantitative determination of PC, LPC, and FFA is essential in order to assure safety and to accurately assess the shelf life of phospholipid-containing products. A single-run normal-phase high-performance liquid chromatography (HPLC) with evaporative light scattering detector has been developed. The method utilizes an Allsphere silica analytical column and a gradient elution with mobile phases consisting of chloroform: chloroform–methanol (70:30%, v/v) and chloroform–methanol–water–ammonia (45:45:9.5:0.5%, v/v/v/v). The method adequately resolves PC, LPC, and FFA within a run time of 25 min. The quantitative analysis of PC and LPC has been achieved with external standard method. The free fatty acids were analyzed as a group using linoleic acid as representative standard. Linear calibration curves were obtained for PC (1.64–16.3 μg, r2 = 0.9991) and LPC (0.6–5.0 μg, r2 = 0.9966), while a logarithmic calibration curve was obtained for linoleic acid (1.1–5.8 μg, r2 = 0.9967). The detection and quantification limits of LPC and FFA were 0.04 and 0.1 μg, respectively. As a means of validating the applicability of the assay to pharmaceutical products, PC liposome was subjected to alkaline hydrolytic degradation. Quantitative HPLC analysis showed that 97% of the total mass balance for PC could be accounted for in liposome formulation. The overall results show that the HPLC method could be a useful tool for chromatographic analysis, stability studies, and formulation characterization of phospholipid-based pharmaceuticals.KEY WORDS: evaporative light scattering detection, free fatty acid, lysophosphatidylcholine, phosphatidylcholine  相似文献   

18.
Ethionamide (ETA) and pyrazinamide (PZA) are considered the drugs of choice for the treatment of multidrug-resistant tuberculosis. Current methods available in the literature for simultaneous determination of ETA and PZA have low sensitivity or involve column modifications with lipophilic cations. The aim of this study was to develop a simple and validated reversed-phase ion-pair HPLC method for simultaneous determination of ETA and PZA for the characterization of polymeric-based porous inhalable microparticles in in vitro and spiked human serum samples. Chromatographic separation was achieved on a Phenomenex C18 column (250 mm × 4.6 mm) using a Shimadzu LC 10 series HPLC. The mobile phase consisted of A: 0.01% trifluoroacetic acid in distilled water and B: ACN/MeOH at 1:1 v/v. Gradient elution was run at a flow rate of 1.5 mL/min and a fixed UV wavelength of 280 nm. The validation characteristics included accuracy, precision, linearity, analytical range, and specificity. Calibration curves at seven levels for ETA and PZA were linear in the analytical range of 0.1–3.0 μg/mL with correlation coefficient of r2 > 0.999. Accuracy for both ETA and PZA ranged from 94 to 106% at all quality control (QC) standards. The method was precise with relative standard deviation less than 2% at all QC levels. Limits of quantitation for ETA and PZA were 50 and 70 ng/mL, respectively. There was no interference from either the polymeric matrix ions or the biological matrix in the analysis of ETA and PZA.Key words: ethionamide, HPLC, microparticles, pyrazinamide, tuberculosis  相似文献   

19.
β-cyclodextrin (βCD) and methyl-β-cyclodextrin (MβCD) complexes with sulfamethazine (SMT) were prepared and characterized by different experimental techniques, and the effects of βCD and MβCD on drug solubility were assessed via phase-solubility analysis. The phase-solubility diagram for the drug showed an increase in water solubility, with the following affinity constants calculated: 40.4 ± 0.4 (pH 2.0) and 29.4 ± 0.4 (pH 8.0) M−1 with βCD and 56 ± 1 (water), 39 ± 3 (pH 2.0) and 39 ± 5 (pH 8.0) M−1 with MβCD. According to 1H NMR and 2D NMR spectroscopy, the complexation mode involved the aromatic ring of SMT included in the MβCD cavity. The complexes obtained in solid state by freeze drying were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermal analysis. The amorphous complexes obtained in this study may be useful in the preparation of pharmaceutical dosage forms of SMT.  相似文献   

20.
Withania ashwagandha, belonging to the family Solanaceae, is an important medicinal herb of India with restricted geographic distribution. It is a rich source of withaferin A (WA) and other bioactive withanolides. In the present study a rapid in vitro mass propagation protocol of W. ashwagandha was developed from nodal explants. Nodal explants were cultured on MS medium supplemented with various concentrations and combinations of plant growth regulators (PGRs). The highest number of regenerated shoots per ex-plant (33 ± 2.7) and highest WA (13.4 ± 1.15 mg/g of DW) production was obtained on MS medium supplemented with 5.0 μM 6-benzyladenine (BA) and 1.0 μM Kinetin (Kn). In vitro raised shoots were further rooted on half-strength MS medium containing 2.0 μM Indole-3-butyric acid (IBA) and analyzed for WA production. The rooted plantlets when transferred to poly bags in the greenhouse showed 90 % survival frequency. Levels of WA were higher in the in vitro and ex vitro derived shoot and root tissues as compared to field grown mother plants. In an attempt to further maximize WA production, shoot cultures were further grown in liquid MS medium supplemented with 5.0 μM 6-benzyladenine (BA) and 1.0 μM Kinetin (Kn). Root cultures were grown on half strength MS liquid medium fortified with 2.0 μM of IBA. WA production in the liquid cultures was significantly higher compared to the static composition of the same media. This protocol, first of its kind in this plant, can be successfully employed for conservation, proliferation and large-scale production of WA. The regenerated plants can also be used in traditional medicine as an alternative to naturally collected plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号