首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Array-based comparative genomic hybridization has proven to be successful in the identification of genetic defects in disorders involving mental retardation. Here, we studied a patient with learning disabilities, retinal dystrophy, and short stature. The family history was suggestive of an X-linked contiguous gene syndrome. Hybridization of full-coverage X-chromosomal bacterial artificial chromosome arrays revealed a deletion of ~1 Mb in Xp11.3, which harbors RP2, SLC9A7, CHST7, and two hypothetical zinc-finger genes, ZNF673 and ZNF674. These genes were analyzed in 28 families with nonsyndromic X-linked mental retardation (XLMR) that show linkage to Xp11.3; the analysis revealed a nonsense mutation, p.E118X, in the coding sequence of ZNF674 in one family. This mutation is predicted to result in a truncated protein containing the Kruppel-associated box domains but lacking the zinc-finger domains, which are crucial for DNA binding. We characterized the complete ZNF674 gene structure and subsequently tested an additional 306 patients with XLMR for mutations by direct sequencing. Two amino acid substitutions, p.T343M and p.P412L, were identified that were not found in unaffected individuals. The proline at position 412 is conserved between species and is predicted by molecular modeling to reduce the DNA-binding properties of ZNF674. The p.T343M transition is probably a polymorphism, because the homologous ZNF674 gene in chimpanzee has a methionine at that position. ZNF674 belongs to a cluster of seven highly related zinc-finger genes in Xp11, two of which (ZNF41 and ZNF81) were implicated previously in XLMR. Identification of ZNF674 as the third XLMR gene in this cluster may indicate a common role for these zinc-finger genes that is crucial to human cognitive functioning.  相似文献   

2.
In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.  相似文献   

3.
Renpenning syndrome maps to Xp11.   总被引:3,自引:1,他引:2       下载免费PDF全文
Mutations in genes on the X chromosome are believed to be responsible for the excess of males among individuals with mental retardation. Such genes are numerous, certainly >100, and cause both syndromal and nonsyndromal types of mental retardation. Clinical and molecular studies have been conducted on the Mennonite family with X-linked mental retardation (XLMR) reported, in 1962, by Renpenning et al. The clinical phenotype includes severe mental retardation, microcephaly, up-slanting palpebral fissures, small testes, and stature shorter than that of nonaffected males. Major malformations, neuromuscular abnormalities, and behavioral disturbances were not seen. Longevity is not impaired. Carrier females do not show heterozygote manifestations. The syndrome maps to Xp11.2-p11.4, with a maximum LOD score of 3.21 (recombination fraction 0) for markers between DXS1039 and DXS1068. Renpenning syndrome (also known as "MRXS8"; gene RENS1, MIM 309500) shares phenotypic manifestations with several other XLMR syndromes, notably the Sutherland-Haan syndrome. In none of these entities has the responsible gene been isolated; hence, the possibility that two or more of them may be allelic cannot be excluded at present.  相似文献   

4.
5.
6.
We have studied a male patient with significant developmental delay, growth failure, hypotonia, girdle weakness, microcephaly, and multiple congenital anomalies including atrial (ASD) and ventricular (VSD) septal defects. Detailed cytogenetic and molecular analyses revealed three de novo X chromosome aberrations and a karyotype 46,Y,der(X)inv(X) (p11.4q11.2)inv(X)(q11.2q21.32 approximately q22.2)del(X)(q22.3q22.3) was determined. The three X chromosome aberrations in the patient include: a pericentric inversion (inv 1) that disrupted the Duchenne muscular dystrophy (DMD) gene, dystrophin, at Xp11.4; an Xq11.2q21.32 approximately q22.2 paracentric inversion (inv 2) putatively affecting no genes; and an interstitial deletion at Xq22.3 that results in functional nullisomy of several known genes, including a gene previously associated with X-linked nonsyndromic mental retardation, acyl-CoA synthetase long chain family member 4 (ACSL4). These findings suggest that the disruption of DMD and the absence of ACSL4 in the patient are responsible for neuromuscular disease and cognitive impairment.  相似文献   

7.
Some deleterious X-linked mutations may result in a growth disadvantage for those cells in which the mutation, when on the active X chromosome, affects cell proliferation or viability. To explore the relationship between skewed X-chromosome inactivation and X-linked mental retardation (XLMR) disorders, we used the androgen receptor X-inactivation assay to determine X-inactivation patterns in 155 female subjects from 24 families segregating 20 distinct XLMR disorders. Among XLMR carriers, ~50% demonstrate markedly skewed X inactivation (i.e., patterns 80:20), compared with only ~10% of female control subjects (P<.001). Thus, skewed X inactivation is a relatively common feature of XLMR disorders. Of the 20 distinct XLMR disorders, 4 demonstrate a strong association with skewed X inactivation, since all carriers of these mutations demonstrate X-inactivation patterns 80:20. The XLMR mutations are present on the preferentially inactive X chromosome in all 20 informative female subjects from these families, indicating that skewing is due to selection against those cells in which the XLMR mutation is on the active X chromosome.  相似文献   

8.
In a 6 year old boy referred for mental retardation, fragile X syndrome was ruled out by cytogenetic and molecular analyses. Cytogenetic investigations revealed an inverted X chromosome (p21.3q27.1). A similar chromosomal rearrangement was detected in his mildly mentally retarded mother. Fluorescence in situ hybridization (FISH), using a panel of ordered YAC clones, allowed the identification of YACs spanning both the Xp21.3 and Xq27.1 breakpoints, where many non-specific mental retardation loci have been reported so far. Further investigations by FISH showed that the IL1RAPL1 gene at Xp21.3 was disrupted by the X chromosome inversion and therefore its inactivation may be related to the mental retardation observed in our patients.  相似文献   

9.
10.
X-linked nonspecific mental retardation (MRX) has a frequency of 0.15% in the male population and is caused by defects in several different genes on the human X chromosome. Genotype-phenotype correlations in male patients with a partial nullisomy of the X chromosome have suggested that at least one locus involved in MRX is on Xp22.3. Previous deletion mapping has shown that this gene resides between markers DXS1060 and DXS1139, a region encompassing approximately 1.5 Mb of DNA. Analyzing the DNA of 15 males with Xp deletions, we were able to narrow this MRX critical interval to approximately 15 kb of DNA. Only one gene, VCX-A (variably charged, X chromosome mRNA on CRI-S232A), was shown to reside in this interval. Because of a variable number of tandem 30-bp repeats in the VCX-A gene, the size of the predicted protein is 186-226 amino acids. VCX-A belongs to a gene family containing at least four nearly identical paralogues on Xp22.3 (VCX-A, -B, -B1, and -C) and two on Yq11.2 (VCY-D, VCY-E), suggesting that the X and Y copies were created by duplication events. We have found that VCX-A is retained in all patients with normal intelligence and is deleted in all patients with mental retardation. There is no correlation between the presence or absence of VCX-B1, -B, and VCX-C and mental status in our patients. These results suggest that VCX-A is sufficient to maintain normal mental development.  相似文献   

11.
12.
We report the clinical and molecular investigations in a girl with 46,X,-X,+der(X)t(X;Y)(p22;q11) de novo karyotype who presented an intricate phenotype characterized by mental retardation and facial dysmorphisms in combination with short stature. The structure of the derivative X chromosome was studied using BAC array-CGH which disclosed the Xp22 breakpoint between the STS and the VCX3A gene and the presence of the Yq11.1qter chromosome. It is common that females with Xp;Yq translocations present only short stature and are normal in every other aspect. Thus, this would be the first case in which a girl with Xp;Yq translocation presents an unusual phenotype with intermediate male clinical features with Xp;Yq translocations. The risk of developing gonadoblastoma in females with Y chromosome material is also discussed and, to this effect, different explanations related to this apparent variation are also presented.  相似文献   

13.
14.
15.
Extreme skewing of X-chromosome inactivation (XCI) is rare in the normal female population but is observed frequently in carriers of some X-linked mutations. Recently, it has been shown that various forms of X-linked mental retardation (XLMR) have a strong association with skewed XCI in female carriers, but the mechanisms underlying this skewing are unknown. ATR-X syndrome, caused by mutations in a ubiquitously expressed, chromatin-associated protein, provides a clear example of XLMR in which phenotypically normal female carriers virtually all have highly skewed XCI biased against the X chromosome that harbors the mutant allele. Here, we have used a mouse model to understand the processes causing skewed XCI. In female mice heterozygous for a null Atrx allele, we found that XCI is balanced early in embryogenesis but becomes skewed over the course of development, because of selection favoring cells expressing the wild-type Atrx allele. Unexpectedly, selection does not appear to be the result of general cellular-viability defects in Atrx-deficient cells, since it is restricted to specific stages of development and is not ongoing throughout the life of the animal. Instead, there is evidence that selection results from independent tissue-specific effects. This illustrates an important mechanism by which skewed XCI may occur in carriers of XLMR and provides insight into the normal role of ATRX in regulating cell fate.  相似文献   

16.
Linkage analysis and DNA sequencing in a family exhibiting an X-linked mental retardation (XLMR) syndrome, characterized by microcephaly, epilepsy, ataxia, and absent speech and resembling Angelman syndrome, identified a deletion in the SLC9A6 gene encoding the Na(+)/H(+) exchanger NHE6. Subsequently, other mutations were found in a male with mental retardation (MR) who had been investigated for Angelman syndrome and in two XLMR families with epilepsy and ataxia, including the family designated as having Christianson syndrome. Therefore, mutations in SLC9A6 cause X-linked mental retardation. Additionally, males with findings suggestive of unexplained Angelman syndrome should be considered as potential candidates for SLC9A6 mutations.  相似文献   

17.
Submicroscopic copy-number imbalances contribute significantly to the genetic etiology of human disease. Here, we report a novel microduplication hot spot at Xp11.22 identified in six unrelated families with predominantly nonsyndromic XLMR. All duplications segregate with the disease, including the large families MRX17 and MRX31. The minimal, commonly duplicated region contains three genes: RIBC1, HSD17B10, and HUWE1. RIBC1 could be excluded on the basis of its absence of expression in the brain and because it escapes X inactivation in females. For the other genes, expression array and quantitative PCR analysis in patient cell lines compared to controls showed a significant upregulation of HSD17B10 and HUWE1 as well as several important genes in their molecular pathways. Loss-of-function mutations of HSD17B10 have previously been associated with progressive neurological disease and XLMR. The E3 ubiquitin ligase HUWE1 has been implicated in TP53-associated regulation of the neuronal cell cycle. Here, we also report segregating sequence changes of highly conserved residues in HUWE1 in three XLMR families; these changes are possibly associated with the phenotype. Our findings demonstrate that an increased gene dosage of HSD17B10, HUWE1, or both contribute to the etiology of XLMR and suggest that point mutations in HUWE1 are associated with this disease too.  相似文献   

18.
Mutations in X-linked genes are likely to account for the observation that more males than females are affected by mental retardation. Causative mutations have recently been identified in both syndromic X-linked mental retardation (XLMR) and in the genetically heterogeneous 'nonspecific' forms of XLMR, for which cognitive impairment is the only defining clinical feature. Proteins that function in chromatin remodelling are affected in three important syndromic forms of XLMR. In nonspecific forms of the disorder, defects have been found in signal-transduction pathways that are believed to function during neuronal maturation. These findings provide important insights into the molecular and cellular defects that underlie mental retardation.  相似文献   

19.
Norrie disease (ND), an X-linked recessive disorder, is characterized by congenital blindness followed by bulbar atrophy. We have examined a three-generation family in which ND is part of a complex X-linked syndrome with severe mental retardation, hypogonadism, growth disturbances, and increased susceptibility to infections as additional features. This syndrome is apparently due to an interstitial deletion, as evidenced by the failure of the L1.28 DNA probe (DXS7 locus, Xp11.3) to detect complementary DNA sequences on the defective X chromosome of an affected male and of several obligatory heterozygotes. Attempts to further define this deletion with other DNA probes from the proximal short arm of the X chromosome or by prometaphase chromosome analysis were unsuccessful.  相似文献   

20.
BACKGROUND: Although X-linked mental retardation (XLMR) affects 2%-3% of the human population, little is known about the underlying molecular mechanisms. Recent interest in this topic led to the identification of several genes for which mutations result in the disturbance of cognitive development. RESULTS: We identified a novel gene that is interrupted by an inv(X)(p21.1;q22) in a male patient with a syndromic form of mental retardation. Molecular analysis of both breakpoint regions did not reveal an interrupted gene on Xp, but identified a novel nuclear RNA export factor (NXF) gene cluster, Xcen-NXF5-NXF2-NXF4-NXF3-Xqter, in which NXF5 is split by the breakpoint, leading to its functional nullisomy. The predicted NXF5 protein shows high similarity with the central part of the presumed mRNA nuclear export factor TAP/NXF1. Functional analysis of NXF5 demonstrates binding to RNA as well as to the RNA nuclear export-associated protein p15/NXT. In contrast to TAP/NXF1, overexpression studies localized NXF5 in the form of granules in the cell body and neurites of mature hippocampal neurons, suggesting a role in mRNA transport. The two newly identified mouse nxf homologs, nxf-a and nxf-b, which also map on X, show highest mRNA levels in the brain. CONCLUSIONS: A novel member of the nuclear RNA export factor family is absent in a male patient with a syndromic form of mental retardation. Although we did not find direct evidence for the involvement of NXF5 in MR, the gene could be involved in development, possibly through a process in mRNA metabolism in neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号