首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies with the fruit-fly Drosophila melanogaster demonstrated that the enzyme sniffer prevented oxidative stress-induced neurodegeneration. Mutant flies overexpressing sniffer had significantly extended life spans in a 99.5% oxygen atmosphere compared to wild-type flies. However, the molecular mechanism of this protection remained unclear. Sequence analysis and database searches identified sniffer as a member of the short-chain dehydrogenase/reductase superfamily with a 27.4% identity to the human enzyme carbonyl reductase type I (CBR1). As CBR1 catalyzes the reduction of the lipid peroxidation products 4HNE and 4ONE, we tested whether sniffer is able to metabolize these lipid derived aldehydes by carbonyl reduction. To produce recombinant enzyme, the coding sequence of sniffer was amplified from a cDNA-library, cloned into a bacterial expression vector and the His-tagged protein was purified by Ni-chelate chromatography. We found that sniffer catalyzed the NADPH-dependent carbonyl reduction of 4ONE (K(m)=24±2 μM, k(cat)=500±10 min(-1), k(cat)/K(m)=350 s(-1) mM(-1)) but not that of 4HNE. The reaction product of 4ONE reduction by sniffer was mainly 4HNE as shown by HPLC- and GC/MS analysis. Since 4HNE, though still a potent electrophile, is less neurotoxic and protein reactive than 4ONE, one mechanism by which sniffer exerts its neuroprotective effects in Drosophila after oxidative stress may be enzymatic reduction of 4ONE.  相似文献   

2.
The P450 2E1-catalyzed oxidation of ethanol to acetaldehyde is characterized by a kinetic deuterium isotope effect that increases K(m) with no effect on k(cat), and rate-limiting product release has been proposed to account for the lack of an isotope effect on k(cat) (Bell, L. C., and Guengerich, F. P. (1997) J. Biol. Chem. 272, 29643-29651). Acetaldehyde is also a substrate for P450 2E1 oxidation to acetic acid, and k(cat)/K(m) for this reaction is at least 1 order of magnitude greater than that for ethanol oxidation to acetaldehyde. Acetic acid accounts for 90% of the products generated from ethanol in a 10-min reaction, and the contribution of this second oxidation has been overlooked in many previous studies. The noncompetitive intermolecular kinetic hydrogen isotope effects on acetaldehyde oxidation to acetic acid ((H)(k(cat)/K(m))/(D)(k(cat)/K(m)) = 4.5, and (D)k(cat) = 1.5) are comparable with the isotope effects typically observed for ethanol oxidation to acetaldehyde, and k(cat) is similar for both reactions, suggesting a possible common catalytic mechanism. Rapid quench kinetic experiments indicate that acetic acid is formed rapidly from added acetaldehyde (approximately 450 min(-1)) with burst kinetics. Pulse-chase experiments reveal that, at a subsaturating concentration of ethanol, approximately 90% of the acetaldehyde intermediate is directly converted to acetic acid without dissociation from the enzyme active site. Competition experiments suggest that P450 2E1 binds acetic acid and acetaldehyde with relatively high K(d) values, which preclude simple tight binding as an explanation for rate-limiting product release. The existence of a rate-determining step between product formation and release is postulated. Also proposed is a conformational change in P450 2E1 occurring during the course of oxidation and the discrimination of P450 2E1 between acetaldehyde and its hydrated form, the gem-diol. This multistep P450 reaction is characterized by kinetic control of individual reaction steps and by loose binding of all ligands.  相似文献   

3.
Based on recent directed evolution of P450 2B1, six P450 2B11 mutants at three positions were created in an N-terminal modified construct termed P450 2B11dH and characterized for enzyme catalysis using five substrates. Mutant I209A demonstrated a 3.2-fold enhanced k(cat)/K(m) for 7-ethoxy-4-trifluoromethylcourmarin O-deethylation, largely due to a dramatic decrease in K(m) (0.72 microM vs. 18 microM). I209A also demonstrated enhanced selectivity for testosterone 16beta-hydroxylation over 16alpha-hydroxylation. In contrast, V183L showed a 4-fold increased k(cat) for 7-benzyloxyresorufin debenzylation and a 4.7-fold increased k(cat)/K(m) for testosterone 16alpha-hydroxylation. V183L also displayed a 1.7-fold higher k(cat)/K(m) than P450 2B11dH with the anti-cancer prodrugs cyclophosphamide and ifosfamide, resulting from a approximately 4-fold decrease in K(m). Introduction of the V183L mutation into full-length P450 2B11 did not enhance the k(cat)/K(m). Overall, the re-engineered P450 2B11dH enzymes exhibited enhanced catalytic efficiency with several substrates including the anti-cancer prodrugs.  相似文献   

4.
Cytochrome P450 2B1 has been subjected to directed evolution to investigate the role of amino acid residues outside of the active site and to engineer novel, more active P450 catalysts. A high throughput screening system was developed to measure H(2)O(2)-supported oxidation of the marker fluorogenic substrate 7-ethoxy-4-trifluoromethylcoumarin (7-EFC). Random mutagenesis by error-prone polymerase chain reaction and activity screening were optimized using the L209A mutant of P450 2B1 in an N-terminally modified construct with a C-terminal His tag (P450 2B1dH). Two rounds of mutagenesis and screening and one subcloning step yielded the P450 2B1 quadruple mutant V183L/F202L/L209A/S334P, which demonstrated a 6-fold higher k(cat) than L209A. Further random or site-directed mutagenesis did not improve the activity. When assayed in an NADPH-supported reconstituted system, V183L/L209A demonstrated lower 7-EFC oxidation than L209A. Therefore, F202L/L209A/S334P was generated, which showed a 2.5-fold higher k(cat)/K(m) for NADPH-dependent 7-EFC oxidation than L209A. F202L/L209A/S334P also showed enhanced catalytic efficiency with 7-benzyloxyresorufin, benzphetamine, and testosterone, and a 10-fold increase in stereoselectivity for testosterone 16alpha-versus 16beta-hydroxylation compared with 2B1dH. Enhanced catalytic efficiency of F202L/L209A/S334P was also retained in the full-length P450 2B1 background with 7-EFC and testosterone as substrates. Finally, the individual mutants were tested for metabolism of the anti-cancer prodrugs cyclophosphamide and ifosfamide. Several of the mutants showed increased metabolism via the therapeutically beneficial 4-hydroxylation pathway, with L209A/S334P showing 2.8-fold enhancement of k(cat)/K(m) with cyclophosphamide and V183L/L209A showing 3.5-fold enhancement with ifosfamide. Directed evolution can thus be used to enhance P450 2B1 catalytic efficiency across a panel of substrates and to identify functionally important residues distant from the active site.  相似文献   

5.
Testosterone 6beta-hydroxylation is a prototypic reaction of cytochrome P450 (P450) 3A4, the major human P450. Biomimetic reactions produced a variety of testosterone oxidation products with 6beta-hydroxylation being only a minor reaction, indicating that P450 3A4 has considerable control over the course of steroid hydroxylation because 6beta-hydroxylation is not dominant in a thermodynamically controlled oxidation of the substrate. Several isotopically labeled testosterone substrates were prepared and used to probe the catalytic mechanism of P450 3A4: (i) 2,2,4,6,6-(2)H(5); (ii) 6,6-(2)H(2); (iii) 6alpha-(2)H; (iv) 6beta-(2)H; and (v) 6beta-(3)H testosterone. Only the 6beta-hydrogen was removed by P450 3A4 and not the 6alpha, indicating that P450 3A4 abstracts hydrogen and rebounds oxygen only at the beta face. Analysis of the rates of hydroxylation of 6beta-(1)H-, 6beta-(2)H-, and 6beta-(3)H-labeled testosterone and application of the Northrop method yielded an apparent intrinsic kinetic deuterium isotope effect ((D)k) of 15. The deuterium isotope effects on k(cat) and k(cat)/K(m) in non-competitive reactions were only 2-3. Some "switching" to other hydroxylations occurred because of 6beta-(2)H substitution. The high (D)k value is consistent with an initial hydrogen atom abstraction reaction. Attenuation of the high (D)k in the non-competitive experiments implies that C-H bond breaking is not a dominant rate-limiting step. Considerable attenuation of a high (D)k value was also seen with a slower P450 3A4 reaction, the O-dealkylation of 7-benzyloxyquinoline. Thus P450 3A4 is an enzyme with regioselective flexibility but also considerable regioselectivity and stereoselectivity in product formation, not necessarily dominated by the ease of C-H bond breaking.  相似文献   

6.
Cytochrome P450 (P450) 2D6 is involved in the oxidation of a large fraction ( approximately 30%) of drugs used by humans and also catalyzes the O-demethylation of the model substrates 3- and 4-methoxyphenethylamine followed by subsequent ring hydroxylation to dopamine. Burst kinetics were not observed; rate-limiting step(s) must occur prior to product formation. Rates of reduction of ferric P450 2D6 were stimulated by 3- or 4-methoxyphenethylamine or the inhibitor quinidine; reduction is not the most rate-limiting step. The non-competitive intramolecular deuterium isotope effect, an estimate of the intrinsic isotope effect, for 4-methoxyphenethylamine O-demethylation was 9.6. Intermolecular non-competitive deuterium isotope effects of 3.1-3.8 were measured for k(cat) and k(cat)/K(m) for both O-demethylation reactions, implicating at least partially rate-limiting C-H bond breaking. Simulation of steady-state kinetic data yielded a catalytic mechanism dominated by the rates of (i) Fe(2+)O(2)(-) protonation (plus O-O bond scission) and (ii) C-H bond breaking, consistent with the appearance of the spectral intermediates in the steady state, attributed to iron-oxygen complexes. However, all the rates of individual steps (or rates of combined steps) are considerably higher than k(cat), and the contributions of several steps must be considered in understanding rates of the P450 2D6 reactions.  相似文献   

7.
Erythritol biosynthesis is catalyzed by erythrose reductase, which converts erythrose to erythritol. Erythrose reductase, however, has never been characterized in terms of amino acid sequence and kinetics. In this study, NAD(P)H-dependent erythrose reductase was purified to homogeneity from Candida magnoliae KFCC 11023 by ion exchange, gel filtration, affinity chromatography, and preparative electrophoresis. The molecular weights of erythrose reductase determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography were 38,800 and 79,000, respectively, suggesting that the enzyme is homodimeric. Partial amino acid sequence analysis indicates that the enzyme is closely related to other yeast aldose reductases. C. magnoliae erythrose reductase catalyzes the reduction of various aldehydes. Among aldoses, erythrose was the preferred substrate (K(m) = 7.9 mM; k(cat)/K(m) = 0.73 mM(-1) s(-1)). This enzyme had a dual coenzyme specificity with greater catalytic efficiency with NADH (k(cat)/K(m) = 450 mM(-1) s(-1)) than with NADPH (k(cat)/K(m) = 5.5 mM(-1) s(-1)), unlike previously characterized aldose reductases, and is specific for transferring the 4-pro-R hydrogen of NADH, which is typical of members of the aldo/keto reductase superfamily. Initial velocity and product inhibition studies are consistent with the hypothesis that the reduction proceeds via a sequential ordered mechanism. The enzyme required sulfhydryl compounds for optimal activity and was strongly inhibited by Cu(2+) and quercetin, a strong aldose reductase inhibitor, but was not inhibited by aldehyde reductase inhibitors and did not catalyze the reduction of the substrates for carbonyl reductase. These data indicate that the C. magnoliae erythrose reductase is an NAD(P)H-dependent homodimeric aldose reductase with an unusual dual coenzyme specificity.  相似文献   

8.
Lysine 5,6-aminomutase (5,6-LAM) catalyzes the reversible and nearly isoenergetic transformations of D-lysine into 2,5-diaminohexanoate (2,5-DAH) and of L-beta-lysine into 3,5-diaminohexanoate (3,5-DAH). The activity of 5,6-LAM depends on pyridoxal-5(')-phosphate (PLP) and adenosylcobalamin. The currently postulated multistep mechanism involves at least 12 steps, two of which involve hydrogen transfer. The deuterium kinetic isotope effects on k(cat) and k(cat)/K(m) have been found to be 10.4+/-0.3 and 8.3+/-1.9, respectively, in the reaction of DL-lysine-3,3,4,4,5,5,6,6-d(8). The corresponding isotope effects for reaction of DL-lysine-4,4,5,5-d(4) are 8.5+/-0.7 and 7.1+/-1.2, respectively. Neither cob(II)alamin nor a free radical can be detected in the steady state by UV-Vis spectrophotometry or electron paramagnetic resonance (EPR) spectroscopy. Therefore, hydrogen abstraction from carbon-5 of the substrate side chain is rate limiting in the mechanism. DL-4-Oxalysine is an alternative substrate for 5,6-LAM. DL-4-Oxalysine reacts irreversibly because the product breaks down into ammonia, acetaldehyde, and DL-serine. The value of K(m) for the reaction of DL-4-oxalysine is lower than that for DL-lysine and that of k(cat) for DL-4-oxalysine is slightly lower than that for DL-lysine. As measured by values of k(cat)/K(m), 5,6-LAM uses DL-4-oxalysine essentially as efficiently as the best substrates, D-lysine and L-beta-lysine, and more efficiently than DL-lysine. DL-4-Oxalysine induces the same suicide inactivation by electron transfer as do the biological substrates. The putative substrate-related radical intermediate is not sufficiently stabilized by the nonbonding 4-oxa electrons to be detectable by EPR spectroscopy.  相似文献   

9.
Dipeptidyl peptidase 4/CD26 (DP4) is a multifunctional serine protease liberating dipeptide from the N-terminus of (oligo)peptides which can modulate the activity of these peptides. The enzyme is involved in physiological processes such as blood glucose homeostasis and immune response. DP4 substrate specificity is characterized in detail using synthetic dipeptide derivatives. The specificity constant k(cat)/K(m) strongly depends on the amino acid in P?-position for proline, alanine, glycine and serine with 5.0 x 10? M?1 s?1, 1.8 x 10? M?1 s?1, 3.6 x 102 M?1 s?1, 1.1 x 102 M?1 s?1, respectively. By contrast, kinetic investigation of larger peptide substrates yields a different pattern. The specific activity of DP4 for neuropeptide Y (NPY) cleavage comprising a proline in P?-position is the same range as the k(cat)/K(m) values of NPY derivatives containing alanine or serine in P?-position with 4 x 10? M?1 s?1, 9.5 x 10? M?1 s?1 and 2.1 x 10? M?1 s?1, respectively. The proposed existence of an additional binding region outside the catalytic center is supported by measurements of peptide substrates with extended chain length. This 'secondary' binding site interaction depends on the amino acid sequence in P?'-P?'-position. Interactions with this binding site could be specifically blocked for substrates of the GRF/glucagon peptide family. By contrast, substrates not belonging to this peptide family and dipeptide derivative substrates that only bind to the catalytic center of DP4 were not inhibited. This more selective inhibition approach allows, for the first time, to distinguish between substrate families by substrate-discriminating inhibitors.  相似文献   

10.
Guo X  Liu T  Deng Z  Cane DE 《Biochemistry》2012,51(4):879-887
Incubation of recombinant module 2 of the polyether nanchangmycin synthase (NANS), carrying an appended thioesterase domain, with the ACP-bound substrate (2RS)-2-methyl-3-ketobutyryl-NANS_ACP1 (2-ACP1) and methylmalonyl-CoA in the presence of NADPH gave diastereomerically pure (2S,4R)-2,4-dimethyl-5-ketohexanoic acid (4a). These results contrast with the previously reported weak discrimination by NANS module 2+TE between the enantiomers of the corresponding N-acetylcysteamine-conjugated substrate analogue (±)-2-methyl-3-ketobutyryl-SNAC (2-SNAC), which resulted in formation of a 5:3 mixture of 4a and its (2S,4S)-diastereomer 4b. Incubation of NANS module 2+TE with 2-ACP1 in the absence of NADPH gave unreduced 3,5,6-trimethyl-4-hydroxypyrone (3) with a k(cat) of 4.4 ± 0.9 min?1 and a k(cat)/K(m) of 67 min?1 mM?1, corresponding to a ~2300-fold increase compared to the k(cat)/K(m) for the diffusive substrate 2-SNAC. Covalent tethering of the 2-methyl-3-ketobutyryl thioester substrate to the NANS ACP1 domain derived from the natural upstream PKS module of the nanchangmycin synthase significantly enhanced both the stereospecificity and the kinetic efficiency of the sequential polyketide chain translocation and condensation reactions catalyzed by the ketosynthase domain of NANS module 2.  相似文献   

11.
Isopentenyl phosphate kinase (IPK) catalyzes the phosphorylation of isopentenyl phosphate to form the isoprenoid precursor isopentenyl diphosphate in the archaeal mevalonate pathway. This enzyme is highly homologous to fosfomycin kinase (FomA), an antibiotic resistance enzyme found in a few strains of Streptomyces and Pseudomonas whose mode of action is inactivation by phosphorylation. Superposition of Thermoplasma acidophilum (THA) IPK and FomA structures aligns their respective substrates and catalytic residues, including H50 and K14 in THA IPK and H58 and K18 in Streptomyces wedmorensis FomA. These residues are conserved only in the IPK and FomA members of the phosphate subdivision of the amino acid kinase family. We measured the fosfomycin kinase activity of THA IPK [K(m) = 15.1 ± 1.0 mM, and k(cat) = (4.0 ± 0.1) × 10?2 s?1], resulting in a catalytic efficiency (k(cat)/K(m) = 2.6 M?1 s?1) that is 5 orders of magnitude lower than that of the native reaction. Fosfomycin is a competitive inhibitor of IPK (K(i) = 3.6 ± 0.2 mM). Molecular dynamics simulation of the IPK·fosfomycin·MgATP complex identified two binding poses for fosfomycin in the IP binding site, one of which results in a complex analogous to the native IPK·IP·ATP complex that engages H50 and the lysine triangle formed by K5, K14, and K205. The other binding pose leads to a dead-end complex that engages K204 near the IP binding site to bind fosfomycin. Our findings suggest a mechanism for acquisition of FomA-based antibiotic resistance in fosfomycin-producing organisms.  相似文献   

12.
The author sought to develop a high-throughput activity screening assay to carry out rapid kinetic analysis, inhibitor screening, and directed evolution of cytochrome P450 2C enzymes. Initially, of the 9 fluorescent substrates and 10 P450 2C enzymes tested, several P450 2C enzymes showed > 1 nmol/min/nmol P450 activity in cumene hydroperoxide (CuOOH)-supported reaction with a laser dye, 7-dimethylamino-4-trifluoromethylcoumarin (C152). A high-throughput steady-state kinetic analysis of the human P450 2C8, 2C9, and 2C19 showed 1) k(cat) = 3 to 6 min(-1), 2) K(m, CuOOH) = 100 to 200 microM, and 3) S(50, C152) = 10 to 20 microM in the CuOOH system. In addition, P450 2C9 and 2C19 showed a very high k(ca)t (27 and 38 min(-1), respectively) in the nicotinamide adenine dinucleotide phosphate (NADPH)-supported reaction. Subsequently, when mammalian P450s from the other subfamilies were tested, P450 2B1dH, 2B4dH, 2B5dH, 3A4, and 3A5 exhibited a significant activity in both CuOOH and NADPH systems. Furthermore, a high-throughput activity screening assay using whole-cell suspensions of the human P450 2C8, 2C9, and 2C19 was optimized. Overall, the data suggested that C152 can be used as a model substrate for mammalian P450s in CuOOH-supported reaction to perform rapid kinetic analysis, inhibitor screening, and directed evolution.  相似文献   

13.
Flavocytochrome P450 BM3 is a member of the diflavin reductase enzyme family. Members include cytochrome P450 reductase, nitric-oxide synthase, methionine synthase reductase, and novel oxidoreductase 1. These enzymes show a strong preference for NADPH over NADH as reducing coenzyme. An aromatic residue stacks over the FAD isoalloxazine ring in each enzyme, and in some cases it is important in controlling coenzyme specificity. In P450 BM3, the aromatic residue inferred from sequence alignments to stack over the FAD is Trp-1046. Mutation to Ala-1046 and His-1046 effected a remarkable coenzyme specificity switch. P450 BM3 W1046A/W106H FAD and reductase domains are efficient NADH-dependent ferricyanide reductases with selectivity coefficients (k(cat)/K(m)(NADPH)/k(cat)/K(m)(NADH)) of 1.5, 67, and 8571 for the W1046A, W1046H, and wild-type reductase domains, respectively. Stopped-flow photodiode array absorption studies indicated a charge-transfer intermediate accumulated in the W1046A FAD domain (and to a lesser extent in the W1046H FAD domain) and was attributed to formation of a reduced FADH(2)-NAD(P)(+) charge-transfer species, suggesting a relatively slow rate of release of NAD(P)(+) from reduced enzymes. Unlike wild-type enzymes, there was no formation of the blue semiquinone species observed during reductive titration of the W0146A/W146H FAD and reductase domains with dithionite or NAD(P)H. This was a consequence of elevation of the semiquinone/hydroquinone couple of the FAD with respect to the oxidized/semiquinone couple, and a concomitant approximately 100-mV elevation in the 2-electron redox couple for the enzyme-bound FAD (-320, -220, and -224 mV in the wild-type, W1046A, and W1046H FAD domains, respectively).  相似文献   

14.
Cytochrome P450 (P450) 2A6 is able to catalyze indole hydroxylation to form the blue dye indigo. The wild-type P450 2A6 enzyme was randomly mutated throughout the whole open reading frame and screened using 4-chloroindole hydroxylation, a substituted indole selected from 30 indole compounds for enhanced color development. Mutants with up to 5-fold increases of catalytic efficiency (k(cat)/K(m)) and 2-fold increases in k(cat) were selected after two rounds of screening. Important residues located both in (e.g., Thr305) and outside the active site (e.g., Ser224) were identified. The study utilized a better substrate for "indigo assay" to obtain new information on the structure-functional relationship of P450 2A6 that was not revealed by previous mutagenesis studies with this enzyme.  相似文献   

15.
A hydroxynitrile lyase was isolated and purified to homogeneity from seeds of Eriobotrya japonica (loquat). The final yield, of 36% with 49-fold purification, was obtained by 30-80% (NH(4))(2)SO(4) fractionation and column chromatography on DEAE-Toyopearl and Concanavalin A Sepharose 4B, which suggested the presence of a carbohydrate side chain. The purified enzyme was a monomer with a molecular mass of 72 kDa as determined by gel filtration, and 62.3 kDa as determined by SDS-gel electrophoresis. The N-terminal sequence is reported. The enzyme was a flavoprotein containing FAD as a prosthetic group, and it exhibited a K(m) of 161 microM and a k(cat)/K(m) of 348 s(-1) mM(-1) for mandelonitrile. The optimum pH and temperature were pH 5.5 and 40 degrees C respectively. The enzyme showed excellent stability with regard to pH and temperature. Metal ions were not required for its activity, while activity was significantly inhibited by CuSO(4), HgCl(2), AgNO(3), FeCl(3), beta-mercaptoethanol, iodoacetic acid, phenylmethylsulfonylfluoride, and diethylpyrocarbonate. The specificity constant (k(cat)/K(m)) of the enzyme was investigated for the first time using various aldehydes as substrates. The enzyme was active toward aromatic and aliphatic aldehydes, and showed a preference for smaller substrates over bulky one.  相似文献   

16.
The effects of calcium ions on hydrolysis of low molecular weight substrates catalyzed by different forms of enteropeptidase were studied. A method for determining activity of truncated enteropeptidase preparations lacking a secondary trypsinogen binding site and displaying low activity towards trypsinogen was developed using N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester (Z-Lys-S-Bzl). The kinetic constants for hydrolysis of this substrate at pH 8.0 and 25 degrees C were determined for natural enteropeptidase (K(m) 59.6 microM, k(cat) 6660 min(-1), k(cat)/K(m) 111 microM(-1) x min(-1)), as well as for enteropeptidase preparation with deleted 118-783 fragment of the heavy chain (K(m) 176.9 microM, k(cat) 6694 min(-1), k(cat)/K(m) 37.84 microM(-1) x min(-1)) and trypsin (K(m) 56.0 microM, k(cat) 8280 min(-1), k(cat)/K(m) 147.86 microM(-1) x min(-1)). It was shown that the enzymes with trypsin-like primary active site display similar hydrolysis efficiency towards Z-Lys-S-Bzl. Calcium ions cause 3-fold activation of hydrolysis of the substrates of general type GD(4)K-X by the natural full-length enteropeptidase. In contrast, the hydrolysis of substrates with one or two Asp/Glu residues at P2-P3 positions is slightly inhibited by Ca2+. In the case of enteropeptidase light chain as well as the enzyme containing the truncated heavy chain (466-800 fragment), the activating effect of calcium ions was not detected for all the studied substrates. The results of hydrolysis experiments with synthetic enteropeptidase substrates GD(4)K-F(NO(2))G, G(5)DK-F(NO(2))G (where F(NO(2)) is p-nitrophenyl-L-phenylalanine residue), and GD(4)K-Nfa (where Nfa is beta-naphthylamide) demonstrate the possibility of regulation of undesired side hydrolysis using natural full-length enteropeptidase for processing chimeric proteins by means of calcium ions.  相似文献   

17.
An E461G mutation of beta-galactosidase results in the disappearance of the high pL (L = H, D) downward break in the rate profiles for k(cat)/K(m) for wild-type enzyme-catalyzed hydrolysis of 4-nitrophenyl beta-D-galactopyranoside (Gal-OPNP) and a decrease from (k(cat))(HOH)/(k(cat))(DOD) = 1.7 to (k(cat))(HOH)/(k(cat))(DOD) = 1.2 in the solvent deuterium isotope effect. These observations provide evidence that the propionic acid side chain of Glu 461 is protonated at catalytically active free beta-galactosidase and they are consistent with a role for this residue in Br?nsted acid catalysis at the leaving group. The earlier observation that this same E461G mutation results in the loss of a downward break at high pH in the rate profile for k(s) for transfer of the beta-D-galactopyranosyl group from beta-galactosidase to water cannot be simply explained by a mechanism in which the single side chain of Glu 461 functions to provide general acid catalysis in the rate limiting step for formation of the beta-D-galactopyranosyl intermediate and general base catalysis of breakdown of this intermediate. Evidence is presented that there may be different catalytic mechanisms, with different roles for the side chain for Glu-461, for nucleophilic addition of water and of small alkyl alcohols to the beta-D-galactopyranosyl reaction intermediate.  相似文献   

18.
There are several known routes for the metabolic detoxication of alpha,beta-unsaturated aldehydes and ketones, including conjugation to glutathione and reduction and oxidation of the aldehyde to an alcohol and a carboxylic acid, respectively. In this study, we describe a fourth class of detoxication that involves the reduction of the alpha,beta-carbon=carbon double bond to a single bond. This reaction is catalyzed by NAD(P)H-dependent alkenal/one oxidoreductase (AO), an enzyme heretofore known as leukotriene B4 12-hydroxydehydrogenase, 15-oxoprostaglandin 13-reductase, and dithiolethione-inducible gene-1. AO is shown to effectively reduce cytotoxic lipid peroxidation products such as 4-hydroxy-2-nonenal (HNE) (k(cat) = 4.0 x 10(3) min(-1); k(cat)/K(m) = 3.3 x 10(7) min(-1) M(-1)) and acrolein (k(cat) = 2.2 x 10(2) min(-1); k(cat)/K(m) = 1.5 x 10(6) min(-1) M(-1)) and common industrial compounds such as ethyl vinyl ketone (k(cat) = 9.6 x 10(3) min(-1); k(cat)/K(m) = 8.8 x 10(7) min(-1) M(-1)) and 15-oxoprostaglandin E1 (k(cat) = 2.4 x 10(3) min(-1); k(cat)/K(m) = 2.4 x 10(9) min(-1) M(-1)). Furthermore, transfection of human embryonic kidney cells with a rat liver AO expression vector protected these cells from challenge with HNE. The concentration of HNE at which 50% of the cells were killed after 24 h increased from approximately 15 microM in control cells to approximately 70 microM in AO-transfected cells. Overexpression of AO also completely abolished protein alkylation by HNE at all concentrations tested (up to 30 microM). Thus, we describe a novel antioxidative activity of a previously characterized bioactive lipid-metabolizing enzyme that could prove to be therapeutically or prophylactically useful due to its high catalytic rate and inducibility.  相似文献   

19.
Phosphite dehydrogenase (PTDH) catalyzes the NAD-dependent oxidation of phosphite to phosphate, a reaction that is 15 kcal/mol exergonic. The enzyme belongs to the family of D-hydroxy acid dehydrogenases. Five other family members that were analyzed do not catalyze the oxidation of phosphite, ruling out the possibility that this is a ubiquitous activity of these proteins. PTDH does not accept any alternative substrates such as thiophosphite, hydrated aldehydes, and methylphosphinate, and potential small nucleophiles such as hydroxylamine, fluoride, methanol, and trifluoromethanol do not compete with water in the displacement of the hydride from phosphite. The pH dependence of k(cat)/K(m,phosphite) is bell-shaped with a pK(a) of 6.8 for the acidic limb and a pK(a) of 7.8 for the basic limb. The pK(a) of 6.8 is assigned to the second deprotonation of phosphite. However, whether the dianionic form of phosphite is the true substrate is not clear since a reverse protonation mechanism is also consistent with the available data. Unlike k(cat)/K(m,phosphite), k(cat) and k(cat)/K(m,NAD) are pH-independent. Sulfite is a strong inhibitor of PTDH that is competitive with respect to phosphite and uncompetitive with respect to NAD(+). Incubation of the enzyme with NAD(+) and low concentrations of sulfite results in a covalent adduct between NAD(+) and sulfite in the active site of the enzyme that binds very tightly. Fluorescent titration studies provided the apparent dissociation constants for NAD(+), NADH, sulfite, and the sulfite-NAD(+) adduct. Substrate isotope effect studies with deuterium-labeled phosphite resulted in small normal isotope effects (1.4-2.1) on both k(cat) and k(cat)/K(m,phosphite) at pH 7.25 and 8.0. Solvent isotope effects (SIEs) on k(cat) are similar in size; however, the SIE of k(cat)/K(m,phosphite) at pH 7.25 is significantly larger (4.4), whereas at pH 8.0, it is the inverse (0.6). The pH-rate profile of k(cat)/K(m,phosphite), which predicts that the observed SIEs will have a significant thermodynamic origin, can account for these effects.  相似文献   

20.
An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerevisiae, has been shown to mitigate the toxicity of FFA and HMF by catalyzing the NADPH-dependent conversion to corresponding alcohols, furfuryl alcohol (FFOH) and 5-hydroxymethylfurfuryl alcohol (HMFOH). At pH 7.0 and 25°C, purified Ari1p catalyzes the NADPH-dependent reduction of substrates with the following values (k(cat) (s(-1)), k(cat)/K(m) (s(-1)mM(-1)), K(m) (mM)): FFA (23.3, 1.82, 12.8), HMF (4.08, 0.173, 23.6), and dl-glyceraldehyde (2.40, 0.0650, 37.0). When acting on HMF and dl-glyceraldehyde, the enzyme operates through an equilibrium ordered kinetic mechanism. In the physiological direction of the reaction, NADPH binds first and NADP(+) dissociates from the enzyme last, demonstrated by k(cat) of HMF and dl-glyceraldehyde that are independent of [NADPH] and (K(ia)(NADPH)/k(cat)) that extrapolate to zero at saturating HMF or dl-glyceraldehyde concentration. Microscopic kinetic parameters were determined for the HMF reaction (HMF+NADPH?HMFOH+NADP(+)), by applying steady-state, presteady-state, kinetic isotope effects, and dynamic modeling methods. Release of products, HMFOH and NADP(+), is 84% rate limiting to k(cat) in the forward direction. Equilibrium constants, [NADP(+)][FFOH]/[NADPH][FFA][H(+)]=5600×10(7)M(-1) and [NADP(+)][HMFOH]/[NADPH][HMF][H(+)]=4200×10(7)M(-1), favor the physiological direction mirrored by the slowness of hydride transfer in the non-physiological direction, NADP(+)-dependent oxidation of alcohols (k(cat) (s(-1)), k(cat)/K(m) (s(-1)mM(-1)), K(m) (mM)): FFOH (0.221, 0.00158, 140) and HMFOH (0.0105, 0.000104, 101).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号