首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Floral traits, such as floral volatiles, can contribute to pre-zygotic reproductive isolation by promoting species-specific pollinator foraging. When hybrid zones form, floral traits could also influence post-zygotic isolation. This study examined floral volatiles in parental species and natural hybrids in order to explore potential scent mediation of pre-zygotic and post-zygotic isolation.

Methods

Floral bouquets were analysed for the sister species Ipomopsis aggregata and I. tenuituba and their natural hybrids at two contact sites differing in both hybridization rate and temporal foraging pattern of hawkmoth pollinators. Floral volatiles were quantified in diurnal and nocturnal scent samples using gas chromatography–mass spectrometry.

Key Results

The bouquets of parental species and hybrids showed qualitative overlap. All flowers emitted similar sets of monoterpenoid, sesquiterpenoid, aliphatic and benzenoid compounds, but separated into groups defined by multivariate analysis of quantitative emissions. The parental species differed most strikingly in the nitrogenous compound indole, which was found almost exclusively in nocturnal bouquets of I. tenuituba. Natural hybrid bouquets were highly variable, and showed emission rates of several compounds that appeared transgressive. However, indole emission rates were intermediate in the hybrids compared with rates in the parents. Volatile bouquets at the contact site with lower hybridization did not show greater species specificity in overall scent emission, but I. tenuituba presented a stronger indole signal during peak hawkmoth activity at that site.

Conclusions

The two species of Ipomopsis differed in patterns of floral bouquets, with indole emitted in nocturnal I. tenuituba, but not in I. aggregata. Natural hybrid bouquets were not consistently intermediate between the parents, although hybrids were intermediate in indole emission. The indole signal could potentially serve as a hawkmoth attractant that mediates reproductive isolation both before and after hybrid formation.  相似文献   

2.
方振名  胡兴华  刘长秋  黄仕训 《广西植物》2018,38(11):1505-1511
罗汉果(Siraitia grosvenorii)是葫芦科著名的药食两用植物,广泛种植于广西桂林地区,其开花后传粉不良现象迫切需要研究解决。为了探讨罗汉果花朵气味物质与传粉者访花频率的关系以及查明传粉不良产生的原因,该文选择罗汉果雄花为材料,研究了罗汉果花朵气味物质的量化分析方法。实验采用动态顶空吸附法收集新鲜花朵的气味物质,经过洗脱、洗脱液吹氮和GC-MS分析等步骤,先后完成了花朵气味物质的收集、浓缩、分离和鉴定,最后以峰面积归一化法计算各化学组分的相对含量。结果表明:从供试花朵中检测到挥发性组分(包括萜烯类物质) 5种,以及芳香烃类、烷烃类、酯类物质各1种,其中萜烯类物质的相对含量达71.07%,是供试花朵最主要的挥发性化合物。该结果高度符合葫芦科植物花朵气味的化学组分特征,并具有良好的实验重复性,表明该实验体系是收集和鉴定罗汉果花朵气味组分的理想方法,为后续开展罗汉果花气味物质研究奠定了重要基础。同时通过与葫芦科多种植物比较,发现罗汉果的花朵气味物质可能存在雌雄二型性。  相似文献   

3.

Background and Aims

A significant proportion of orchid species assigned to subtribe Oncidiinae produce floral oil as a food reward that attracts specialized bee pollinators. This oil is produced either by glabrous glands (epithelial elaiophores) or by tufts of secretory hairs (trichomal elaiophores). Although the structure of epithelial elaiophores in the Oncidiinae has been well documented, trichomal elaiophores are less common and have not received as much attention. Only trichomal elaiophores occur in the genus Lockhartia, and their distribution and structure are surveyed here for the first time.

Methods

Flowers of 16 species of Lockhartia were studied. The location of floral elaiophores was determined histochemically and their anatomical organization and mode of oil secretion was investigated by means of light microscopy, scanning electron microscopy and transmission electron microscopy.

Key Results and Conclusions –

All species of Lockhartia investigated have trichomal elaiophores on the adaxial surface of the labellum. Histochemical tests revealed the presence of lipoidal substances within the labellar trichomes. However, the degree of oil production and the distribution of trichomes differed between the three major groups of species found within the genus. All trichomes were unicellular and, in some species, of two distinct sizes, the larger being either capitate or apically branched. The trichomal cuticle was lamellate, and often appeared distended due to the subcuticular accumulation of oil. The labellar trichomes of the three species examined using transmission electron microscopy contained dense, intensely staining cytoplasm with apically located vacuoles. Oil-laden secretory vesicles fused with the plasmalemma and discharged their contents. Oil eventually accumulated between the cell wall and cuticle of the trichome and contained electron-transparent profiles or droplets. This condition is considered unique to Lockhartia among those species of elaiophore-bearing Oncidiinae studied to date.  相似文献   

4.
The genus Paramunida belongs to the most diverse family of galatheoids and it is commonly reported from the continental slope across the Indian and Pacific Oceans. Examination of material collected by the NOAA RV Townsend Cromwell Cruise near Christmas (Kiritimati) Island, Kiribati, revealed the existence of a new species of Paramunida (P. haigae), which represents the fourth record of the genus for the Central Pacific. Furthermore, recent efforts to unravel phylogenetic relationships and diversification patterns in Paramunida revealed P. granulata (Henderson, 1885) to be the most basally diverging taxon within the genus. This species is clearly distinguished from other species of Paramunida by the spinulation of the carapace and the length of the distomesial spine of the second antennal peduncle article, which in combination with a high level of genetic divergence suggest that this species represents a separate monotypic lineage. A new genus, Hendersonida gen. n., is proposed to accommodate this species based on morphological and molecular evidence. An updated dichotomous identification key for all species of Paramunida is presented.  相似文献   

5.
6.

Background and Aims

The most plausible explanation for treeline formation so far is provided by the growth limitation hypothesis (GLH), which proposes that carbon sinks are more restricted by low temperatures than by carbon sources. Evidence supporting the GLH has been strong in evergreen, but less and weaker in deciduous treeline species. Here a test is made of the GLH in deciduous–evergreen mixed species forests across elevational gradients, with the hypothesis that deciduous treeline species show a different carbon storage trend from that shown by evergreen species across elevations.

Methods

Tree growth and concentrations of non-structural carbohydrates (NSCs) in foliage, branch sapwood and stem sapwood tissues were measured at four elevations in six deciduous–evergreen treeline ecotones (including treeline) in the southern Andes of Chile (40°S, Nothofagus pumilio and Nothofagus betuloides; 46°S, Nothofagus pumilio and Pinus sylvestris) and in the Swiss Alps (46°N, Larix decidua and Pinus cembra).

Key Results

Tree growth (basal area increment) decreased with elevation for all species. Regardless of foliar habit, NSCs did not deplete across elevations, indicating no shortage of carbon storage in any of the investigated tissues. Rather, NSCs increased significantly with elevation in leaves (P < 0·001) and branch sapwood (P = 0·012) tissues. Deciduous species showed significantly higher NSCs than evergreens for all tissues; on average, the former had 11 % (leaves), 158 % (branch) and 103 % (sapwood) significantly (P < 0·001) higher NSCs than the latter. Finally, deciduous species had higher NSC (particularly starch) increases with elevation than evergreens for stem sapwood, but the opposite was true for leaves and branch sapwood.

Conclusions

Considering the observed decrease in tree growth and increase in NSCs with elevation, it is concluded that both deciduous and evergreen treeline species are sink limited when faced with decreasing temperatures. Despite the overall higher requirements of deciduous tree species for carbon storage, no indication was found of carbon limitation in deciduous species in the alpine treeline ecotone.  相似文献   

7.
8.
A grapevine leafminer Antispila oinophylla van Nieukerken & Wagner, sp. n., is described both from eastern North America (type locality: Georgia) and as a new important invader in North Italian vineyards (Trentino and Veneto Region) since 2006. The species is closely related to, and previously confused with Antispila ampelopsifoliella Chambers, 1874, a species feeding on Virginia creeper Parthenocissus quinquefolia (L.) Planchon., and both are placed in an informal Antispila ampelopsifoliella group. Wing pattern, genitalia, and DNA barcode data all confirm the conspecificity of native North American populations and Italian populations. COI barcodes differ by only 0-1.23%, indicating that the Italian populations are recently established from eastern North America. The new species feeds on various wild Vitis species in North America, on cultivated Vitis vinifera L. in Italy, and also on Parthenocissus quinquefolia in Italy. North American Antispila feeding on Parthenocissus include at least two other species, one of which is Antispila ampelopsifoliella. Morphology and biology of the new species are contrasted with those of North American Antispila Hübner, 1825 species and European Holocacista rivillei (Stainton, 1855). The source population of the introduction is unknown, but cases with larvae or pupae, attached to imported plants, are a likely possibility. DNA barcodes of the three European grapevine leafminers and those of all examined Heliozelidae are highly diagnostic. North American Vitaceae-feeding Antispila form two species complexes and include several as yet unnamed taxa. The identity of three out of the four previously described North American Vitaceae-feeding species cannot be unequivocally determined without further revision, but these are held to be different from Antispila oinophylla. In Italy the biology of Antispila oinophylla was studied in a vineyard in the Trento Province (Trentino-Alto Adige Region) in 2008 and 2009. Mature larvae overwinter inside their cases, fixed to vine trunks or training stakes. The first generation flies in June. An additional generation occurs from mid-August onwards. The impact of the pest in this vineyard was significant with more than 90% of leaves infested in mid-summer. Since the initial discovery in 2006, the pest spread to several additional Italian provinces, in 2010 the incidence of infestation was locally high in commercial vineyards. Preliminary phylogenetic analyses suggest that Antispila is paraphyletic, and that the Antispila ampelopsifoliella group is related to Coptodisca Walsingham, 1895, Holocacista Walsingham & Durrant, 1909 and Antispilina Hering, 1941, all of which possess reduced wing venation. Vitaceae may be the ancestral hostplant family for modern Heliozelidae.  相似文献   

9.
Li QQ  Zhou SD  He XJ  Yu Y  Zhang YC  Wei XQ 《Annals of botany》2010,106(5):709-733

Background and Aims

The genus Allium comprises more than 800 species, placing it among the largest monocotyledonous genera. It is a variable group that is spread widely across the Holarctic region. Previous studies of Allium have been useful in identifying and assessing its evolutionary lineages. However, there are still many gaps in our knowledge of infrageneric taxonomy and evolution of Allium. Further understanding of its phylogeny and biogeography will be achieved only through continued phylogenetic studies, especially of those species endemic to China that have often been excluded from previous analyses. Earlier molecular studies have shown that Chinese Allium is not monophyletic, so the goal of the present study was to infer the phylogeny and biogeography of Allium and to provide a classification of Chinese Allium by placement of Chinese species in the context of the entire phylogeny.

Methods

Phylogenetic studies were based on sequence data of the nuclear ribosomal internal transcribed spacer (ITS) and chloroplast rps16 intron, analysed using parsimony and Bayesian approaches. Biogeographical patterns were conducted using statistical dispersal–vicariance analysis (S-DIVA).

Key Results

Phylogenetic analyses indicate that Allium is monophyletic and consists of three major clades. Optimal reconstructions have favoured the ancestors of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum as originating in eastern Asia.

Conclusions

Phylogenetic analyses reveal that Allium is monophyletic but that some subgenera are not. The large genetic distances imply that Allium is of ancient origin. Molecular data suggest that its evolution proceeded along three separate evolutionary lines. S-DIVA indicates that the ancestor of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum originated from eastern Asia and underwent different biogeographical pathways. A taxonomic synopsis of Chinese Allium at sectional level is given, which divides Chinese Allium into 13 subgenera and 34 sections.  相似文献   

10.

Background and Aims

Success of invasive plant species is thought to be linked with their higher leaf carbon fixation strategy, enabling them to capture and utilize resources better than native species, and thus pre-empt and maintain space. However, these traits are not well-defined for invasive woody vines.

Methods

In a glass house setting, experiments were conducted to examine how leaf carbon gain strategies differ between non-indigenous invasive and native woody vines of south-eastern Australia, by investigating their biomass gain, leaf structural, nutrient and physiological traits under changing light and moisture regimes.

Key Results

Leaf construction cost (CC), calorific value and carbon : nitrogen (C : N) ratio were lower in the invasive group, while ash content, N, maximum photosynthesis, light-use efficiency, photosynthetic energy-use efficiency (PEUE) and specific leaf area (SLA) were higher in this group relative to the native group. Trait plasticity, relative growth rate (RGR), photosynthetic nitrogen-use efficiency and water-use efficiency did not differ significantly between the groups. However, across light resource, regression analyses indicated that at a common (same) leaf CC and PEUE, a higher biomass RGR resulted for the invasive group; also at a common SLA, a lower CC but higher N resulted for the invasive group. Overall, trait co-ordination (using pair-wise correlation analyses) was better in the invasive group. Ordination using 16 leaf traits indicated that the major axis of invasive-native dichotomy is primarily driven by SLA and CC (including its components and/or derivative of PEUE) and was significantly linked with RGR.

Conclusions

These results demonstrated that while not all measures of leaf resource traits may differ between the two groups, the higher level of trait correlation and higher revenue returned (RGR) per unit of major resource need (CC) and use (PEUE) in the invasive group is in line with their rapid spread where introduced.  相似文献   

11.
Evolutionary innovation can allow a species access to a new ecological niche, potentially reducing competition with closely related species. While the vast majority of Drosophila flies feed on rotting fruit and other decaying matter, and are harmless to human activity, Drosophila suzukii, which has a morphologically modified ovipositor, is capable of colonizing live fruit that is still in the process of ripening, causing massive agricultural damage. Here, we conducted the first comparative analysis of this species and its close relatives, analysing both ovipositor structure and fruit susceptibility. We found that the ovipositor of the species most closely related to D. suzukii, Drosophila subpulchrella, has a similar number of enlarged, evolutionarily derived bristles, but a notably different overall shape. Like D. suzukii, D. subpulchrella flies are capable of puncturing the skin of raspberries and cherries, but we found no evidence that they could penetrate the thicker skin of two varieties of grapes. More distantly related species, one of which has previously been mistaken for D. suzukii, have blunt ovipositors with small bristles. While they did not penetrate fruit skin in any of the assays, they readily colonized fruit interiors where the skin was broken. Our results suggest that considering evolutionary context may be beneficial to the management of invasive species.  相似文献   

12.

Background and Aims

Balsaminaceae consist of two genera, the monospecific Hydrocera and its species-rich sister Impatiens. Although both genera are seemingly rather similar in overall appearance, they differ in ecology, distribution range, habitat preference and morphology. Because morphological support for the current molecular phylogenetic hypothesis of Impatiens is low, a developmental study is necessary in order to obtain better insights into the evolutionary history of the family. Therefore, the floral development of H. triflora and I. omeiana was investigated, representing the most early-diverged lineage of Impatiens, and the observations were compared with the literature.

Methods

Flowers at all developmental stages were examined using scanning electron microscopy and light microscopy.

Key results

In Hydrocera, two whorls of five free perianth primordia develop into a less zygomorphic perianth compared with its sister genus. The androecial cap originates from five individual stamen primordia. Post-genital fusion of the upper parts of the filaments result in a filament ring below the anthers. The anthers fuse forming connivent anther-like units. The gynoecium of Hydrocera is pentamerous; it is largely synascidiate in early development. Only then is a symplicate zone formed resulting in style and stigmas. In I. omeiana, the perianth is formed as in Hydrocera. Five individual stamen primordia develop into five stamens, of which the upper part of the filaments converge with each other. The gynoecium of I. omeiana is tetramerous; it appears annular in early development.

Conclusions

Comparison of the present results with developmental data from the literature confirms the perianth morphocline hypothesis in which a congenital fusion of the parts of the perianth results in a shift from pentasepalous to trisepalous flowers. In addition, the development of the androecial cap and the gynoecium follows several distinct ontogenetic sequences within the family.  相似文献   

13.

Background and Aims

Intraspecific ploidy-level variation is an important aspect of a species'' genetic make-up, which may lend insight into its evolutionary history and future potential. The present study explores this phenomenon in a group of eastern Asian Cardamine species.

Methods

Plant material was sampled from 59 localities in Japan and Korea, which were used in karyological (chromosome counting) and flow cytometric analyses. The absolute nuclear DNA content (in pg) was measured using propidium iodide and the relative nuclear DNA content (in arbitrary units) was measured using 4,6-diamidino-2-phenylindole fluorochrome.

Key Results

Substantial cytotype diversity was found, with strikingly different distribution patterns between the species. Two cytotypes were found in C. torrentis sensu lato (4x and 8x, in C. valida and C. torrentis sensu stricto, respectively), which displays a north–south geographical pattern in Japan. Hypotheses regarding their origin and colonization history in the Japanese archipelago are discussed. In Korean C. amaraeiformis, only tetraploids were found, and these populations may in fact belong to C. valida. C. yezoensis was found to harbour as many as six cytotypes in Japan, ranging from hexa- to dodecaploids. Ploidy levels do not show any obvious geographical pattern; populations with mixed ploidy levels, containing two to four cytotypes, are frequently observed throughout the range. C. schinziana, an endemic of Hokkaido, has hexa- and octoploid populations. Previous chromosome records are also revised, showing that they are largely based on misidentified material or misinterpreted names.

Conclusions

Sampling of multiple populations and utilization of the efficient flow cytometric approach allowed the detection of large-scale variation in ploidy levels and genome size variation attributable to aneuploidy. These data will be essential in further phylogenetic and evolutionary studies.  相似文献   

14.

Background and Aims

The growth–differentiation balance hypothesis (GDBH) states that there is a physiological trade-off between growth and secondary metabolism and predicts a parabolic effect of resource availability (such as water or nutrients) on secondary metabolite production. To test this hypothesis, the response of six Patagonian Monte species (Jarava speciosa, Grindelia chiloensis, Prosopis alpataco, Bougainvillea spinosa, Chuquiraga erinacea and Larrea divaricata) were investigated in terms of total biomass and resource allocation patterns in response to a water gradient.

Methods

One-month-old seedlings were subjected to five water supply regimes (expressed as percentage dry soil weight: 13 %, 11 %, 9 %, 7 % or 5 % – field water capacity being 15 %). After 150 d, plants were harvested, oven-dried and partitioned into root, stem and leaf. Allometric analysis was used to correct for size differences in dry matter partitioning. Determinations of total phenolics (TP), condensed tannins (CT), nitrogen (N) and total non-structural carbohydrates (TNC) concentrations were done on each fraction. Based on concentrations and biomass data, contents of TP and CT were estimated for whole plants, and graphical vector analysis was applied to interpret drought effect.

Key Results

Four species (J. speciosa, G. chiloensis, P. alpataco and B. spinosa) showed a decrease in total biomass in the 5 % water supply regime. Differences in dry matter partitioning among treatments were mainly due to size variation. Concentrations of TP, CT, N and TNC varied little and the effect of drought on contents of TP and CT was not adequately predicted by the GDBH, except for G. chiloensis.

Conclusions

Water stress affected growth-related processes (i.e. reduced total biomass) rather than defence-related secondary metabolism or allocation to different organs in juvenile plants. Therefore, the results suggest that application of the GDBH to plants experiencing drought-stress should be done with caution, at least for Patagonian Monte species.  相似文献   

15.
A striking aspect of flowering plant (angiosperm) diversity is variation in flower symmetry. From an ancestral form of radial symmetry (polysymmetry, actinomorphy), multiple evolutionary transitions have contributed to instances of non-radial forms, including bilateral symmetry (monosymmetry, zygomorphy) and asymmetry. Advances in flowering plant molecular phylogenetic research and studies of character evolution as well as detailed flower developmental genetic studies in a few model species (e.g. Antirrhinum majus, snapdragon) have provided a foundation for deep insights into flower symmetry evolution. From phylogenetic studies, we have a better understanding of where during flowering plant diversification transitions from radial to bilateral flower symmetry (and back to radial symmetry) have occurred. From developmental studies, we know that a genetic programme largely dependent on the functional action of the CYCLOIDEA gene is necessary for differentiation along the snapdragon dorsoventral flower axis. Bringing these two lines of inquiry together has provided surprising insights into both the parallel recruitment of a CYC-dependent developmental programme during independent transitions to bilateral flower symmetry, and the modifications to this programme in transitions back to radial flower symmetry, during flowering plant evolution.  相似文献   

16.
Evolutionary relationships based on nucleotide variation within the D3 26S rDNA region were examined among acollection of seven Meloidogyne hapla isolates and seven isolates of M. arenaria, M. incognita, and M. javanica. Using D3A and D3B primers, a 350-bp region was PCR amplified from genomic DNA and double-stranded nucleotide sequence obtained. Phylogenetic analyses using three independent clustering methods all provided support for a division between the automictic M. hapla and the apomictic M. arenaria, M. incognita, and M. javanica. A nucleotide sequence character distinguishing M. hapla from the three apomictic species was a 3-bp insertion within the interior of the D3 region. The three apomictic species shared a common D3 haplotype, suggesting a recent branching. Single M. hapla individuals contained two different haplotypes, differentiated by a Sau3AI restriction site polymorphism. Isolates of M. javanica appeared to have only one haplotype, while M. incognita and M. arenaria maintained more than one haplotype in an isolate.  相似文献   

17.

Background and Aims

Waxy proteins are responsible for amylose synthesis in wheat seeds, being encoded by three waxy genes (Wx-A1, Wx-B1 and Wx-D1) in hexaploid wheat. In addition to their role in starch quality, waxy loci have been used to study the phylogeny of wheat. The origin of European spelt (Triticum aestivum ssp. spelta) is not clear. This study compared waxy gene sequences of a Spanish spelt collection with their homologous genes in emmer (T. turgidum ssp. dicoccum), durum (T. turgidum ssp. durum) and common wheat (T. aestivum ssp. aestivum), together with other Asian and European spelt that could be used to determine the origin of European spelt.

Methods

waxy genes were amplified and sequenced. Geneious Pro software, DNAsp and MEGA5 were used for sequence, nucleotide diversity and phylogenetic analysis, respectively.

Key Results

Three, four and three new alleles were described for the Wx-A1, Wx-B1 and Wx-D1 loci, respectively. Spelt accessions were classified into two groups based on the variation in Wx-B1, which suggests that there were two different origins for the emmer wheat that has been found to be part of the spelt genetic make-up. One of these groups was only detected in Iberian material. No differences were found between the rest of the European spelt and the Asiatic spelt, which suggested that the Iberian material had a different origin from the other spelt sources.

Conclusions

The results suggested that the waxy gene variability present in wheat is undervalued. The evaluation of this variability has permitted the detection of ten new waxy alleles that could affect starch quality and thus could be used in modern wheat breeding. In addition, two different classes of Wx-B1 were detected that could be used for evaluating the phylogenetic relationships and the origins of different types of wheat.  相似文献   

18.
Absence of the phasmid was demonstrated with the transmission electron microscope in immature third-stage (M3) and fourth-stage (M4) males and mature fifth-stage males (M5) of Heterodera schachtii, M3 and M4 of Verutus volvingentis, and M5 of Cactodera eremica. This absence was supported by the lack of phasmid staining with Coomassie blue and cobalt sulfide. All phasmid structures, except the canal and ampulla, were absent in the postpenetration second-stage juvenile (J2) of H. schachtii. The prepenetration V. volvingentis J2 differs from H. schachtii by having only a canal remnant and no ampulla. This and parsimonious evidence suggest that these two types of phasmids probably evolved in parallel, although ampulla and receptor cavity shape are similar. Absence of the male phasmid throughout development might be associated with an amphimictic mode of reproduction. Phasmid function is discussed, and female pheromone reception ruled out. Variations in ampulla shape are evaluated as phylogenetic character states within the Heteroderinae and putative phylogenetic outgroup Hoplolaimidae.  相似文献   

19.
20.

Background and Aims

Pteris (Pteridaceae), comprising over 250 species, had been thought to be a monophyletic genus until the three monotypic genera Neurocallis, Ochropteris and Platyzoma were included. However, the relationships between the type species of the genus Pteris, P. longifolia, and other species are still unknown. Furthermore, several infrageneric morphological classifications have been proposed, but are debated. To date, no worldwide phylogenetic hypothesis has been proposed for the genus, and no comprehensive biogeographical history of Pteris, crucial to understanding its cosmopolitan distribution, has been presented.

Methods

A molecular phylogeny of Pteris is presented for 135 species, based on cpDNA rbcL and matK and using maximum parsimony, maximum likelihood and Bayesian inference approaches. The inferred phylogeny was used to assess the biogeographical history of Pteris and to reconstruct the evolution of one ecological and four morphological characters commonly used for infrageneric classifications.

Key Results

The monophyly of Pteris remains uncertain, especially regarding the relationship of Pteris with Actiniopteris + Onychium and Platyzoma. Pteris comprises 11 clades supported by combinations of ecological and morphological character states, but none of the characters used in previous classifications were found to be exclusive synapomorphies. The results indicate that Pteris diversified around 47 million years ago, and when species colonized new geographical areas they generated new lineages, which are associated with morphological character transitions.

Conclusions

This first phylogeny of Pteris on a global scale and including more than half of the diversity of the genus should contribute to a new, more reliable infrageneric classification of Pteris, based not only on a few morphological characters but also on ecological traits and geographical distribution. The inferred biogeographical history highlights long-distance dispersal as a major process shaping the worldwide distribution of the species. Colonization of different niches was followed by subsequent morphological diversification. Dispersal events followed by allopatric and parapatric speciation contribute to the species diversity of Pteris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号