首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of glucose and lactose in E. coli K-12 cells has been studied using a bioelectrochemical (BEC) approach. The magnitude and the duration of the response of a BEC anode were found to be functions of the composition of nutrient media and the concentration of bacterial cells. The amount of electricity that is generated enzymatically during the metabolism of a particular substrate depends on the activity of the relevant enzymes. This suggests that the BEC approach can be used for evaluating the activity of particular enzyme systems.  相似文献   

2.
Retrovirus replication critically depends on a dynamic interplay between retroviral and host proteins. We report on the binding of the surface subunit (glycoprotein 120 (gp120)) of the human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) to the cytoplasmic C-terminus of the voltage-gated potassium channel BEC1 (brain-specific ether-a-go-go-like channel 1), an interaction that can result in the repression of BEC’s activity and the inhibition of HIV-1 particle-release. BEC1 protein was found to be expressed in T cells and macrophages, the major target cells of HIV-1. Thus, gp120/BEC1 interaction may be involved in HIV-1 life cycle and/or pathogenesis.

Structured summary

MINT-7968695: BEC1 (uniprotkb:Q9ULD8) physically interacts (MI:0915) with gp160 (uniprotkb:P04578) by anti bait coimmunoprecipitation (MI:0006)MINT-7968714: BEC1 (uniprotkb:Q9ULD8) physically interacts (MI:0915) with gp160 (uniprotkb:P04578) by anti tag coimmunoprecipitation (MI:0007)MINT-7968675: BEC1 (uniprotkb:Q9ULD8) physically interacts (MI:0915) with gp160 (uniprotkb:P04578) by pull down (MI:0096)  相似文献   

3.
The activity of arginase converting arginine into ornithine and urea is of particular interest among many factors regulating NO production in the cells. It is known that by competing with NO-synthase for common substrate (arginine), arginase can affect NO synthesis. In the present work, properties of arginase from the common frog Rana temporaria L. urinary bladder epithelial cells containing the NO-synthase were characterized, and possible contribution of arginase to regulation of NO production by epithelial cells was studied. It has been shown that the enzyme has temperature optimum in the range of 55–60°C, K M for arginine 23 mM, and V max about 10 nmole urea/mg of protein/min, and its activity was efficiently inhibited by (S)-(2-boronoethyl)-L-cysteine (BEC), an inhibitor of arginase, at concentrations from 10?6 to 10?4 M. The comparison of arginase activity in various frog tissues revealed the following pattern: liver > kidney > brain > urinary bladder (epithelium) > heart > testis. The arginase activity in isolated urinary bladder epithelial cells was 3 times higher that in the intact urinary bladder wall. To evaluate the role of arginase in regulation of NO production, the epithelial cells were cultivated in the media L-15 or 199 containing different amounts of arginine; the concentration of NO2 ?, the stable NO metabolites, was de-termined in the cultural fluid after 18–20 h of cell incubation. The vast majority of the produced nitrites are associated with NOS activity, as L-NAME, the NO inhibitor, decreased their accumulation by 77.1% in the L-15 medium and by 80% in the 199 medium. BEC (10?4 M) increased nitrite production by 18.0% ± 2.7% in the L-15 medium and by 24.4% ± 3.5% in the 199 medium (p < 0.05). The obtained data indicate a relatively high activity of arginase in the frog urinary bladder epithelium and its involvement in regulation of NO production.  相似文献   

4.
Adhesion of Candida albicans to host cells is believed to represent a fungal virulence factor and a significant step in the development of candidiasis. As C. albicans strains may differ in their in vitro adhesion ability we initiated a study to investigate whether mutant strains differ in this respect from their parent wild-type. We assessed the in vitro adhesion of C. albicans CBS562 and two mutants obtained by mutagenesis with N′-nitrosoguanidine: a histidine auxotroph, SAG5, derived from CBS562, and a respiratory-deficient strain (a petite mutant), SAR1, derived from SAG5. The adhesion was tested in vitro using two target cell systems: (1) exfoliated human buccal epithelial cells (BEC); and (2) human keratinocyte tissue line cells (HaCaT cells). Adhesion to BEC was evaluated microscopically and that to HaCaT cells by a direct ELISA technique. The results indicated a 54% reduction in adhesion to BEC for SAG5 and 30% for SAR1 as compared to the wild-type, and a 25% reduction in adhesion to HaCaT cells for SAG5 and 20% for SAR1. To verify whether the prototrophy restores the adhesion ability, we complemented the his-negative auxotroph by transforming the strain with the HIS4 gene. Then we assayed the adhesion to BEC of the complemented his-negative mutant in comparison to that of the wild-type, the his-negative mutant (SAG5) and the plasmid-cured transformant. The adhesion values of the complemented his-negative strain were similar to those of the wild-type, whereas the values of the plasmid-cured strain were similar to those of SAG5.  相似文献   

5.
The biological properties of bisquaternary ammonium salts, which are derivatives of N,N-bisdimethyl-1,2-ethanediamine (bis-CnBEC), of general formula /CnH2n+1OOCCH2(CH3)2N+CH2CH2N+(CH3)2CH2COOCnH2n+1/2Cl, were investigated (n=10, 12, 14). The interaction with model membrane was studied by differential scanning calorimetry experiments, and the apparent adiabatic molar compressibility of their solution as a function of concentration was obtained by sound velocity measurements. Their biological activities were assayed by Electrophoresis Mobility Shift, MTT proliferation, and transient transfection. All the investigated compounds interact with the DNA and are able to transfect DNA, when they are coformulated with DOPE, with an efficiency significantly greater than that of a standard commercial transfection reagent. Bis-C14BEC is the only molecule able to deliver DNA inside the cells without a helper lipid, as shown by EGFP expression, albeit with a low efficiency in comparison with a standard commercial transfection reagent. This may be due to a slightly different interaction of bis-C14BEC from bis-C10BEC and bis-C12BEC with phospholipid bilayers. Bis-C10BEC and bis-C12BEC show a slight fluidising effect, while bis-C14BEC increases stability of both the gel and the rippled gel phases.  相似文献   

6.
Four epithelial cell lines established from juvenile rat liver and selected on the basis of their capacity to prolong the lifespan of cocultured hepatocytes were compared with respect to several immunocytochemical markers (vimentin, cytokeratin 19, MAB 19C6), enzyme activities, and amino acid uptake systems. Their phenotypes were found to be quite different from that of hepatocytes and bile duct epithelial cells (BEC), but very similar among each other. In particular, a variety of functions affected by dexamethasone (DEX) or changing spontaneously in cultured hepatocytes and/or BEC, showed neither inducibility nor spontaneous changes in the four cell lines. Instead, the lines were inducible for glutamine synthetase (GS) by DEX, in contrast to hepatocytes and BEC but also to other juvenile or adult epithelial lines that did not support cocultured hepatocytes. In addition, they showed relatively high basal levels of GS activity, exceeding those found in adult epithelial cell lines and approaching the average values found for liver tissue. Basal as well as DEX-induced GS activity was reduced in the presence of newborn calf serum, while only DEX-induced but not basal activity was suppressed by glutamine.These results suggest an origin of these four juvenile epithelial cell lines different from that of hepatocytes as well as of BEC. Furthermore, they suggest the coherent acquisition of new functional properties during early phases of cultivation of these cell lines; the selective inducibility of GS by DEX and its suppression by glutamine are the most intriguing of these, because neither is found in any normal cell type present in rat liver.  相似文献   

7.
Human blood group polymorphisms are known to be determined by the expression of A, B or H antigens and the Lewis antigens. Protection against microbial infections has been associated with inheritance of polymorphisms in genes encoding and regulating the expression of ABH and Lewis antigens in bodily secretions and epithelial tissue surfaces, subsequently resulting in the presentation of different glycosylated terminal antigens on the cell surface. We investigated the role of blood group antigens in diversifying the glycosylation of buccal epithelial cells (BEC) that line the oral cavity. Specifically, we characterized and statistically evaluated the expression of histo-blood group (A, B, O) antigens on N-and O-linked glycans from BEC membrane proteins of various individuals that represented different blood group type and secretor status using a porous graphitic carbon liquid chromatography electrospray ionization mass spectrometry (PGC-LC-ESI-MS) based glycomics approach. From these BEC membrane proteins a total of 77 N-glycan and 96 O-glycan structures were structurally characterized from 19 individuals and relatively quantitated. The N-glycans from the secretor individuals did not express any A/B blood group determinants, but contained several terminal H-antigens. Apart from the non-secretors, the N-glycan profiles of BEC from all blood groups displayed similar glycan types, while varying in their relative intensities between individuals. However, multivariate analysis of the O-glycans from individuals displayed segregation patterns clearly associated with their blood group type and secretor status. In adhesion assays the oral pathogen Candida albicans showed a significantly higher interaction to blood group O type BECs relative to other blood groups.  相似文献   

8.
To test the effect of endotoxin on bronchial epithelial cells (BEC), BEC were isolated from bovine lungs and cultured in the presence of bacterial endotoxin. The BEC culture supernatant fluids were harvested, and neutrophil chemotactic activity (NCA) was determined with a blindwell chamber technique; cytotoxicity determined by lactate dehydrogenase release and BEC proliferation determined by Coulter counting. Endotoxin caused a dose- and time-dependent release of NCA from BEC cultures compared with media alone (82.3 +/- 8.1 vs 12.0 +/- 3.1 cells/high power field, p less than 0.001). To further characterize this activity, reverse phase HPLC analysis of release eicosanoid metabolites after [3H]arachidonic acid incorporation was performed. Endotoxin stimulated the release of the neutrophil chemoattractants, leukotriene B4 and 12-hydroxyeicosatetraenoic acids. Endotoxin also resulted in a dose and time dependent release of lactate dehydrogenase (42.9 +/- 4.2 vs 20.2 +/- 2.2 U/liter, p less than 0.001) although higher doses were required to cause cytotoxicity than to stimulate chemotaxis. Finally, endotoxin resulted in a dose dependent inhibition of BEC proliferation (176 x 10(3) +/- 16 x 10(3) vs 1,080 x 10(3) +/- 38 x 10(3) cells/ml measured at day 14, p less than 0.001). These data suggest that bacterial release of endotoxin may contribute to the pathophysiologic changes observed in bronchial inflammation by stimulating BEC to release NCA, denuding airway epithelium by causing cytotoxicity of BEC, and inhibiting epithelial repair by inhibiting BEC proliferation.  相似文献   

9.
It is unknown whether nutritional deficiencies affect the morphology and function of structural cells, such as epithelial cells, and modify the susceptibility to viral infections. We developed an in vitro system of differentiated human bronchial epithelial cells (BEC) grown either under selenium-adequate (Se+) or selenium-deficient (Se–) conditions, to determine whether selenium deficiency impairs host defense responses at the level of the epithelium. Se– BECs had normal SOD activity, but decreased activity of the selenium-dependent enzyme GPX1. Interestingly, catalase activity was also decreased in Se– BECs. Both Se– and Se+ BECs differentiated into a mucociliary epithelium; however, Se– BEC demonstrated increased mucus production and increased Muc5AC mRNA levels. This effect was also seen in Se+ BEC treated with 3-aminotriazole, an inhibitor of catalase activity, suggesting an association between catalase activity and mucus production. Both Se– and Se+ were infected with influenza A/Bangkok/1/79 and examined 24 h postinfection. Influenza-induced IL-6 production was greater while influenza-induced IP-10 production was lower in Se– BECs. In addition, influenza-induced apoptosis was greater in Se– BEC as compared to the Se+ BECs. These data demonstrate that selenium deficiency has a significant impact on the morphology and influenza-induced host defense responses in human airway epithelial cells.  相似文献   

10.
The metabolic response of host cells, in particular of primary mammalian cells, to bacterial infections is poorly understood. Here, we compare the carbon metabolism of primary mouse macrophages and of established J774A.1 cells upon Listeria monocytogenes infection using 13C-labelled glucose or glutamine as carbon tracers. The 13C-profiles of protein-derived amino acids from labelled host cells and intracellular L. monocytogenes identified active metabolic pathways in the different cell types. In the primary cells, infection with live L. monocytogenes increased glycolytic activity and enhanced flux of pyruvate into the TCA cycle via pyruvate dehydrogenase and pyruvate carboxylase, while in J774A.1 cells the already high glycolytic and glutaminolytic activities hardly changed upon infection. The carbon metabolism of intracellular L. monocytogenes was similar in both host cells. Taken together, the data suggest that efficient listerial replication in the cytosol of the host cells mainly depends on the glycolytic activity of the hosts.  相似文献   

11.
ObjectiveTo evaluate virulence factors involved in the adhesion process, such as cell surface hydrophobicity (CSH), adherence to plastic capacity, adherence capacity to buccal epithelial cells (BEC), and biofilm formation, in 17 strains of C. albicans isolated from bronchial aspirates of critically ill patients.MethodThe CSH of the strains of C. albicans was determined using the MATH method, a microbial adhesion to hydrocarbons test. The study of adherence to plastic was performed in microtitre plates in accordance with Christensen's technique. Biofilm formation was studied in polystyrene microtitre plates, according to the method of Ramage. Adherence to BEC was evaluated by quantifying the percentage of adhered yeasts to cells.ResultsAll the strains studied showed factors directly involved in adhesion, with variability in the degree of expression among them. Medium-high levels of CSH were found in 52.9% of the strains. The percentage of strains with high values in adherence to plastic was 35.3%. The most hydrophobic strains were the most adherent to plastic, with a correlation coefficient of 0.76. Of the 12 biofilm-producing strains, 6 were high producers. These strains had also high levels of CSH and adherence to plastic, with significant results. All the strains studied adhered to BEC, with results ranging widely from 45 to 157 yeasts/100 BEC, with no significant correlation with the rest of the parameters studied, although CSH was seen to be an indispensable prior requisite for adherence to cells.ConclusionCSH is a variable characteristic in C. albicans and is directly related to adherence to plastic and biofilm formation. Ease in evaluating CSH permits its quantification, and could be used as an indicator of the presence of other determinants of pathogenicity.  相似文献   

12.
Factors determining lymphatic differentiation in the adult organism are not yet well characterized. We have made the observation that mixed primary cultures of dermal blood endothelial cells (BEC) and lymphatic endothelial cells (LEC) grown under standard conditions change expression of markers during subculture: After passage 6, they uniformly express LEC-specific markers Prox-1 and podoplanin. Using sorted cells, we show that LEC but not BEC constitutively express IL-3, which regulates Prox-1 and podoplanin expression in LEC. The addition of IL-3 to the medium of BEC cultures induces Prox-1 and podoplanin. Blocking IL-3 activity in LEC cultures results in a loss of Prox-1 and podoplanin expression. In conclusion, endogenous IL-3 is required to maintain the LEC phenotype in culture, and the addition of IL-3 to BEC appears to induce transdifferentiation of BEC into LEC.  相似文献   

13.
Relaxin is an insulin-like serum protein secreted during pregnancy and found in many tissues, including the lung. Relaxin is reported to stimulate epithelial cell proliferation, but the effects of relaxin on airway epithelium are unknown. We tested the hypothesis that relaxin would stimulate the increased migration of bronchial epithelial cells (BEC) in response to wounding. Using monolayers of BEC in a wound-healing model, relaxin augmented wound closure with maximal closure occurring at 12 hr (1 micro M). Unlike cytokines, relaxin did not stimulate increased BEC interleukin-8 (IL-8) release. Relaxin caused a significant stimulation of ciliary beat frequency (CBF) in BEC. Because protein kinase (PKA) activation increases CBF and relaxin can elevate intracellular cAMP levels, we measured PKA activity in BEC treated with relaxin. Relaxin increased PKA activity 3-4 fold by approximately 4 hr, with a return to baseline levels by 8-10 hr. Relaxin-stimulated PKA activity differs temporally from the rapid (1 hr) beta-adrenergic activation of PKA in BEC. These data suggest that relaxin augments epithelial repair by increasing airway cell migration and CBF via PKA-dependent mechanisms.  相似文献   

14.
The effect of pre-incubation of either Candida or buccal epithelial cells (BEC) with different concentrations of aqueous garlic extract (AGE) was investigated, as well as the effect of mouth rinse with AGE on the adhesion of yeast to BEC. Adhesion of Candida spp. to BEC was significantly reduced after both short and long time exposure of yeast to AGE. A similar inhibition of adherence was observed upon preincubation of BEC with AGE. The adherence-inhibition activity of AGE treatment was antagonized by thiols such as L-cysteine, glutathione and 2-mercaptoethanol. In addition, germ-tube formation was suppressed when C. albicans cells were pretreated with AGE. There was a significant reduction in the adherence of yeasts to BEC collected immediately or 15 min after an oral rinse with AGE. No statistical significance in the adhesion of BEC collected 30 min after oral rinse with AGE and control BEC was observed. The diminished adherence of C. albicans to BEC after exposure to various concentrations of garlic may have clinical relevance.  相似文献   

15.
The effect of pre-incubation of either Candida or buccal epithelial cells (BEC) with different concentrations of aqueous garlic extract (AGE) was investigated, as well as the effect of mouth rinse with AGE on the adhesion of yeast to BEC. Adhesion of Candida spp. to BEC was significantly reduced after both short and long time exposure of yeast to AGE. A similar inhibition of adherence was observed upon pre-incubation of BEC with AGE. The adherence-inhibition activity of AGE treatment was antagonized by thiols such as l-cysteine, glutathione and 2-mercaptoethanol. In addition, germ-tube formation was suppressed when C. albicans cells were pretreated with AGE. There was a significant reduction in the adherence of yeasts to BEC collected immmediately or 15 min after an oral rinse with AGE. No statistical significance in the adhesion of BEC collected 30 min after oral rinse with AGE and control BEC was observed. The diminished adherence of C. albicans to BEC after exposure to various concentrations of garlic may have clinical relevance.  相似文献   

16.
17.
18.
Qin XQ  Xiang Y  Luo ZQ  Zhang CQ  Sun XH 《生理学报》2000,52(6):519-521
为验证细胞外基质成分纤维连接蛋白(fibronectin,Fn)对气道上皮细胞具有调控作用,本文用硝酸还原酶法测定了原代培养的兔支气管上皮细胞(bronchial epithelial cells,BEC)的一氧化氮(nitric oxide,NO)释放,并测定了细胞内一氧化氮合酶(nitric oxide synthesase,NOS)活性,观察纤维连接蛋白、精-甘-天冬氨酸肽(Arg-Gly-  相似文献   

19.
The activity of arginase converting arginine into ornithine and urea is of particular interest among many factors regulating NO production in the cells. It is known that by competing with NO-synthase for common substrate, arginase can affect the NO synthesis. In the present work, the properties of arginase from the frog Rana temporaria L. urinary bladder epithelial cells possessing the NO-synthase activity were characterized, and possible contribution of arginase to regulation of NO production by epithelial cells was studied. It has been shown that the enzyme had the temperature optimum in the range of 55-60 degrees C, K(m) for arginine 23 mM, and V(max) about 10 nmol urea/mg protein/min, and its activity was effictively inhibited by (S)-(2-boronoethyl)-L-cysteine (BEC), an inhibitor of arginase, at concentrations from 10(-6) to 10(-4) M. The comparison of arginase activity in various frog tissues revealed the following pattern: liver > kidney > brain > urinary bladder (epithelium) > heart > testis. The arginase activity in the isolated urinary bladder epithelial cells was 3 times higher than that in the intact urinary bladder. To evaluate the role of arginase in the regulation of NO production, epithelial cells were cultivated in the media L-15 or 199 containing different amounts of arginine; the concentration of NO2-, the stable NO metabolite, was determined in the culture fluid after 18-20 h of cells incubation. The vast majority of the produced nitrites are associated with the NOS activity, as L-NAME, the NOS-inhibitor, decreased their accumulation by 77.1% in the L-15 medium and by 80% in 199 medium. BEC (10(-4) M) increased the nitrite production by 18.0 % +/- 2.7 in the L-15 medium and by 24.2 +/- 3.5 in the 199 medium (p < 0.05). The obtained data indicate a relatively high arginase activity in the frog urinary bladder epithelium and its involvement in regulation of NO production by epithelial cells.  相似文献   

20.
Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号