首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy metal pollution is a prevalent and critical environmental concern. Its rampancy is attributed to indiscriminate anthropogenic activities. Several technologies including biosorption have been continuously researched upon to overcome the limitations of the conventional method of treatments in removal of heavy metals. Biosorption technology involves the application of a biomass in its nonliving form. Pteris vittata L., a pteridophyte, considered as an invasive weed was investigated in the present study as a potential decontaminant of toxic metals, Cr(VI) and Cd(II). The adsorption capacity of the biosorbent for Cr(VI) and Cd(II) under equilibrium conditions was investigated. The morphology, elemental composition, functional groups, and thermal stability of the biosorbent before and after metal loading were evaluated. At 303?K and an equilibrium time of 120?min, the maximum loading of Cr(VI) on the biosorbent was estimated to be 166.7?mg/g at pH 2 and Cd(II) to be 31.3?mg/g at pH 6. Isotherm models, kinetic studies, and thermodynamic studies indicated the mechanisms, chemisorption, ion exchange and intraparticle diffusion, controlling the Cr(VI) and Cd(II) uptake, respectively. The interactive effect of multi-metal ions in binary component systems was synergistic for Cd(II) uptake. The results validate the toxic metal removal potency of the biosorbent.  相似文献   

2.
The removal of As(III) and As(V) from aqueous solutions by waste materials   总被引:1,自引:0,他引:1  
The use of different waste materials such as Atlantic Cod fish scale, chicken fat, coconut fibre and charcoal in removing arsenic [As(III) and As(V)] from aqueous solutions was investigated. Initial experimental runs, conducted for both As(III) and As(V) with the aforementioned materials, demonstrated the potential of using Atlantic Cod fish scale in removing both species of arsenic from aqueous streams. Therefore, the biosorbent fish scale was selected for further investigations and various parameters such as residence time, adsorbent dose, initial concentration of adsorbate, grain size of the adsorbent and pH of the bulk phase were studied to establish optimum conditions. The maximum adsorption capacity was observed at pH value 4.0. The equilibrium adsorption data were interpreted by using both Freundlich and Langmuir models. Rapid small-scale column tests (RSSCT) were also performed to determine the breakthrough characteristics of the arsenic species with respect to packed biosorbent columns.  相似文献   

3.
The potential of nonliving biomass of Hydrilla verticillata to adsorb Pb(II) from an aqueous solution containing very low concentrations of Pb(II) was determined in this study. Effects of shaking time, contact time, biosorbent dosage, pH of the medium, and initial Pb(II) concentration on metal-biosorbent interactions were studied through batch adsorption experiments. Maximum Pb(II) removal was obtained after 2 h of shaking. Adsorption capacity at the equilibrium increased with increasing initial Pb(II) concentration, whereas it decreased with increasing biosorbent dosage. The optimum pH of the biosorption was 4.0. Surface titrations showed that the surface of the biosorbent was positively charged at low pH and negatively charged at pH higher than 3.6. Fourier transform infrared (FT-IR) spectra of the biosorbent confirmed the involvement of hydroxyl and C?O of acylamide functional groups on the biosorbent surface in the Pb(II) binding process. Kinetic and equilibrium data showed that the adsorption process followed the pseudo-second-order kinetic model and both Langmuir and Freundlich isothermal models. The mean adsorption energy showed that the adsorption of Pb(II) was physical in nature. The monolayer adsorption capacity of Pb(II) was 125 mg g?1. The desorption of Pb(II) from the biosorbent by selected desorbing solutions were HNO3 > Na2CO3 > NaOH > NaNO3.  相似文献   

4.
The novel biosorbent silk cotton hull, an agrowaste material, has been successfully utilized for the removal of cadmium(II) from aqueous solutions. The adsorption of cadmium onto three kinds of activated biosorbent has been studied: modified by concentrated sulfuric acid alone (AC), a mixture of concentrated sulfuric acid and hydrogen peroxide (AC1), and a mixture of concentrated sulfuric acid and ammonium persulfate (AC2). The adsorption studies were carried out to optimize the process parameters such as pH, adsorbent dosage, contact time, and initial metal ion concentration. Maximum metal removal was observed at pH 7.0 with a contact time of 90 min at stirring speed of 200 rpm with an adsorbent dosage of 4.0 g L?1. The sorption isotherms were studied using the Langmuir, Freundlich, and Tempkin isotherm models. The maximum adsorption capacities were 100.00, 142.86, and 142.87 mg g?1 for AC, AC1, and AC2, respectively. Accordingly, the surface modification of the activated carbons AC1 and AC2 enhanced cadmium removal greatly. The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. The sorption mechanism is discussed in terms of the activated surface properties. A relationship between the oxygen content and sorption was found in this novel material. Desorption experiments were carried out using hydrochloric acid with a view to generate the spent adsorbent and to recover the adsorbed metal ions.  相似文献   

5.
This study was conducted in order to understand the mechanism of Cd and Pb adsorption in aqueous solutions by raw and modified saw dust (SD) of Alstonia macrophylla. The biosorbent was characterized by Boehm titration, specific surface area, scanning electron microscopy (SEM), X-ray energy dispersion (EDAX), and Fourier transform infrared (FTIR) analyses. SD was treated using organic acids and bases. Batch studies were conducted for raw and modified SD to determine the effect of initial concentration, pH, ionic strength, and contact time on metal adsorption. The specific surface area and total basic and acidic groups of SD were 77 m2/g and 1521 and 2312 μmol/g, respectively. The adsorption of both metals onto SD was pH dependent. No ionic strength dependency was observed in adsorption of Cd and Pb at pH >6, indicating inner sphere surface complexation. Monolayer adsorption is dominant in both metal sorptions by SD. Furthermore, there is no competition between metals on adsorption and raw SD was found to be suitable for removal of Cd and Pb as compared to organic acid– or base-treated SD. Maximum adsorption capacity of SD for Cd and Pb were 30.6 and 204.2 mg/g, respectively. Results indicate that the A. macrophylla SD can be considered as a potential material for metal ion removal from wastewater.  相似文献   

6.
郭伟  李钧敏  胡正华 《生态学报》2012,32(1):151-158
研究表明克隆整合可以显著提升异质环境中克隆植物的生长,然而当克隆植物遭受均质环境压力时,整合对植物生长影响的研究相对较少。本文以典型入侵克隆植物空心莲子草(Alternanthera philoxeroides)为例,研究均质环境压力酸雨和采食模拟胁迫对空心莲子草生长的影响,以及克隆整合在空心莲子草适应不利环境过程中所起的作用。酸雨设3种浓度梯度:pH值3.5 、pH值4.5和 pH值6.5(对照);采食设3种水平:不去叶、去叶50%和去叶90%;整合水平:匍匐茎切断和连接。结果表明:无论保持或切断匍匐茎的连接,酸雨处理都不影响空心莲子草生物量。当保持匍匐茎连接时,pH值4.5酸雨处理增加了空心莲子草匍匐茎长度和分株数目,因此,低度酸雨可能对空心莲子草生长有一定的促进作用。同样,无论匍匐茎是否被切断,采食处理都显著降低了空心莲子草克隆片段生物量,而显著增加了叶片数目。当切断匍匐茎连接时,采食处理使空心莲子草分株数目显著增加。本文得出的结论是:空心莲子草能较好地适应酸雨和采食的环境压力,当空心莲子草全部克隆分株遭受均质环境胁迫时,克隆整合并不能显著改善它的生长。  相似文献   

7.
The generation of layer-by-layer silicate-chitosan composite biosorbent was studied. The films were evaluated on its stability regarding the polymer leakage and its capability in the removal of Cd(II), Cr(III) and Cr(VI) from an aqueous solution. SEM, EDAX and ATR-IR techniques were applied for material characterization. Silicate-chitosan films with a final layer of silicate demonstrated chitosan retention and had better sorption capacities than those without it. For metal species, such as Cd(II) and Cr(III), the greatest adsorption was obtained when the pH of the solution was 7. When Cr(VI) was evaluated, pH 4 was the optimal for its adsorption. Langmuir and Freundlich isotherms were modeled for the equilibrium data. An 80% of the adsorbed metal was recovered by HNO(3) incubation. This non-covalent immobilization method allowed chitosan surface retention and did not affect its adsorption properties. The use of a coated surface would facilitate sorbent removal from medium after adsorption.  相似文献   

8.
Multiple microorganisms directly or treated with NaOH were immobilized by using Ca-alginate embedding to form biosorbents I and II, successively. The biosorption behaviors of biosorbents I and II for Pb(II) from aqueous solution were investigated in a batch system. Effects of solution pH, initial metal concentration, biosorbent dosage, contact time, temperature, and ionic strength on the adsorption process were considered to study the biosorption equilibrium, kinetics, thermodynamics, and mechanism of Pb(II) ion adsorption on the 2 types of biosorbents. The results showed that the adsorption capacity of biosorbent II for Pb(II) was higher than that of biosorbent I, and biosorbent II had a faster adsorption rate for Pb(II) ions. According to FTIR spectra, the carboxyl, amine, and hydroxyl groups on the biomass surface were involved in the biosorption of Pb(II). EDX analysis showed that ion exchange may be involved in the biosorption process, and the morphology observed by SEM micrograph of biosorbent I was completely different from that of biosorbent II. Desorption and regeneration experiments showed that the 2 types of biosorbents could be reused for 3 biosorption-desorption cycles without significant loss of their initial biosorption capacities.  相似文献   

9.
The study explores utilization of waste cyanobacterial biomass of Nostoc linckia from a lab-scale hydrogen fermentor for the biosorption of Cr(VI) from aqueous solution. The biomass immobilized in alginate beads was used for removal of the metal in batch mode optimizing the process conditions adopting response surface methodology (RSM). Kinetic studies were done to get useful information on the rate of chromium adsorption onto the cyanobacterial biomass, which was found to follow pseudo second-order model. Four important process parameters including initial metal concentration (10-100 mg/L), pH (2-6), temperature (25-45 °C) and cyanobacterial dose (0.1-2.0 g) were optimized to obtain the best response of Cr(VI) removal using the statistical Box-Behnken design. The response surface data indicated maximum Cr(VI) biosorption at pH 2-4 with different initial concentrations of the metal in the aqueous solution. The biosorbent could remove 80-90% chromium from solutions with initial metal concentration of 10-55 mg/L. Involvement of the surface characteristics of the biomass was studied through its scanning electron micrographs and Fourier transform infrared (FTIR) analysis.  相似文献   

10.
The potential use of biosorbent prepared from an indigenously isolated cyanobacterium, Lyngbya putealis, for the removal of copper from aqueous solution has been investigated under optimized conditions in this study. Batch mode experiments were performed to determine the adsorption equilibrium and kinetic behavior of copper in aqueous solution allowing the computation of kinetic parameters and maximum metal adsorption capacity. Influences of other parameters like initial metal ion concentration (10-100 mg l−1), pH (2-8) and biosorbent dose (0.1-1.0 g/100 ml) on copper adsorption were also examined, using Box-Behnken design matrix. Very high regression coefficient between the variables and the response (R2 = 0.9533) indicates excellent evaluation of experimental data by second order polynomial regression model. The response surface method indicated that 40-50 mg l−1 initial copper concentration, 6.0-6.5 pH and biosorbent dose of 0.6-0.8 g/100 ml were optimal for biosorption of copper by biosorbent prepared from L. putealis. On the basis of experimental results and model parameters, it can be inferred that the biosorbent which has quite high biosorption capacity can be utilized for the removal of copper from aqueous solution.  相似文献   

11.
Biosorption efficiency of natural orange peel (NOP) and charred orange peel (COP) was examined for the immobilization of arsenate (As(V)) in aqueous environments using batch sorption experiments. Sorption experiments were carried out as a function of pH, time, initial As(V) concentration and biosorbent dose, using NOP and COP (pretreated with sulfuric acid). Arsenate sorption was found to be maximum at pH 6.5, with higher As(V) removal percentage (98%) by COP than NOP (68%) at 4 g L?1 optimum biosorbent dose. Sorption isotherm data exhibited a higher As(V) sorption (60.9 mg g?1) for COP than NOP (32.7 mg g?1). Langmuir model provided the best fit to describe As(V) sorption. Fourier transform infrared spectroscopy and scanning electron microscopy combined with energy dispersive X-ray spectroscopy analyses revealed that the –OH, –COOH, and –N-H surface functional groups were involved in As(V) biosorption and the meso- to micro-porous structure of COP sequestered significantly (2-times) higher As(V) than NOP, respectively. Arsenate desorption from COP was found to be lower (10%) than NOP (26%) up to the third regeneration cycle. The results highlight that this method has a great potential to produce unique ‘charred’ materials from the widely available biowastes, with enhanced As(V) sorption properties.  相似文献   

12.
Cross-linked magnetic chitosan anthranilic acid glutaraldehyde Schiff's base (CAGS) was prepared for adsorption of both As(V) and Cr(VI) ions and their determination by ICP-OES. Prepared cross-linked magnetic CAGS was investigated by means of SEM, FTIR, wide angle X-ray diffraction (WAXRD) and TGA analysis. The adsorption properties of cross-linked magnetic CAGS resin toward both As(V) and Cr(VI) were evaluated. Various factors affecting the uptake behavior such as pH, temperature, contact time, initial concentration of metal ions, effect of other ions and desorption were studied. The equilibrium was achieved after about 110 min and 120 min for As(V) and Cr(VI), respectively at pH = 2. The adsorption kinetics followed the mechanism of the pseudo-second order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 58.48 and 62.42 mg/g for both Cr(VI) and As(V), respectively. Cross-linked magnetic CAGS displayed higher adsorption capacity for Cr(VI). The adsorption capacity of the metal ions increased with increasing temperature under optimum conditions in case of Cr(VI), but decreased in case of As(V). The metal ion-loaded cross-linked magnetic CAGS were regenerated with an efficiency of greater than 88% using 0.2 M sodium hydroxide (NaOH).  相似文献   

13.
Alligator weed (Alternanthera philoxeroides) is a stoloniferous, amphibious and perennial herb which has invaded many parts of the world and led to serious environmental and ecological problems. In order to exploit cheap carbon source for poly(3-hydroxybutyrate) (PHB) production, alligator weed hydrolysates were prepared by acid and enzyme treatment and used for PHB production via Cupriavidus necator. The bacterium utilized alligator weed enzymatic hydrolysate and produced the PHB concentration of 3.8 ± 0.2 g/L at the conditions of pH 7.0, 27.5°C, 1.5 g/L of nitrogen source, and 25 g/L of carbon source, this exceeded the value of 2.1 ± 0.1 g/L from acid hydrolysate media at the same conditions. In order to obtain the optimum conditions of PHB production, response surface methodology was employed which improved PHB content. The optimum conditions for PHB production are as follows: carbon source, 34 g/L; nitrogen source, 2 g/L; pH, 7; temperature, 28°C. After 72 hr of incubation, the bacterium produced 8.5 g/L of dry cell weight and 4.8 g/L of PHB. The PHB was subjected to Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and Molecular weight analysis and found the melting temperature, number average molecular mass, and polydispersity were 168.20°C, 185 kDa, and 2.1, respectively.  相似文献   

14.
Biosorption of heavy metals from aqueous solutions with tobacco dust   总被引:9,自引:0,他引:9  
Qi BC  Aldrich C 《Bioresource technology》2008,99(13):5595-5601
A typical lignocellulosic agricultural residue, namely tobacco dust, was investigated for its heavy metal binding efficiency. The tobacco dust exhibited a strong capacity for heavy metals, such as Pb(II), Cu(II), Cd(II), Zn(II) and Ni(II), with respective equilibrium loadings of 39.6, 36.0, 29.6, 25.1 and 24.5 mg of metal per g of sorbent. Moreover, the heavy metals loaded onto the biosorbent could be released easily with a dilute HCl solution. Zeta potential and surface acidity measurements showed that the tobacco dust was negatively charged over a wide pH range (pH > 2), with a strong surface acidity and a high OH adsorption capacity. Changes in the surface morphology of the tobacco dust as visualized by atomic force microscopy suggested that the sorption of heavy metal ions on the tobacco could be associated with changes in the surface properties of the dust particles. These surface changes appeared to have resulted from a loss of some of the structures on the surface of the particles, owing to leaching in the acid metal ion solution. However, Fourier transform infrared spectroscopy (FTIR) showed no substantial change in the chemical structure of the tobacco dust subjected to biosorption. The heavy metal uptake by the tobacco dust may be interpreted as metal–H ion exchange or metal ion surface complexation adsorption or both.  相似文献   

15.
An arsenic biosorbent comprising neem leaves (NL) and MnFe2O4 particles was developed and its removal potential was investigated. Physicochemical analysis of the NL/MnFe2O4 composite (MNL) was performed for the Brunauer, Emmett and Teller surface area, Fourier transform infrared spectra (FT-IR), and scanning electron microscopy–Energy-dispersive X-ray (EDX). The following parameters were optimized: pH, biosorbent dose, contact time, temperature, and initial arsenic concentration. The optimum pH values achieved for biosorption of As(III) and As(V) were 7.0 and 4.0, respectively, when the equilibrium time was 110 minutes for both. MNL was found to be efficient with 85.217% and 88.154% biosorption efficiency at a concentration of 50 mg/L of As(III) or As(V) solution, respectively. This was also proved by the FT-IR study of arsenic-loaded biosorbent. For establishing the best suitable correlation for the equilibrium curves exploiting the procedure of the nonlinear regression for curve fitting analysis, isotherm studies were conducted for As(III) and As(V) using 30 isotherm models. The pattern of biosorption fitted well with Brouers–Sotolongo isotherm model for As(III) and Langmuir–Freundlich as well as Sips isotherm models for As(V). Dubinin–Radushkevich (D-R) isotherm studies specified that ion exchange might play a significant role. The influence of various co-existing ions at different concentrations was examined. Desorption study was performed using various concentrations of NaOH solution.  相似文献   

16.
Abstract: Fungal mycelial by-products from fermentation industries present a considerable affinity for soluble metal ions (e.g. Zn, Cd, Ni, Pb, Cr, Ag) and could be used in biosorption processes for purification of contaminated effluents. In this work the influence of pH on sorption parameters is characterized by measuring the isotherms of five heavy metals (Ni, Zn, Cd, Ag and Pb) with Rhizopus arrhizus biomass under pH-controlled conditions. The maximum sorption capacity for lead was observed at pH 7.0 (200 mg g-l), while silver uptake was weakly affected. The stability of metal-biosorbent complexes is regularly enhanced by pH neutralization, except for lead. A transition in sorption mechanism was observed above pH 6.0. In addition, comparison of various industrial fungal biomasses ( R. arrhizus, Mucor miehei and Penicillium chrysogenum indicated important variations in zinc-binding and buffering properties (0.24, 0.08 and 0.05 mmol g−l, respectively). Without control, the equilibrium pH (5.8, 3.9 and 4.0) is shown to be related to the initial calcium content of the biosorbent, pH neutralization during metal adsorption increases zinc sorption in all fungi (0.57, 0.52 and 0.33 mmol g-l) but an improvement was also obtained (0.34, 0.33 and 0.10 mmol g−1) by calcium saturation of the biomass before heavy metal accumulation. Breakthrough curves of fixed bed biosorbent columns demonstrated the capacity of the biosorbent process to purify zinc and lead solutions in continuous-flow systems, and confirmed the necessity for cationic activation of the biosorbent before contact with the heavy-metal solution.  相似文献   

17.
The use of dried and re-hydrated biomass of the seagrass Posidonia oceanica was investigated as an alternative and –low-cost biomaterial for removal of vanadium(III) and molybdenum(V) from wastewaters. Initial characterisation of this biomaterial identified carboxylic groups on the cuticle as potentially responsible for cation sorption, and confirmed the toxic-metal bioaccumulation. The combined effects on biosorption performance of equilibrium pH and metal concentrations were investigated in an ideal single-metal system and in more real-life multicomponent systems. There were either with one metal (vanadium or molybdenum) and sodium nitrate, as representative of high ionic strength systems, or with the two metals (vanadium and molybdenum). For the single-metal solutions, the optimum was at pH 3, where a significant proportion of vanadium was removed (ca. 70%) while there was ca. 40% adsorption of molybdenum. The data obtained from the more real-life multicomponent systems showed that biosorption of one metal was improved both by the presence of the other metal and by high ionic strength, suggesting a synergistic effect on biosorption rather than competition. There data ware used for the development of a simple multi-metal equilibrium model based on the non-competitive Langmuir approach, which was successfully fitted to experimental data and represents a useful support tool for the prediction of biosorption performance in such real-life systems. Overall, the results suggest that biomass of P. oceanica can be used as an efficient biosorbent for removal of vanadium(III) and molybdenum(V) from aqueous solutions. This process thus offers an eco-compatible solution for the reuse of the waste material of leaves that accumulate on the beach due to both human activities and to storms at sea.  相似文献   

18.
This study investigated the application of Potamogeton pectinatus for Ni(II)-ions biosorption from aqueous solutions. FTIR spectra showed that the functional groups of –OH, C–H, –C = O, and –COO– could form an organometallic complex with Ni(II)-ions on the biomaterial surface. SEM/EDX analysis indicated that the voids on the biosorbent surface were blocked due to Ni(II)-ions uptake via an ion exchange mechanism. For Ni(II)-ions of 50 mg/L, the adsorption efficiency recorded 63.4% at pH: 5, biosorbent dosage: 10 g/L, and particle-diameter: 0.125–0.25 mm within 180 minutes. A quadratic model depicted that the plot of removal efficiency against pH or contact time caused quadratic-linear concave up curves, whereas the curve of initial Ni(II)-ions was quadratic-linear convex down. Artificial neural network with a structure of 5 – 6 – 1 was able to predict the adsorption efficiency (R2: 0.967). The relative importance of inputs was: initial Ni(II)-ions > pH > contact time > biosorbent dosage > particle-size. Freundlich isotherm described well the adsorption mechanism (R2: 0.974), which indicated a multilayer adsorption onto energetically heterogeneous surfaces. The net cost of using P. pectinatus for the removal of Ni(II)-ions (4.25 ± 1.26 mg/L) from real industrial effluents within 30 minutes was 3.4 $USD/m3.  相似文献   

19.
空心莲子草是我国2003年公布的第一批外来入侵物种。为了进一步了解该植物的入侵机制,采集湖北咸宁、仙桃和武汉三地的土样,采用土壤脂肪酸甲酯谱图分析的方法探讨该植物入侵对土壤微生物的影响。结果显示:空心莲子草入侵后土壤可培养细菌、真菌的数量显著增加,而放线菌的数量显著下降。脂肪酸分析表明土壤微生物群落结构发生一定程度的改变,但其变化因土壤的不同而有差异。  相似文献   

20.
陆生生境中喜旱莲子草的生长模式   总被引:1,自引:0,他引:1  
喜旱莲子草(Alternanthera philoxeroides)原产南美洲, 后被引入到北美洲、大洋洲、东南亚和中国等地, 成为一个世界性的外来入侵种。对喜旱莲子草陆生种群的有效控制一直是一个难题。本文中通过种植实验建立了陆生生境中喜旱莲子草主枝长、生物量、叶面积和斑块面积等的生长模型。结果表明: (1)喜旱莲子草的主枝长、生物量、叶面积和斑块面积等均表现为指数式生长, 其日增长率(%)分别为4.28、11.27、11.59和8.67。(2)喜旱莲子草的地上重(x)-地下根茎重(y)的异速生长指数b约为3/4(01), 即总重和叶面积相对于主枝长呈二次幂增长, 由此可进一步推出总重和叶面积与斑块面积成正比; 生物量-叶面积的异速生长指数b约为1, 为等速生长(b=1), 即单位生物量所支持的叶面积不随植株大小的变化而变化(冠层恒定性)。其叶面积比为88.24 cm2/g, 比叶面积为287.97 cm2/g。通过本研究期望对喜旱莲子草陆生局域斑块的生长进行预测, 同时为进一步建立其控制模型提供基础数据, 为制定经济有效的控制对策提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号