共查询到20条相似文献,搜索用时 0 毫秒
1.
Hypoxoside is a norlignan diglucoside present in the corms of African potato, Hypoxis hemerocallidea, used as a popular African traditional medicine for its nutritional and immune boosting properties. A specific analytical method employing capillary zone electrophoresis has been developed and validated for the quantitative determination of this analyte. Sulfafurazole was used as internal standard, and electrophoretic separation of both analytes could be achieved within 12 min. Linearity of the method was established within the range 5-60 microg/mL and provided a high degree of accuracy (100 +/- 3%). The recovery of the method was found to be 100 +/- 5% and the RSDs of the intra- and inter-day precision were better than 5.19 and 2.52%, respectively. The limits of detection and quantification were calculated to be 0.5 and 2 microg/mL, respectively. The described method was used for the analysis and quality control of two commercially available products containing African potato. The method can also be used to determine product stability since it could separate the hypoxoside peak from its degraded products obtained from degradation studies. 相似文献
2.
3.
Vijayakumar Baksam Saritha N Vasundara Reddy Pocha Veera Babu Chakka Ravindra Reddy Ummadi Pramod Kumar 《Chirality》2020,32(9):1208-1219
Reverse-phase high-performance liquid chromatography method has been developed for the determination of brivaracetam stereoisomeric impurities such as (R,S)-brivaracetam, (R,R)-brivaracetam, and (S,S)-brivaracetam with good resolution using the chiral column, Chiral PAK IG-U (100 × 3.0 mm; 1.6 μm). The method is simple, stability-indicating, and compatible with LC–MS. The separation was achieved with the mobile phase consisted of 10 mM ammonium bicarbonate along with acetonitrile in an isocratic mode. The column temperature and wavelength were monitored at 40°C and 215 nm, respectively. The method showed adequate specificity, sensitivity, linearity, accuracy, precision, and robustness inline to ICH tripartite guidelines. The limit of detection and quantification limits were 0.3 and 0.8 μg ml−1, respectively, for all stereoisomeric impurities and brivaracetam. The developed method was found to be linear over the concentration range of 0.8–5.6 μg ml−1 for stereoisomeric impurities with a correlation coefficient >0.999. The method was precise (%RSD < 5.0), robust, and accurate (with 85%–115% recovery). The values of retention times of stereoisomeric impurities, (R,S)-brivaracetam, (R,R)-brivaracetam, and (S,S)-brivaracetam, were 4.9, 5.4, and 6.6 min, respectively, and resolution among the impurities were 2.0, 3.3, and 4.7, respectively. In addition, forced degradation studies were performed to prove that method was stability-indicating. The enrichment of isomeric impurity, (R,R)-brivaracetam, was observed under basic stress conditions of brivaracetam and proposed a plausible mechanism to enhance that isomeric impurity. As well, a good separation among brivaracetam and its stereoisomeric impurity peaks was observed in the presence of degradation products and process-related impurities. 相似文献
4.
A new rapid and simple stability‐indicating spectrofluorimetric method has been developed for the determination of two irreversible tyrosine kinase inhibitors (TKIs), neratinib (NER) and pelitinib (PEL). The method is based upon measurement of the native fluorescence intensity of both drugs at λex 270 nm in aqueous borate buffer solutions (pH 10.5). The fluorescence intensity recorded at 545 nm (NER) and 465 nm (PEL) were rectilinear over the concentration range of 0.1–10 μg/mL for both drugs with a high correlation coefficient (r > 0.999). The proposed method provided low limits of detection and of quantitation of 0.07, 0.11 μg/mL (NER) and 0.02, 0.05 μg/mL (PEL), respectively. The method was successfully applied for the determination of NER and PEL in bulk powder. The proposed methods were fully validated as per the International Conference on Harmonisation (ICH) guidelines. The application of the method was extended to stability studies of both NER and PEL under different forced‐degradation conditions (acidic‐induced, base‐induced, oxidative, wet heat, and photolytic degradation). Moreover, the kinetics of the base‐induced and oxidative degradation of both drugs was investigated and the pseudo‐first‐order rate constants and half‐lives were estimated at different temperatures. Also, an Arrhenius plot was applied to predict the stability behaviour of the two drugs at room temperature. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
5.
The objective of the present investigation was to develop and evaluate self-microemulsifying drug delivery system (SMEDDS)
for improving the delivery of a BCS class II antidiabetic agent, glyburide (GLY). The solubility of GLY in oils, cosurfactants,
and surfactants was evaluated to identify the components of the microemulsion. The ternary diagram was plotted to identify
the area of microemulsion existence. The in vitro dissolution profile of GLY SMEDDS was evaluated in comparison to the marketed GLY tablet and pure drug in pH 1.2 and pH 7.4
buffers. The chemical stability of GLY in SMEDDS was determined as per the International Conference on Harmonisation guidelines.
The area of microemulsion existence increased with the increase in the cosurfactant (Transcutol P) concentration. The GLY
microemulsion exhibited globule size of 133.5 nm and polydispersity index of 0.94. The stability studies indicated that GLY
undergoes significant degradation in the developed SMEDDS. This observation was totally unexpected and has been noticed for
the first time. Further investigations indicated that the rate of GLY degradation was highest in Transcutol P. 相似文献
6.
Environmantal stress induces damage that activates an adaptive response in any organism. The cellular stress response is based
on the induction of cytoprotective proteins, the so called stress or heat shock proteins. The stress response as well as stress
proteins are ubiquitous, highly conserved mechanism, and genes, respectively, already present in prokaryotes. Chaperones protect
the proteome against conformational damage, promoting the function of protein networks. Protein damage takes place during
aging and in several degenerative diseases, and presents a threat to overload the cellular defense mechanisms. The preservation
of a robust stress response and protein disposal is indispensable for health and longevity. This review summarizes the present
knowledge of protein damage, turnover, and the stress response in aging and degenerative diseases. 相似文献
7.
Karthik Pisupati Alexander Benet Yuwei Tian Solomon Okbazghi Jukyung Kang Michael Ford 《MABS-AUSTIN》2017,9(7):1197-1209
Remsima? (infliximab) is the first biosimilar monoclonal antibody (mAb) approved by the European Medical Agency and the US Food and Drug Administration. Remsima? is highly similar to its reference product, Remicade®, with identical formulation components. The 2 products, however, are not identical; Remsima? has higher levels of soluble aggregates, C-terminal lysine truncation, and fucosylated glycans. To understand if these attribute differences could be amplified during forced degradation, solutions and lyophilized powders of the 2 products were subjected to stress at elevated temperature (40–60°C) and humidity (dry-97% relative humidity). Stress-induced aggregation and degradation profiles were similar for the 2 products and resulted in loss of infliximab binding to tumor necrosis factor and FcγRIIIa. Appearances of protein aggregates and hydrolysis products were time- and humidity-dependent, with similar degradation rates observed for the reference and biosimilar products. Protein powder incubations at 40°C/97% relative humidity resulted in partial mAb unfolding and increased asparagine deamidation. Minor differences in heat capacity, fluorescence, levels of subvisible particulates, deamidation and protein fragments were observed in the 2 stressed products, but these differences were not statistically significant. The protein solution instability at 60°C, although quite significant, was also similar for both products. Despite the small initial analytical differences, Remicade® and Remsima? displayed similar degradation mechanisms and kinetics. Thus, our results show that the 2 products are highly similar and infliximab's primary sequence largely defines their protein instabilities compared with the limited influence of small initial purity and glycosylation differences in the 2 products. 相似文献
8.
Stability‐indicating high‐performance liquid chromatography (HPLC) and spectrofluorimetric methods were developed for determination of empagliflozin (EGF). EGF was subjected to oxidation, wet heat, photo‐degradation, acid hydrolysis and alkali hydrolysis. The alkaline degradation pathway was subjected to a kinetics study as the major product obtained after stress conditions. Arrhenius plots were constructed and the activation energies of the degradation process were calculated. HPLC was used for the kinetic study as it enabled simultaneous determination of EGF and the degradation product while the spectrofluorimetric assay was applied to content uniformity testing due to its higher sensitivity and lower limit of detection (LOD). Isocratic chromatographic elution was attained for HPLC on a Intersil® C18 column (150 mm × 4 mm, 5 μm), using a mobile phase of acetonitrile–potassium dihydrogen phosphate buffer pH 4, (50:50, v/v) at a flow rate of 1 ml/min with ultraviolet (UV) detection at 225 nm. The relative fluorescence intensity was recorded by spectrofluorimeter applying synchronous mode using ?λ = 70 nm at 297.6 nm. Linearity ranges were found to be 5–50 μg/ml and 50–1000 ng/ml for HPLC and spectrofluorimetric methods, respectively. 相似文献
9.
Mahesh Gokara Vidadala V. Narayana Vineet Sadarangani Shatabdi Roy Chowdhury Sreelaxmi Varkala Dhevalapally B. Ramachary 《Journal of biomolecular structure & dynamics》2017,35(10):2280-2292
In this study, molecular binding affinity was investigated for Nefopam analogues (NFs), a functionalized benzoxazocine, with human serum albumin (HSA), a major transport protein in the blood. Its binding affinity and concomitant changes in its conformation, binding site and simulations were also studied. Fluorescence data revealed that the fluorescence quenching of HSA upon binding of NFs analogues is based on a static mechanism. The three analogues of NFs binding constants (KA) are in the order of NF3 > NF2 > NF1 with values of 1.53 ± .057 × 104, 2.16 ± .071 × 104 and 3.6 ± .102 × 105 M?1, respectively. Concurrently, thermodynamic parameters indicate that the binding process was spontaneous, and the complexes were stabilized mostly by hydrophobic interactions, except for NF2 has one hydrogen bond stabilizes it along with hydrophobic interactions. Circular dichroism (CD) studies revealed that there is a decrease in α-helix with an increase in β-sheets and random coils signifying partial unfolding of the protein upon binding of NFs, which might be due to the formation of NFs-HSA complexes. Further, molecular docking studies showed that NF1, NF2 and NF3 bound to subdomains IIIA, IB and IIA through hydrophobic interactions. However, NF1 have additionally formed a single hydrogen bond with LYS 413. Furthermore, molecular simulations unveiled that NFs binding was in support with the structural perturbation observed in CD, which is evident from the root mean square deviation and Rg fluctuations. We hope our insights will provide ample scope for engineering new drugs based on the resemblances with NFs for enhanced efficacy with HSA. 相似文献
10.
11.
Xiaoyu Yang Wei Xu Svetlana Dukleska Sabrina Benchaar Selina Mengisen Valentyn Antochshuk Jason Cheung Leslie Mann Zulfia Babadjanova Jason Rowand Rico Gunawan Alexander McCampbell Maribel Beaumont David Meininger Daisy Richardson Alexandre Ambrogelly 《MABS-AUSTIN》2013,5(5):787-794
Monoclonal antibodies constitute a robust class of therapeutic proteins. Their stability, resistance to stress conditions and high solubility have allowed the successful development and commercialization of over 40 antibody-based drugs. Although mAbs enjoy a relatively high probability of success compared with other therapeutic proteins, examples of projects that are suspended due to the instability of the molecule are not uncommon. Developability assessment studies have therefore been devised to identify early during process development problems associated with stability, solubility that is insufficient to meet expected dosing or sensitivity to stress. This set of experiments includes short-term stability studies at 2−8 þC, 25 þC and 40 þC, freeze-thaw studies, limited forced degradation studies and determination of the viscosity of high concentration samples. We present here three case studies reflecting three typical outcomes: (1) no major or unexpected degradation is found and the study results are used to inform early identification of degradation pathways and potential critical quality attributes within the Quality by Design framework defined by US Food and Drug Administration guidance documents; (2) identification of specific degradation pathway(s) that do not affect potency of the molecule, with subsequent definition of proper process control and formulation strategies; and (3) identification of degradation that affects potency, resulting in program termination and reallocation of resources. 相似文献
12.
Demonstrations of bio-similarity between subsequent entry (follow-on) biologics and innovator’s formulated drug products may depend upon methods that either remove excipients completely or allow the exchange of excipients to give equivalent formulations. Excipient exchange through dialysis is perhaps the simplest of such methods but its use has been hotly debated. This debate, in the absence of published data, has relied largely on theoretical considerations. This study presents data that indicate that excipient exchange can allow comparisons of different formulations of the same therapeutic protein. The use of excipient exchange to and from one concentration of mannitol to another or to a mixture of glycine and mannitol was reproducibly demonstrated for recombinant human growth hormone (rhGH). We show that marketed rhGH products from several different manufacturers exhibit differences in conformational stability when compared directly. These differences, however, are shown to be the result of differences in formulation rather than in the drug substance itself and were removed through excipient exchange. The data presented, therefore, also indicate that failure to assure a common excipient background can lead to erroneous conclusions about the similarities and differences in the physico-chemical properties of two preparations of the same therapeutic protein made by different manufacturing processes. 相似文献
13.
Introduction: Development of specific biomarkers aiding early diagnosis of heart failure is an ongoing challenge. Biomarkers commonly used in clinical routine usually act as readouts of an already existing acute condition rather than disease initiation. Functional decline of cardiac muscle is greatly aggravated by increased oxidative stress and damage of proteins. Oxidative post-translational modifications occur already at early stages of tissue damage and are thus regarded as potential up-coming disease markers.
Areas covered: Clinical practice regarding commonly used biomarkers for heart disease is briefly summarized. The types of oxidative post-translational modification in cardiac pathologies are discussed with a special focus on available quantitative techniques and characteristics of individual modifications with regard to their stability and analytical accessibility. As irreversible oxidative modifications trigger protein degradation pathways or cause protein aggregation, both influencing biomarker abundance, a chapter is dedicated to their regulation in the heart. 相似文献
14.
Allen JR Nguyen LX Sargent KE Lipson KL Hackett A Urano F 《Biochemical and biophysical research communications》2004,324(1):166-170
Endoplasmic reticulum (ER) stress, which is caused by the accumulation of misfolded proteins in the ER, elicits an adaptive response, the unfolded protein response (UPR). One component of the UPR, the endoplasmic reticulum-associated protein degradation (ERAD) system, has an important function in the survival of ER stressed cells. Here, we show that HRD1, a component of the ERAD system, is upregulated in pancreatic islets of the Akita diabetes mouse model and enhances intracellular degradation of misfolded insulin. High ER stress in beta-cells stimulated mutant insulin degradation through HRD1 to protect beta-cells from ER stress and ensuing death. If HRD1 serves the same function in humans, it may serve as a target for therapeutic intervention in diabetes. 相似文献
15.
16.
在不断发展的蛋白质生物制药工程中, 蛋白质的不稳定往往是人们主要关注的问题。本研究利用对蛋白质进行还原剂预处理的策略, 提高了具有潜在治疗活性的重组人胞外域CD83蛋白的稳定性。在生理条件下, 蛋白治疗产品往往变性, 形成聚集和沉淀, 并最终被降解。由此证明还原剂预处理可以有效改善蛋白质的稳定性。 相似文献
17.
P22 Arc repressor: enhanced expression of unstable mutants by addition of polar C-terminal sequences. 总被引:5,自引:4,他引:5
下载免费PDF全文

M. E. Milla B. M. Brown R. T. Sauer 《Protein science : a publication of the Protein Society》1993,2(12):2198-2205
Many mutant variants of the P22 Arc repressor are subject to intracellular proteolysis in Escherichia coli, which precludes their expression at levels sufficient for purification and subsequent biochemical characterization. Here we examine the effects of several different C-terminal extension sequences on the expression and activity of a set of Arc mutants. We show that two tail sequences, KNQHE (st5) and H6KNQHE (st11), increase the expression levels of most mutants from 10- to 20-fold and, in some cases, result in restoration of biological activity in the cell. A third tail sequence, HHHHHH (st6), was not as effective in increasing mutant expression levels. All three tail sequences are functionally and structurally silent, as judged by their lack of effects on the DNA binding activity and stability of otherwise wild-type Arc. The properties of the st11 tail sequence make it an efficient system for the expression and purification of mutant Arc proteins, both because mutant expression levels are increased and because the proteins can be rapidly purified using nickel-chelate affinity chromatography. Arc mutants containing the EA28, RL31, and SA32 mutations were purified in the st11 background. The thermodynamic stability of the EA28 mutant (delta delta Gu approximately -0.4 kcal/mol) is reduced modestly compared to the st11 parent, whereas the RL31 mutant (delta delta Gu approximately -3.0 kcal/mol) and SA32 mutant (delta delta Gu approximately -3.3 kcal/mol) are substantially less stable. 相似文献
18.
Andrea Brigitta Alber 《Cell cycle (Georgetown, Tex.)》2019,18(8):784-794
Protein expression levels depend on the balance between their synthesis and degradation rates. Even quiescent (G0) cells display a continuous turnover of proteins, despite protein levels remaining largely constant over time. In cycling cells, global protein levels need to be precisely doubled at each cell division in order to maintain cellular homeostasis, but we still lack a quantitative understanding of how this is achieved. Recent studies have shed light on cell cycle-dependent changes in protein synthesis and degradation rates. Here we discuss current population-based and single cell approaches used to assess protein synthesis and degradation, and review the insights they have provided into the dynamics of protein turnover in different cell cycle phases. 相似文献
19.
CTCF是脊椎动物关键的绝缘子蛋白,在细胞生命过程中发挥重要作用,敲除CTCF基因会导致小鼠胚胎死亡。为进一步探讨CTCF的功能,本文利用CRISPR/Cas9介导的同源重组,在内源性CTCF表达框上游敲入一个有丝分裂期降解结构域(Mitosis-special degradation domain, MD),该结构域可以带动CTCF融合蛋白在M期降解。作为对照,将MD结构域的第42位的精氨酸突变为丙氨酸,形成无降解活性的MD*,可使MD*-CTCF融合蛋白始终稳定存在。将嘌呤霉素与融合蛋白同时表达,即可利用抗生素筛选,高效地筛选到纯合克隆。利用蛋白印迹技术和免疫荧光检测3种细胞在不同细胞周期的CTCF蛋白变化情况,发现MD-CTCF细胞系CTCF蛋白含量约为野生型细胞的10%,MD*-CTCF细胞系的CTCF含量与野生型没有显著差别;通过流式细胞术观测降解CTCF对细胞的影响,发现MD-CTCF细胞系G1期明显延长。总之,利用CRISPR/Cas9技术在CTCF表达框上游高效地插入MD,首个CTCF特异性降解的人类细胞系获得成功构建。 相似文献
20.
Tao Zhou Dylan A. Frabutt Kelley W. Moremen Yong-Hui Zheng 《The Journal of biological chemistry》2015,290(36):22184-22192
Previously, we reported that the mitochondrial translocator protein (TSPO) induces HIV-1 envelope (Env) degradation via the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway, but the mechanism was not clear. Here we investigated how the four ER-associated glycoside hydrolase family 47 (GH47) α-mannosidases, ERManI, and ER-degradation enhancing α-mannosidase-like (EDEM) proteins 1, 2, and 3, are involved in the Env degradation process. Ectopic expression of these four α-mannosidases uncovers that only ERManI inhibits HIV-1 Env expression in a dose-dependent manner. In addition, genetic knock-out of the ERManI gene MAN1B1 using CRISPR/Cas9 technology disrupts the TSPO-mediated Env degradation. Biochemical studies show that HIV-1 Env interacts with ERManI, and between the ERManI cytoplasmic, transmembrane, lumenal stem, and lumenal catalytic domains, the catalytic domain plays a critical role in the Env-ERManI interaction. In addition, functional studies show that inactivation of the catalytic sites by site-directed mutagenesis disrupts the ERManI activity. These studies identify ERManI as a critical GH47 α-mannosidase in the ER-associated protein degradation pathway that initiates the Env degradation and suggests that its catalytic domain and enzymatic activity play an important role in this process. 相似文献