首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A chemically synthesized 34-amino acid peptide, an analog, and a fragment of the peptide have been purified and studied. Biophysical studies were carried out to determine some of the metal ion binding properties of the original peptide and an analog of this parent peptide, in which the two histidine residues were replaced by alanines. As shown by visible absorption spectroscopy, Co (II) forms a complex with the parent peptide, but not with the analog peptide, and one or two histidines in the parent peptide are ligands for Co (II) ion binding. The effects on disulfide bond formation in the peptide by Zn (II) and Co (II) ions were also examined for this analog. Anti-growth assays were performed using the original cysteine-containing peptide with Zn (II) ion complexed to the peptide through the two cysteine residues. These rat uterine growth assays showed that the complexing of Zn (II) ion to the peptide maintained the anti-growth activity of the peptide, while gel-filtration experiments showed the zinc ions maintained the peptide in its anti-growth form indefinitely in solution. A saliently important part of this research was the discovery that a fragment of the peptide consisting of a middle sequence of 14 amino acids was found to have significant anti-growth activity in the rat uterine assay. Its activity suggested that this fragment might be considered a viable candidate for testing in anti-cancer protocols.  相似文献   

2.
Metal substitution of Neurospora copper metallothionein   总被引:1,自引:0,他引:1  
M Beltramini  K Lerch  M Vasák 《Biochemistry》1984,23(15):3422-3427
The binding of diamagnetic Zn(II), Cd(II), and Hg(II) and paramagnetic Co(II) and Ni(II) ions to the apo form of Neurospora metallothionein (MT) was investigated by various spectroscopic techniques. In contrast to native copper MT, which was shown to bind 6 mol of Cu(I)/mol of protein (Lerch, 1980), all substituted forms reveal an overall metal to protein stoichiometry of 3. The charge-transfer (CT) transitions of the complexes containing diamagnetic metal ions as well as the d-d transitions of those with paramagnetic metal ions are indicative of a distorted Td coordination. Electron paramagnetic resonance and absorption measurements of the Co(II) derivative are in agreement with the presence of a metal-thiolate cluster in this protein. Metal titration studies of the apoprotein reveal characteristic spectral features for the derivatives containing two metal equivalents as compared to those with a full complement of three metal ions. The former features are indicative of an exclusive Td type of metal-sulfur coordination whereas the latter suggest that the third metal ion is coordinated in a different fashion. This finding is in agreement with the presence of only seven cysteine residues in Neurospora MT as opposed to nine cysteine residues in the three-metal cluster of the mammalian MT's [Winge, D.R., & Miklossy, K.-A. (1982) J. Biol. Chem. 257, 3471].  相似文献   

3.
Histidine-containing peptide fragments of prion protein are efficient ligands to bind various transition metal ions and they have high selectivity in metal binding. The metal ion affinity follows the order: Pd(II)>Cu(II)>Ni(II)Zn(II)>Cd(II) approximately Co(II)>Mn(II). The high selectivity of metal binding is connected to the involvement of both imidazole and amide nitrogen atoms in metal binding for Pd(II), Cu(II) and Ni(II), while only the monodentate N(im)-coordination is possible with the other metal ions. The stoichiometry and binding mode of palladium(II) complexes show great variety depending on the metal ion to ligand ratio, pH and especially the presence of coordinating donor atoms in the side chains of peptide fragments. It is also clear from our data that the peptide fragments containing histidine outside the octarepeat (His96, His111 and His187) are more efficient ligands than the monomer peptide fragments of the octarepeat domain.  相似文献   

4.
In an effort to probe the structure of a group Bb metallo-beta-lactamase, Co(II)-substituted ImiS was prepared and characterized by electronic absorption, NMR, and EPR spectroscopies. ImiS containing 1 equiv of Co(II) (Co(II)(1)-ImiS) was shown to be catalytically active. Electronic absorption studies of Co(II)(1)-ImiS revealed the presence of two distinct features: (1) an intense sulfur to Co(II) ligand to metal charge transfer band and (2) less intense, Co(II) ligand field transitions that suggest 4-coordinate Co(II) in Co(II)(1)-ImiS. (1)H NMR studies of Co(II)(1)-ImiS suggest that one histidine, one aspartic acid, and one cysteine coordinate the metal ion in Co(II)(1)-ImiS. The addition of a second Co(II) to Co(II)(1)-ImiS did not result in any additional solvent-exchangeable NMR resonances, strongly suggesting that the second Co(II) does not bind to a site with histidine ligands. EPR studies reveal that the metal ion in Co(II)(1)-ImiS is 4-coordinate and that the second Co(II) is 5/6 coordinate. Taken together, these data indicate that the catalytic site in ImiS is the consensus Zn(2) site, in which Co(II) (and by extrapolation Zn(II)) is 4-coordinate and bound by Cys221, His263, Asp120, and probably one solvent water molecule. These studies also show that the second, inhibitory metal ion does not bind to the consensus Zn(1) site and that the metal ion binds at a site significantly removed from the active site. These results give the first structural information on metallo-beta-lactamase ImiS and suggest that the second metal binding site in ImiS may be targeted for inhibitors.  相似文献   

5.
Spectral studies of cobalt (II)- and Nickel (II)-metallothionein   总被引:1,自引:0,他引:1  
The zinc and cadmium of native rabbit metallothionein-1 were replaced stoichiometrically with either cobalt (II) or nickel (II). The electronic, magnetic circular dichroic (MCD), and electron spin resonance spectra of Co (II)-metallothionein reflect distorted tetrahedral coordination of the cobalt atoms. Both the d-d and charge-transfer spectral regions closely resemble those of simple cobalt-tetrathiolate complexes, implying that their coordination chemistry is analogous. Ni (II) complex ions and Ni (II)-metallothionein similarly exhibit analogous MCD bands in the d-d region. The circular dichroic bands associated with ligand-metal charge-transfer transitions in the non-d-d region of Co (II)- and Ni (II)-metallothionein afford additional evidence for the similarity in tetrahedral microsymmetry of the two metal derivatives. The known ratio of 20 thiolate ligands to 7 metal ions, in conjunction with the spectral evidence for tetrathiolate coordination in metallothionein, represents good evidence that these metal thiolates are organized in clusters.  相似文献   

6.
Zinc(II) binds to the neuroprotective peptide humanin   总被引:1,自引:0,他引:1  
The abnormal accumulation of the peptide amyloid-beta in the form of senile (or amyloid) plaques is one of the hallmarks of Alzheimer's disease (AD). Zinc ions have been implicated in AD and plaques formation. Recently, the peptide humanin has been discovered. Humanin showed neuroprotective activity against amyloid-beta insults. Here the question investigated is if humanin could interact directly with Zn(II). It is shown that Zn(II) and its substitutes Cd(II)/Co(II) bind to humanin via a thiolate bond from the side chain of the single cysteine at position 8. The low intensity of the d-d bands of Co(II)-humanin indicated an octahedral coordination geometry. Titration experiments suggest that Zn(II) binds to humanin with an apparent affinity in the low muM range. This apparent Zn-binding affinity is in the same order as for amyloid-beta and glutathione and could thus be of physiological relevance.  相似文献   

7.
The binuclear copper in the active site of Carcinus maenas hemocyanin has been substituted with one EDTA-resistant Co(II) per 75 000 Mr by reconstitution of the apo protein. Specific cobalt substitution at the copper binding site is demonstrated from the optical spectral changes directly correlated with the amount of Co(II) bound to the protein, the ellipticity in CD spectra in the near UVVis region, and the efficiency of tryptophan fluorescence quenching. The optical absorption spectrum of the cobalt-substituted protein is characterized by a band pattern attributable to d-d transitions of the metal ion. Both the position of the wavelength maximum (568 nm) and the molar extinction coefficient (≅300 M-1 cm-1) are typical of a four-coordinate, pseudo-tetrahedral Co(II) center.Optical titrations indicate that Cl-, Br-, N3-, SCN-, and CN- bind to Co(II)Hc, each with a stoichiometry of 1:1 per metal center. The apparent stability constants determined from Hill plots of titration data decrease in the order CN- » N3- ≅ SCN- >Cl->Br-. Low temperature EPR studies demonstrate that at pH 7, the cobalt is high spin both in the presence and absence of anionic ligands. A low spin species is formed at pH 9 in the presence of cyanide. The spectrum of this latter complex exhibits superhyperfine structure indicative of metal ligation to 14N supplied by the protein. Direct ligation of cyanide to cobalt is demonstrated by additional spectral splitting observed when this complex is formed using 13C-labelled CN-.  相似文献   

8.
Conditions for reactivation of guanidine-HCl-denatured bovine Co(II)-carbonic anhydrase II are given. The renaturation is accompanied by recovery of the native Co(II)-spectrum of the enzyme. After studying the kinetics of the renaturation process, the metal ion involvement in the refolding pathway can be summarized as follows: (1) Formation of an inactive Co(II)-intermediate with the metal ion firmly bound. No native Co(II)-spectrum is observed in this state, probably due to octahedral coordination of the metal ion in this intermediate. (2) Formation of an inactive Co(II)-intermediate with a native Co(II)-spectrum. The final tetrahedral coordination of the metal ion seems to have been formed in this state. (3) Formation of the active conformation of the enzyme. A functioning active-site is formed after some rearrangements of the polypeptide chain. This isomerisation step does not need to be preceded by formation of the intermediate with a native Co(II)-spectrum. Coordination of Co2+ in a native-like manner is, however, a prerequisite for enzymic activity. It is tentatively suggested that the metal ion is involved in stabilizing a nucleation structure formed at the bottom of the active centre. This probably occurs through binding of Co2+ to some or all of its histidyl ligands in this region after an early structuration of the metal ion binding site. The mechanisms of Co2+ appear to be similar for the refolding enzyme and the native apoenzyme, inferring that the binding site formed as a result of the nucleation process probably has the same structure as in the native conformation.  相似文献   

9.
10.
Wolfgang Maret 《Biometals》2013,26(2):197-204
Several pathways increase the concentrations of cellular free zinc(II) ions. Such fluctuations suggest that zinc(II) ions are signalling ions used for the regulation of proteins. One function is the inhibition of enzymes. It is quite common that enzymes bind zinc(II) ions with micro- or nanomolar affinities in their active sites that contain catalytic dyads or triads with a combination of glutamate (aspartate), histidine and cysteine residues, which are all typical zinc-binding ligands. However, for such binding to be physiologically significant, the binding constants must be compatible with the cellular availability of zinc(II) ions. The affinity of inhibitory zinc(II) ions for receptor protein tyrosine phosphatase β is particularly high (K i = 21 pM, pH 7.4), indicating that some enzymes bind zinc almost as strongly as zinc metalloenzymes. The competitive pattern of zinc inhibition for this phosphatase implicates its active site cysteine and nearby residues in the coordination of zinc. Quantitative biophysical data on both affinities of proteins for zinc and cellular zinc(II) ion concentrations provide the basis for examining the physiological significance of inhibitory zinc-binding sites in proteins and the role of zinc(II) ions in cellular signalling. Regulatory functions of zinc(II) ions add a significant level of complexity to biological control of metabolism and signal transduction and embody a new paradigm for the role of transition metal ions in cell biology.  相似文献   

11.
The association of imidazole and auramine O to native horse-liver alcohol dehydrogenase [Zn(II)LADH] and active-site specifically cobalt(II)-substituted horse-liver alcohol dehydrogenase [Co(II)LADH], respectively, has been investigated. In all cases [except imidazole binding to Zn(II)LADH in the presence of auramine O] the association rates approached an upper limit (kmax). The kmax values were compared for the metal ligands imidazole (monodentate), 1,10-phenanthroline and 2,2'-bipyridine (bidentate; see also the preceding paper), and for auramine O which does not coordinate to the catalytic metal ion. Independent of the large differences in their structure and metal-bonding capability, all these compounds exhibit common, maximum, limiting rate constants of about 60 s-1 and 200 s-1 for Co(II)LADH and Zn(II)LADH, respectively. These results demonstrate that kmax is strongly dependent on the catalytic metal ion but not on the ligand. The absence of spectral changes in the d-d transitions of the catalytic Co(II) ion upon auramine O binding to Co(II)LADH indicates that the rate-limiting step is not accompanied by a major conformational change. Finally, it is concluded that reactions in the inner coordination sphere of the catalytic metal ion (i.e. the metal-bound water molecule) are not responsible for the step characterized by kmax. We propose the rate-limiting step to consist of the dissociation of one or several water molecules from the second coordination sphere of the catalytic metal ion in the active site of LADH in its open conformation.  相似文献   

12.
Metal selectivity of metal-thiolate clusters in rabbit liver metallothionein (MT) 2 has been studied by examining the metal distribution of two similarly sized divalent metal ions, cobalt and zinc, which have different thiolate affinity. The forms of mixed-metal cluster species in (Co/Zn)7-MT generated with different ratios of both metal ions offered to the metal-free protein were investigated using EPR, ultraviolet/visible absorption and MCD spectroscopy. The results demonstrated that the distribution of these metals between the two metal-thiolate clusters is not random. Thus, the EPR absorption intensities of the bound Co(II) ions in the Zn-cluster matrix increased linearly up to a ratio of Co(II)/Zn(II) equivalents of 3:4, with the final EPR intensity of three non-interacting Co(II)-binding sites. This EPR behaviour is consistent with a binding scheme in which one Co(II) ion occupies a metal-binding site within the three-metal cluster and the remaining two Co(II) ions occupy two distinctly separate sites in the four-metal cluster. With four or more Co(II) ions in the cluster matrix, magnetic coupling between adjacent, sulphur-bridged Co(II) ions was observed. In previous studies on mixed-metal clusters in MT formed with Co(II)/Cd(II), Zn(II)/Cd(II) and Cd(II)/Fe(II), changes in the respective cluster volumes were shown to be a significant factor dictating the widely differing metal distributions in these systems. Based on the results of the current study, it is suggested that both the sizes of the two metal ions and their relative affinities towards the cysteine-thiolate ligands are important in the formation of mixed-metal clusters in MT.  相似文献   

13.
We previously reported the de novo design of an amphiphilic peptide [YGG(IEKKIEA)4] that forms a native-like, parallel triple-stranded coiled coil. Starting from this peptide, we sought to regulate the assembly of the peptide by a metal ion. The replacement of the Ile18 and Ile22 residues with Ala and Cys residues, respectively, in the hydrophobic positions disrupted of the triple-stranded alpha-helix structure. The addition of Cd(II), however, resulted in the reconstitution of the triple-stranded alpha-helix bundle, as revealed by circular dichroism (CD) spectroscopy and sedimentation equilibrium analysis. By titration with metal ions and monitoring the change in the intensity of the CD spectra at 222 nm, the dissociation constant Kd was determined to be 1.5 +/- 0.8 microM for Cd(II). The triple-stranded complex formed by the 113Cd(II) ion showed a single 113Cd NMR resonance at 572 ppm whose chemical shift was not affected by the presence of Cl- ions. The 113Cd NMR resonance was connected with the betaH protons of the cysteine residue by 1H-113Cd heteronuclear multiple quantum correlation spectroscopy. These NMR results indicate that the three cysteine residues are coordinated to the cadmium ion in a trigonal-planar complex. Hg(II) also induced the assembly of the peptide into a triple-stranded alpha-helical bundle below the Hg(II)/peptide ratio of 1/3. With excess Hg(II), however, the alpha-helicity of the peptide was decreased, with the change of the Hg(II) coordination state from three to two. Combining this construct with other functional domains should facilitate the production of artificial proteins with functions controlled by metal ions.  相似文献   

14.
Schiff bases have been synthesized by the reaction of p-nitrobenzaldehyde, o-nitrobenzaldehyde and p-toluyaldehyde with 4-amino-5-mercapto-1,2,4-triazole. The ligands react with Co(II), Ni(II) and Zn(II) metals to yield (1:1) and (1:2) [metal:ligand] complexes. Elemental analyses, IR, 1H NMR, electronic spectral data, magnetic susceptibility measurements, molar conductivity measurements and thermal studies have investigated the structure of the ligands and their metal complexes. The electronic spectral data suggests octahedral geometry for Co(II), Ni(II) and Zn(II). The antibacterial activities of the ligands and their metal complexes have been screened in vitro against three Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis and Bacillus subtilis) and two Gram-negative (Salmonella typhi and Pseudomonas aeruginosa) organisms. The coordination of the metal ion had a pronounced effect on the microbial activities of the ligands and the metal complexes have higher antimicrobial effect than the free ligands.  相似文献   

15.
Cd-substituted forms of the Bacillus cereus metallo-beta-lactamases (BCII) were studied by perturbed angular correlation of gamma-rays (PAC) spectroscopy. At very low [Cd]:[apo-beta-lactamase] ratios, two nuclear quadrupole interactions (NQI) were detected. For [Cd]:[apo-beta-lactamase] ratios between 0.8 and 3.0, two new NQIs appear, and the spectra show that up to 2 cadmium ions can be bound per molecule of apoenzyme. These results show the existence of two interacting Cd-binding sites in BCII. The relative populations of the two NQIs found at low [Cd]:[apo-beta-lactamase] ratios yielded a 1:3 ratio for the microscopic dissociation constants of the two different metal sites (when only one cadmium ion is bound). X-ray diffraction data at pH 7.5 demonstrate that also for Zn(II) two binding sites exist, which may be bridged by a solvent molecule. The measured NQIs could be assigned to the site with three histidines as metal ligands (three-His site) and to the site with histidine, cysteine, and aspartic acid as metal ligands (Cys site), respectively, by PAC measurements on the Cys168Ala mutant enzyme. This assignment shows that cadmium ions preferentially bind to the Cys site. This is in contrast to the preference of Zn(II) in the hybrid Zn(II)Cd(II) enzyme, where an analysis of the corresponding PAC spectrum showed that Cd(II) occupied the Cys site, whereby Zn(II) occupied the site with three histidines. The difference between Zn(II) and Cd(II) in affinity for the two sites is combined with the kinetics of hydrolysis of nitrocefin for different metal ion substitutions (Zn(2)E, ZnE, Cd(2)E, CdE, and ZnCdE) to study the function of the two metal ion binding sites.  相似文献   

16.
Bienvenue DL  Gilner DM  Davis RS  Bennett B  Holz RC 《Biochemistry》2003,42(36):10756-10763
The catalytic and structural properties of divalent metal ion cofactor binding sites in the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae were investigated. Co(II)-substituted DapE enzyme was 25% more active than the Zn(II)-loaded form of the enzyme. Interestingly, Mn(II) can activate DapE, but only to approximately 20% of the Zn(II)-loaded enzyme. The order of the observed k(cat) values are Co(II) > Zn(II) > Cd(II) > Mn(II) >Ni(II) approximately equal Cu(II) approximately equal Mg(II). DapE was shown to only hydrolyze L,L-N-succinyl-diaminopimelic acid (L,L-SDAP) and was inactive toward D,L-, L,D-, and D,D-SDAP. DapE was also inactive toward several acetylated amino acids as well as D,L-succinyl aminopimelate, which differs from the natural substrate, L,L-SDAP, by the absence of the amine group on the amino acid side chain. These data imply that the carboxylate of the succinyl moiety and the amine form important interactions with the active site of DapE. The affinity of DapE for one versus two Zn(II) ions differs by nearly 2.2 x 10(3) times (K(d1) = 0.14 microM vs K(d2) = 300 microM). In addition, an Arrhenius plot was constructed from k(cat) values measured between 16 and 35 degrees C and was linear over this temperature range. The activation energy for [ZnZn(DapE)] was found to be 31 kJ/mol with the remaining thermodynamic parameters calculated at 25 degrees C being DeltaG(++) = 64 kJ/mol, DeltaH(++) = 28.5 kJ/mol, and DeltaS(++) = -119 J mol(-1) K(-1). Electronic absorption and EPR spectra of [Co_(DapE)] and [CoCo(DapE)] indicate that the first Co(II) binding site is five-coordinate, while the second site is octahedral. In addition, any spin-spin interaction between the two Co(II) ions in [CoCo(DapE)] is very weak. The kinetic and spectroscopic data presented herein suggest that the DapE from H. influenzae has similar divalent metal binding properties to the aminopeptidase from Aeromonas proteolytica (AAP), and the observed divalent metal ion binding properties are discussed with respect to their catalytic roles in SDAP hydrolysis.  相似文献   

17.
BACKGROUND: Streptococcus mutans pyrophosphatase (Sm-PPase) is a member of a relatively uncommon but widely dispersed sequence family (family II) of inorganic pyrophosphatases. A structure will answer two main questions: is it structurally similar to the family I PPases, and is the mechanism similar? RESULTS: The first family II PPase structure, that of homodimeric Sm-PPase complexed with metal and sulfate ions, has been solved by X-ray crystallography at 2.2 A resolution. The tertiary fold of Sm-PPase consists of a 189 residue alpha/beta N-terminal domain and a 114 residue mixed beta sheet C-terminal domain and bears no resemblance to family I PPase, even though the arrangement of active site ligands and the residues that bind them shows significant similarity. The preference for Mn2+ over Mg2+ in family II PPases is explained by the histidine ligands and bidentate carboxylate coordination. The active site is located at the domain interface. The C-terminal domain is hinged to the N-terminal domain and exists in both closed and open conformations. CONCLUSIONS: The active site similiarities, including a water coordinated to two metal ions, suggest that the family II PPase mechanism is "analogous" (not "homologous") to that of family I PPases. This is a remarkable example of convergent evolution. The large change in C-terminal conformation suggests that domain closure might be the mechanism by which Sm-PPase achieves specificity for pyrophosphate over other polyphosphates.  相似文献   

18.
Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-β (Aβ) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with (15)N- and (13)C,(15)N-labeled Aβ(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to Aβ may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the Aβ peptide under these conditions.  相似文献   

19.
Two extrinsic probes, pyrene-maleimide and eosin-maleimide, were used to label specific SH groups of the enzyme myo-inositol monophosphatase. The fluorescence of pyrene-monophosphatase is enhanced upon addition of the activating metal ions Co(II) and Mg(II). Co(II) ions bind with a dissociation constant of 4 μM, whereas the apparent activation constant K a is 0.4 mM. Energy transfer measurements demonstrated that the pyrene chromophore, covalently linked to Cys-218, is within 9 Å of the metal ion Tb(III) coordinated to the metal-binding site. The phosphorescence emitted by eosin covalently linked to the protein is quenched by the addition of the activating cations Co(II) and Mg(II). Phosphorescence titrations conducted under anaerobic conditions were used to determine a dissociation constant of approximately 3 μM for the binding of Co(II) ions. The results are consistent with the hypothesis that two activating ions per monomeric subunit participate in the catalytic mechanism. The affinity of the tightly bound ion is at least 100-fold greater than the affinity of the weakly bound ion.  相似文献   

20.
Cobalt-(cysteinyl)4 tetrahedra in yeast cobalt(II)-thionein   总被引:3,自引:0,他引:3  
The conversion of yeast Cu(I)-thionein into the Co(II) derivative was successful. 2.6 Co atoms were incorporated per mole of protein yielding a Co : S ratio of 1 : 3. The electronic absorption of this highly air sensitive Co(II)-thionein is virtually identical to those of the Co(II) derivatives of other metallothioneins originating from vertebrates and N. crassa. Weaker Cotton extrema are noticed and the two doublet splittings of Cu-thionein disappeared. Throughout the molar ellipticities of the cobalt protein were markedly lower compared to those of the Cu-thionein. Owing to the characteristic charge transfer bands and d-d transitions a tetrahedral Co-thiolate coordination was deduced. The best fit proposal maintaining the above Co : S ratio of 1 : 3 was a six-membered ring with three bridging cysteine sulphurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号