首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant adenoviruses are widely used in basic virology research, therapeutic applications, vaccination studies or simply as a tool for genetic manipulation of eukaryotic cells. Dependent on the application, transient or stable maintenance of the adenoviral genome and transgene expression are required. The newest generation of recombinant adenoviral vectors is represented by high-capacity adenoviral vectors (HC-AdVs) which lack all viral coding sequences. HC-AdVs were shown to result in long-term persistence of transgene expression and phenotypic correction in small and large animal models with negligible toxicity.Although there is evidence that adenoviral vectors predominantly persist as episomal DNA molecules with a low integration frequency into the host genome, detailed information about the nuclear fate and the molecular status of the HC-AdV genome once inside the nucleus is lacking. In recent years we have focused on analyzing and modifying the nuclear fate of HC-AdVs after infection of mammalian cells. We have focused on investigating the molecular DNA forms of HC-AdV genomes and we have designed strategies to excise and stably integrate a transgene from an episomal adenovirus vector genome into the host chromosomes by recombinases. This review article provides a state-of-the art overview of the current knowledge of episomal HC-AdV persistence and it discusses strategies for changing the nuclear fate of a transgene inserted into the HC-AdV genome by somatic integration into host chromosomes.  相似文献   

2.
J E Nelson  M A Kay 《Journal of virology》1997,71(11):8902-8907
Recombinant adenovirus vectors represent an efficient means of transferring genes into many different organs. The first-generation E1-deleted vector genome remains episomal and, in the absence of host immunity, persists long-term in quiescent tissues such as the liver. The mechanism(s) which allows for persistence has not been established; however, vector DNA replication may be important because replication has been shown to occur in tissue culture systems. We have utilized a site-specific methylation strategy to monitor the replicative fate of E1-deleted adenovirus vectors in vitro and in vivo. Methylation-marked adenovirus vectors were produced by the addition of a methyl group onto the N6 position of the adenine base of XhoI sites, CTCGAG, by propagation of vectors in 293 cells expressing the XhoI isoschizomer PaeR7 methyltransferase. The methylation did not affect vector production or transgene expression but did prevent cleavage by XhoI. Loss of methylation through viral replication restores XhoI cleavage and was observed by Southern analysis in a wide variety of, but not all, cell culture systems studied, including hepatoma and mouse and macaque primary hepatocyte cultures. In contrast, following liver-directed gene transfer of methylated vector in C57BL/6 mice, adenovirus vector DNA was not cleaved by XhoI and therefore did not replicate, even after a period of 3 weeks. Although replication may occur in some tissues, these results show that stabilization of the vector within the target tissue prior to clearance by host immunity is not dependent upon replication of the vector, demonstrating that the input transduced DNA genomes were the persistent molecules. This information will be useful for the design of optimal adenovirus vectors and perhaps nonviral episomal vectors for clinical gene therapy.  相似文献   

3.
Bernt K  Liang M  Ye X  Ni S  Li ZY  Ye SL  Hu F  Lieber A 《Journal of virology》2002,76(21):10994-11002
We have developed a new class of adenovirus vectors that selectively replicate in tumor cells. The vector design is based on our recent observation that a variety of human tumor cell lines support DNA replication of adenovirus vectors with deletions of the E1A and E1B genes, whereas primary human cells or mouse liver cells in vivo do not. On the basis of this tumor-selective replication, we developed an adenovirus system that utilizes homologous recombination between inverted repeats to mediate precise rearrangements within the viral genome resulting in replication-dependent activation of transgene expression in tumors (Ad.IR vectors). Here, we used this system to achieve tumor-specific expression of adenoviral wild-type E1A in order to enhance viral DNA replication and spread within tumor metastases. In vitro DNA replication and cytotoxicity studies demonstrated that the mechanism of E1A-enhanced replication of Ad.IR-E1A vectors is efficiently and specifically activated in tumor cells, but not in nontransformed human cells. Systemic application of the Ad.IR-E1A vector into animals with liver metastases achieved transgene expression exclusively in tumors. The number of transgene-expressing tumor cells within metastases increased over time, indicating viral spread. Furthermore, the Ad.IR-E1A vector demonstrated antitumor efficacy in subcutaneous and metastatic models. These new Ad.IR-E1A vectors combine elements that allow for tumor-specific transgene expression, efficient viral replication, and spread in liver metastases after systemic vector application.  相似文献   

4.
Direct or inverse repeated sequences are important functional features of prokaryotic and eukaryotic genomes. Considering the unique mechanism, involving single-stranded genomic intermediates, by which adenovirus (Ad) replicates its genome, we investigated whether repetitive homologous sequences inserted into E1-deleted adenoviral vectors would affect replication of viral DNA. In these studies we found that inverted repeats (IRs) inserted into the E1 region could mediate predictable genomic rearrangements, resulting in vector genomes devoid of all viral genes. These genomes (termed DeltaAd.IR) contained only the transgene cassette flanked on both sides by precisely duplicated IRs, Ad packaging signals, and Ad inverted terminal repeat sequences. Generation of DeltaAd.IR genomes could also be achieved by coinfecting two viruses, each providing one inverse homology element. The formation of DeltaAd.IR genomes required Ad DNA replication and appeared to involve recombination between the homologous inverted sequences. The formation of DeltaAd. IR genomes did not depend on the sequence within or adjacent to the inverted repeat elements. The small DeltaAd.IR vector genomes were efficiently packaged into functional Ad particles. All functions for DeltaAd.IR replication and packaging were provided by the full-length genome amplified in the same cell. DeltaAd.IR vectors were produced at a yield of approximately 10(4) particles per cell, which could be separated from virions with full-length genomes based on their lighter buoyant density. DeltaAd.IR vectors infected cultured cells with the same efficiency as first-generation vectors; however, transgene expression was only transient due to the instability of deleted genomes within transduced cells. The finding that IRs present within Ad vector genomes can mediate precise genetic rearrangements has important implications for the development of new vectors for gene therapy approaches.  相似文献   

5.
A central feature of the adeno-associated virus (AAV) latent life cycle is persistence in the form of both integrated and episomal genomes. However, the molecular processes associated with episomal long-term persistence of AAV genomes are only poorly understood. To investigate these mechanisms, we have utilized a recombinant AAV (rAAV) shuttle vector to identify circular AAV intermediates from transduced HeLa cells and primary fibroblasts. The unique structural features exhibited by these transduction intermediates included circularized monomer and dimer virus genomes in a head-to-tail array, with associated specific base pair alterations in the 5′ viral D sequence. In HeLa cells, the abundance and stability of AAV circular intermediates were augmented by adenovirus expressing the E2a gene product. In the absence of E2a, adenovirus expressing the E4 open reading frame 6 gene product decreased the abundance of AAV circular intermediates, favoring instead the linear replication form monomer (Rfm) and dimer (Rfd) structures. In summary, the formation of AAV circular intermediates appears to represent a new pathway for AAV genome conversion, which is consistent with the head-to-tail concatemerization associated with latent-phase persistence of rAAV. A better understanding of this pathway may increase the utility of rAAV vectors for gene therapy.  相似文献   

6.
Effective gene therapy is dependent on safe gene delivery vehicles that can achieve efficient transduction and sustained transgene expression. We are developing a hybrid viral vector system that combines in a single particle the large cloning capacity and efficient cell cycle-independent nuclear gene delivery of adenovirus (Ad) vectors with the long-term transgene expression and lack of viral genes of adeno-associated virus (AAV) vectors. The strategy being pursued relies on coupling the AAV DNA replication mechanism to the Ad encapsidation process through packaging of AAV-dependent replicative intermediates provided with Ad packaging elements into Ad capsids. The generation of these high-capacity AAV/Ad hybrid vectors takes place in Ad early region 1 (E1)-expressing cells and requires an Ad vector with E1 deleted to complement in trans both AAV helper functions and Ad structural proteins. The dependence on a replicating helper Ad vector leads to the contamination of AAV/Ad hybrid vector preparations with a large excess of helper Ad particles. This renders the further propagation and ultimate use of these gene delivery vehicles very difficult. Here, we show that Cre/loxP-mediated genetic selection against the packaging of helper Ad DNA can reduce helper Ad vector contamination by 99.98% without compromising hybrid vector rescue. This allowed amplification of high-capacity AAV/Ad hybrid vectors to high titers in a single round of propagation.  相似文献   

7.
To assay the efficiency of the FLP/FRT site-specific recombination system in Danio rerio, a construct consisting of a muscle-specific promoter driving EGFP flanked by FRT sites was developed. FLPe capped RNA was microinjected into transgenic single cell stage zebrafish embryos obtained by crossing hemizygous transgenic males with wild-type females. By 48 h post fertilization (hpf), the proportion of embryos displaying green fluorescence following FLPe RNA microinjection was significantly lower (7.7%; P < 0.001) than would be expected from a cross in the absence of the recombinase (50%). Embryos that retained fluorescence displayed marked mosaicism. Inheritance of the excised transgene in non-fluorescent, transgenic embryos was verified by PCR analysis and FLPe-mediated recombination was confirmed by DNA sequencing. Sperm derived from confirmed transgenic males in these experiments was used to fertilize wild-type eggs to determine whether germline excision of the transgene had occurred. Clutches sired by FLPe-microinjected males contained 0–4% fluorescent embryos. Transgenic males that were phenotypically wild-type produced no fluorescent progeny, demonstrating complete excision of the transgene from their germline. FLPe microinjected males that retained some fluorescent muscle expression produced a small proportion of fluorescent offspring, suggesting that in mosaic males not all germline cells had undergone FLPe-mediated transgene excision. Our results show that FLPe, which is derived from Saccharomyces cerevisiae, is an efficient recombinase in zebrafish maintained at 28.5°C.  相似文献   

8.
Epstein-Barr virus (EBV) episomes are stably maintained in permissive proliferating cell lines due to EBV nuclear antigen 1 (EBNA-1) protein-mediated replication and segregation. Previous studies showed the ability of EBV episomes to confer long-term transgene expression and correct genetic defects in deficient cells. To achieve quantitative delivery of EBV episomes in vitro and in vivo, we developed a binary helper-dependent adenovirus (HDA)-EBV hybrid system that consists of one HDA vector for the expression of Cre recombinase and a second HDA vector that contains all of the sequences for the EBV episome flanked by loxP sites. Upon coinfection of cells, Cre expressed from the first vector recombined loxP sites on the second vector. The resulting circular EBV episomes expressed a transgene and contained the EBV-derived family of repeats, an EBNA-1 expression cassette, and 19 kb of human DNA that functions as a replication origin in mammalian cells. This HDA-EBV hybrid system transformed 40% of cultured cells. Transgene expression in proliferating cells was observed for over 20 weeks under conditions that selected for the expression of the transgene. In the absence of selection, EBV episomes were lost at a rate of 8 to 10% per cell division. Successful delivery of EBV episomes in vivo was demonstrated in the liver of transgenic mice expressing Cre from the albumin promoter. This novel gene transfer system has the potential to confer long-term episomal transgene expression and therefore to correct genetic defects with reduced vector-related toxicity and without insertional mutagenesis.  相似文献   

9.
B Fang  P Koch    J A Roth 《Journal of virology》1997,71(6):4798-4803
The adenovirus E4 promoter was replaced by a synthetic promoter composed of a minimal TATA box and five consensus 17-mer yeast GAL4-binding-site elements. The viral vectors, which also contained human factor IX (hFIX) cDNA driven by Rous sarcoma virus long terminal repeat in the E1 region, were then constructed and expanded in 293 cells permanently expressing GAL4/VP16 fusion protein. Viral replication and expression of adenovirus E4 genes and late genes (hexon and fiber) were evaluated in vitro in the human lung carcinoma cell line H1299. Viral replication and viral gene expression were dramatically reduced in the cells transduced by vectors with a replaced E4 promoter compared to the levels in the cells transduced by vectors with the wild-type E4 promoter. The levels of transgene (hFIX) expression remained similar between vectors with or without E4 promoter replacement. These results indicate that diminution of viral gene expression and viral replication is achievable by promoter replacement.  相似文献   

10.

Background  

Gene transfer into the amniotic fluid using recombinant adenovirus vectors was shown previously to result in high efficiency transfer of transgenes into the lungs and intestines. Adenovirus mediated in utero gene therapy, however, resulted in expression of the transgene for less than 30 days. Recombinant adenovirus associated viruses (rAAV) have the advantage of maintaining the viral genome in daughter cells thus providing for long-term expression of transgenes.  相似文献   

11.
Biology of E1-deleted adenovirus vectors in nonhuman primate muscle   总被引:3,自引:0,他引:3       下载免费PDF全文
Adenovirus vectors have been studied as vehicles for gene transfer to skeletal muscle, an attractive target for gene therapies for inherited and acquired diseases. In this setting, immune responses to viral proteins and/or transgene products cause inflammation and lead to loss of transgene expression. A few studies in murine models have suggested that the destructive cell-mediated immune response to virally encoded proteins of E1-deleted adenovirus may not contribute to the elimination of transgene-expressing cells. However, the impact of immune responses following intramuscular administration of adenovirus vectors on transgene stability has not been elucidated in larger animal models such as nonhuman primates. Here we demonstrate that intramuscular administration of E1-deleted adenovirus vector expressing rhesus monkey erythropoietin or growth hormone to rhesus monkeys results in generation of a Th1-dependent cytotoxic T-cell response to adenovirus proteins. Transgene expression dropped significantly over time but was still detectable in some animals after 6 months. Systemic levels of adenovirus-specific neutralizing antibodies were generated, which blocked vector readministration. These studies indicate that the cellular and humoral immune response generated to adenovirus proteins, in the context of transgenes encoding self-proteins, hinders long-term transgene expression and readministration with first-generation vectors.  相似文献   

12.
Adeno-associated viral (AAV) vectors have demonstrated great utility for long-term gene expression in muscle tissue. However, the mechanisms by which recombinant AAV (rAAV) genomes persist in muscle tissue remain unclear. Using a recombinant shuttle vector, we have demonstrated that circularized rAAV intermediates impart episomal persistence to rAAV genomes in muscle tissue. The majority of circular intermediates had a consistent head-to-tail configuration consisting of monomer genomes which slowly converted to large multimers of >12 kbp by 80 days postinfection. Importantly, long-term transgene expression was associated with prolonged (80-day) episomal persistence of these circular intermediates. Structural features of these circular intermediates responsible for increased persistence included a DNA element encompassing two viral inverted terminal repeats (ITRs) in a head-to-tail orientation, which confers a 10-fold increase in the stability of DNA following incorporation into plasmid-based vectors and transfection into HeLa cells. These studies suggest that certain structural characteristics of AAV circular intermediates may explain long-term episomal persistence with this vector. Such information may also aid in the development of nonviral gene delivery systems with increased efficiency.  相似文献   

13.
Transgenic and gene-targeted mutant mice provide powerful tools for analysis of the cellular processes involved in early development and in the pathogenesis of many diseases. Here we describe a transgene integration strategy mediated by site-specific recombination that allows establishment of multiple embryonic stem (ES) cell lines carrying tetracycline-inducible genes targeted to a specific locus to assure predictable temporal and spatial expression in ES cells and mice. Using homologous recombination we inserted an frt homing site into which tetracycline-inducible transgenes can be integrated efficiently in the presence of FLPe recombinase. This strategy and the vectors described here are generally applicable to any locus in ES cells and should allow for the rapid production of mice with transgenes efficiently targeted to a defined site.  相似文献   

14.
Clinical applications of tumor gene therapy require tumor-specific delivery or expression of therapeutic genes in order to maximize the oncolytic index and minimize side effects. This study demonstrates activation of transgene expression exclusively in hepatic metastases after systemic application of a modified first-generation (E1A/E1B-deleted) adenovirus vector (AdE1-) in mouse tumor models. The discrimination between tumors and normal liver tissue is based on selective DNA replication of AdE1- vectors in tumor cells. This new AdE1- based vector system uses homologous recombination between inverted repeats to mediate precise rearrangements within the viral genome. As a result of these rearrangements, a promoter is brought into conjunction with a reporter gene creating a functional expression cassette. Genomic rearrangements are dependent upon viral DNA replication, which in turn occurs specifically in tumor cells. In a mouse tumor model with liver metastases derived from human tumor cells, a single systemic administration of replication activated AdE1- vectors achieved transgene expression in every metastasis, whereas no extra-tumoral transgene induction was observed. Here we provide a new concept for tumor-specific gene expression that is also applicable for other conditionally replicating adenovirus vectors.  相似文献   

15.
The persistence of transgene expression has become a hallmark for adenovirus vector evaluation in vivo. Although not all therapeutic benefit in gene therapy is reliant on long-term transgene expression, it is assumed that the treatment of chronic diseases will require significant persistence of expression. To understand the mechanisms involved in transgene persistence, a number of adenovirus vectors were evaluated in vivo in different strains of mice. Interestingly, the rate of vector genome clearance was not altered by the complete deletion of early region 4 (E4) in our vectors. The GV11 (E1- E4-) vector genome cleared with a similar kinetic profile as the GV10 (E1-) vector genome in immunocompetent and immunocompromised mice. These results suggest that the majority of adenovirus vector genomes are eliminated from transduced tissue via a mechanism(s) independent of T-cell, B-cell, and NK cell immune mechanisms. While the levels of persistence of transgene expression in liver or lung transduced with GV10 and GV11 vectors expressing beta-galactosidase, cystic fibrosis transmembrane conductance regulator, or secretory alkaline phosphatase were similar in immunocompetent mice, a marked difference was observed in immunocompromised animals. Levels of transgene expression initially from both GV10 and GV11 vectors were the same. However, GV11 transgene expression correlated with loss of vector genome, while GV10 transgene expression persisted at a high level. Coadministration and readministration of GV10 vectors showed that E4 provided in trans could activate transgene expression from the GV11 vector genome. While transgene expression activity per genome from the GV10 vector is clearly activated, expression from a cytomegalovirus promoter expression cassette in a GV11 vector appeared to be further inactivated as a function of time. Understanding the molecular mechanisms underlying these expression effects will be important for developing persistent adenovirus vectors for chronic applications.  相似文献   

16.
Due to the very efficient nuclear entry mechanism of adenovirus and its low pathogenicity for humans, adenovirus-based vectors have become gene delivery vehicles that are widely used for transduction of different cell types, especially for quiescent, differentiated cells, in basic research, in gene therapy applications, and in vaccine development. As an important basis for their use as gene medicine, adenoviral vectors can be produced in high titers, they can transduce cells in vivo with transgenes of more than 30 kb, and they do not integrate into the host cell genome. Recent advances in the development of adenoviral vectors have brought considerable progress on issues like target cell specificity and tropism modification, long-term expression of the transgene, as well as immunogenicity and toxicity in vivo, and have suggested that the different generations of non-replicative and replicative vectors available today will each suit best for certain applications.  相似文献   

17.
The 100K protein has a number of critical roles vital for successful completion of the late phases of the adenovirus (Ad) life cycle. We hypothesized that the introduction of deletions within the 100K gene would allow for the production of a series of new classes of Ad vector, including one that is replication competent but blocked in the ability to carry out many late-phase Ad functions. Such a vector would have potential for several gene therapy applications, based upon its ability to increase the copy number of the transgene encoded by the vector (via genome replication) while decreasing the side effects associated with Ad late gene expression. To efficiently produce 100K-deleted Ad ([100K-]Ad) vectors, an E1- and 100K-complementing cell line (K-16) was successfully isolated. Transfection of an [E1-,100K-]Ad vector genome into the K-16 cells readily yielded high titers of the vector. After infection of noncomplementing cells, we demonstrated that [100K-]Ad vectors have a significantly decreased ability to express several Ad late genes. Additionally, if the E1 gene was present in the infected noncomplementing cells, [100K-]Ad vectors were capable of replicating their genomes to high copy number, but were significantly blocked in their ability to efficiently encapsidate the replicated genomes. Injection of an [E1-,100K-]Ad vector in vivo also correlated with significantly decreased hepatotoxicity, as well as prolonged vector persistence. In summary, the unique properties of [100K-]Ad vectors suggest that they may have utility in a variety of gene therapy applications.  相似文献   

18.
The composite amplicon-6 vectors, which are derived from human herpesvirus 6 (HHV-6), can target hematopoietic cells. In the presence of the respective helper viruses, the amplicons are replicated by the rolling circle mechanism, yielding defective genomes of overall size 135 to 150 kb, composed of multiple repeats of units, containing the viral DNA replication origin, packaging signals, and the selected transgene(s). We report the use of amplicon-6 vectors designed for transgene expression in T cells. The selected transgenes included the green fluorescent protein marker, the herpes simplex virus type 1 glycoprotein D (gD), and the gD gene deleted in the transmembrane region (gDsec). The vectors were tested after electroporation and passage in T cells with or without helper HHV-6A superinfections. The results were as follows. (i)The vectors could be passaged both as cell-associated and as cell-free secreted virions infectious to new cells. (ii)The intact gD accumulated at the cell surface, whereas the gDsec was dispersed at internal locations of the cells or was secreted into the medium. (iii)Analyses of amplicon-6-gD expression by flow cytometry have shown significant expression in cultures with reiterated amplicons and helper viruses. The vector has spread to >60% of the cells, and the efficiency of expression per cell increased 15-fold, most likely due to the presence of concatemeric amplicon repeats. Current studies are designed to test whether amplicon-6 vectors can be used for gene therapy in lymphocytes and whether amplicon-6 vectors expressed in T cells and dendritic cells can induce strong cellular and humoral immune responses.  相似文献   

19.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.  相似文献   

20.
Helper-dependent (HD), high-capacity adenoviruses are one of the most efficient and safe gene therapy vectors, capable of mediating long-term expression. Currently, the most widely used system for HD vector production avoids significant contamination with helper virus by using producer cells stably expressing a nuclear-targeted Cre recombinase and an engineered first-generation helper virus with parallel loxP sites flanking its packaging signal. The system requires a final, density-based separation of HD and residual helper viruses by ultracentrifugation to reduce contaminating helper virus to low levels. This separation step hinders large-scale production of clinical-grade HD virus. By using a very efficient recombinase, in vitro-evolved FLPe (ref. 14), to excise the helper virus packaging signal in the producer cells, we have developed a scalable HD vector production method. FLP has previously been shown to mediate maximum levels of excision close to 100% compared to 80% for Cre (ref. 15). Utilizing a common HD plasmid backbone, the FLPe-based system reproducibly yielded HD virus with the same low levels of helper virus contamination before any density-based separation by ultracentrifugation. This should allow large-scale production of HD vectors using column chromatography-based virus purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号