首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The symbiotic characteristics of Rhizobium trifolii strains 1-01 and 2-01 were evaluated both individually and in various combinations on two cultivars (Mt. Barker and Woogenellup) of subterranean clover (Trifolium subterraneum L.). Nodules were observed on day 8 independent of cultivar or strain. Cultivar differences were measured in nodulating efficiency by 1-01 since 54% of the primary nodules were formed on cv. Mt. Barker and only 15% were formed on cv. Woogenellup in the zone above, or 1 cm below, the root tip location at the time of inoculation. The percentage of nodules formed in this zone by 2-01 was similar on both cultivars (31 to 32%). When mixtures of strains 1-01 and 2-01 (230:1 and 1:20) were used to inoculate plants, >90% of the nodules on both cultivars were occupied by the more abundant strain in the inoculum regardless of sampling date (4 or 8 weeks). In contrast, large percentages of nodules on 4-week-old plants of both cultivars exposed to a 5:1 inoculum mixture were doubly occupied (64 and 74%). By week 8 these values had decreased significantly (P ≤ 0.01) and were accompanied by large increases in the percentage of nodules occupied by either strain 1-01 alone (1 to 65%) on cv. Mt. Barker or 2-01 alone (4 to 49%) on cv. Woogenellup. The superior (cv. Mt. Barker) and inferior (cv. Woogenellup) symbiotic performance of plants inoculated with the 5:1 mixture correlated more closely with the 8-week than the 4-week nodule occupancy data. Primary nodule occupancy by 1-01 and 2-01 was significantly influenced by changes in the inoculum ratios of 1-01/2-01 from 5.7:1 to 0.67:1 on cv. Mt. Barker and from 1.9:1 to 0.67:1 on cv. Woogenellup. Despite evidence for extensive proliferation of the inoculant strains on the rhizoplanes, no evidence was obtained for either interstrain antagonism or selective proliferation as a valid reason to explain the outcome of primary nodulation.  相似文献   

2.
Indigenous serotypes 1-01 and 2-02 of Rhizobium trifolii occupied similar percentages (18 to 23%) of root nodules on soil-grown subclover (Trifolium subterraneum L.) and were virtually absent (4.5%) from nodules of soil-grown white clover (Trifolium repens L.). In contrast (with the exception of one dilution [10−4]), serotype 1-01 occupied a substantial portion of nodules (16 to 40%) on white clover seedlings grown on mineral salts agar and exposed to samples of the same soil in the form of a 10-fold dilution series (10−1 to 10−5). Under the latter conditions, occupancy of subclover nodules by 1-01 and of nodules of both plant species by 2-02 was consistent with the results obtained with soil-grown plants.  相似文献   

3.
Five strains of Rhizobium trifolii were evaluated in competition with indigenous populations in nodulating red clover (Trifolium pratense L.) cv. Kenland in two different soils in Mississippi. Double antibiotic resistance acquisition was used to measure the proportion of nodules occupied by the introduced mutant strains. In vertisol soil, strains RP113-7, 162BB1, LM1, and 162P17 were recovered in at least 94% of the assayed nodules, whereas TA1 was found in 83.8% of the nodules. At an ultisol location, significant differences were detected within the introduced rhizobia. Strain RP113-7 was recovered at very high rates (99.2% of the assayed nodules), whereas strains 162BB1, LM1, 162P17, and TA1 were all found in 84.9 to 96.0% of the nodules sampled. Forage yield and percent crude protein levels were lower with the less effective but competitive strain (TA1) at both locations. Results indicated that more effective strains of R. trifolii can increase red clover production and symbiotic nitrogen fixation under different environmental conditions in Mississippi.  相似文献   

4.
Plant genotypes of Trifolium subterraneum L. (subterranean clover) were evaluated for differences in symbiotic N2 fixation with soil rhizobia, with the long-term aim of using plant selection to overcome sub-optimal N2 fixation associated with poorly effective soil rhizobia. Symbiotic performance (SP) was assessed for 49 genotypes of subterranean clover with each of four pure Rhizobium strains isolated from soil. Plants were grown in N free media in the greenhouse and their shoot dry weights measured and expressed as a percentage of dry weight with R. leguminosarm bv. trifolii WSM1325, the recommended commercial inoculant. Average SP with two Rhizobium strains (H and J) ranged from completely ineffective to 80% of potential for the subterranean clover genotypes. Two clover cultivars with high (cv. Campeda) and low (cv. Clare) SP values were investigated in more detail. Campeda typically fixed more N2 than Clare when inoculated with 30 soil extracts (4.2 vs 2.4 mg N2 fixed/shoot) and with 14 pure strains isolated from those soils (4.2 vs 2.2 mg N2 fixed/shoot). The poor performance of Clare could be attributed to interruptions at multiple stages of the symbiotic association, from nodule initiation (less nodules), nodule development (small, white nodules), through to reduced nodule function (N2 fixed/mg nodule) depending on the inoculation treatment. Through the careful use of subterranean clover genotypes by plant breeders it should be possible to make significant gains in the SP of future subterranean clover cultivars.  相似文献   

5.
Acidity affected which members of an indigenous soil population of Rhizobium trifolii nodulated Trifolium subterraneum L. cv. Mt. Barker. In three experiments involving plants grown either in mineral salts agar adjusted to pH 4.8 or 6.8 and inoculated with a soil suspension or grown directly in samples of unamended soil (pH 4.8) or soil amended with CaCO3 (pH 6.4), 121 of 151 isolates of R. trifolii were placed into four serogroups. Seventy-nine of these isolates were placed into two serogroups (6 and 36) whose nodulating ability was affected by the pH of the plant root environment. Representatives of serogroup 6 occupied the greatest percentage of the nodules at the low pH in both mineral salts agar (77%) and in unlimed soil (47 and 57%). The same serogroup was a minor nodule occupant at the higher pH in mineral salts agar (0%) and in limed soil (0 and 10%). In contrast, serogroup 36 was virtually absent in nodules formed at the low pH, whereas it was the dominant serogroup at the higher pH in both mineral salts agar (32%) and in limed soil (35 and 49%). Despite the isolates from within each serogroup being antigenically identical, separation of cellular proteins by sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis revealed four and six different gel types within serogroups 6 and 36, respectively. Isolates represented by one or two gel types dominated the contribution of each serogroup to the nodule population. Further evidence for differences between isolates within each gel type were revealed from measurements of symbiotic effectiveness.  相似文献   

6.
The effect of pH on host plant ‘preference’ for strains of R. trifolii was studied using the fluorescent ELISA technique. Four white clover cultivars were compared growing at pH 5, 6 and 7 inoculated with 1:1 mixtures of two strains of R. trifolii, CP3B and R4. The growth of these two bacterial strains was also studied at the same pH levels in pure culture. At pH 5, in pure culture, CP3B grew very well but R4 failed to reach the log phase. CP3B also produced the majority of nodules at this pH (86%). At pH 7, in pure culture, R4 grew better than CP3B and also produced 66% of the nodules in the nodulation experiment. However, there was good evidence of host cultivar ‘preference’ with cv. Milkanova having no nodules inhabited by CP3B at pH 7 but cv. S100 having 32%. The results are discussed from the point of view of the establishment of white clover in acid soils and the usefulness of the fluorescent ELISA technique for Rhizobium strain identification is also emphasised.  相似文献   

7.
Gram-negative, rod-shaped bacteria from the soil of white clover-ryegrass pastures were screened for their ability to nodulate white clover (Trifolium repens) cultivar Grasslands Huia and for DNA homology with genomic DNA from Rhizobium leguminosarum biovar trifolii ICMP2668 (NZP582). Of these strains, 3.2% were able to hybridize with strain ICMP2668 and nodulate white clover and approximately 19% hybridized but were unable to nodulate. Strains which nodulated but did not hybridize with strain ICMP2668 were not detected. DNA from R. leguminosarum biovar trifolii (strain PN165) cured of its symbiotic (Sym) plasmid and a specific nod probe were used to show that the relationship observed was usually due to chromosomal homology. Plasmid pPN1, a cointegrate of the broad-host-range plasmid R68.45 and a symbiotic plasmid pRtr514a, was transferred by conjugation to representative strains of nonnodulating, gram-negative, rod-shaped soil bacteria. Transconjugants which formed nodules were obtained from 6 of 18 (33%) strains whose DNA hybridized with that of PN165 and 1 of 9 (11%) strains containing DNA which did not hybridize with that of PN165. The presence and location of R68.45 and nod genes was confirmed in transconjugants from three of the strains which formed nodules. Similarly, a pLAFR1 cosmid containing nod genes from a derivative of R. leguminosarum biovar trifolii NZP514 formed nodules when transferred to soil bacteria.  相似文献   

8.
Although at least 13 antigenically distinct serotypes of Rhizobium leguminosarum bv. trifolii exist in an Abiqua silty clay loam soil, one serotype, AS6, occupies ≥50% of the root nodules formed on field-grown subclover and between 33 and 78% of the nodules formed on five annual clover species grown in the same soil under laboratory conditions. The dominance of subclover nodules by serotype AS6 was reproducible over a 4-year sampling period and throughout the entire 200- by 100-m pasture examined. Serotype AS6 was composed of three antigenically distinct subtypes (AS6-a, AS6-b, and AS6-c). Each subtype contributed about one-third of the AS6 isolates recovered from nodules of field-grown subclover plants and maintained similar population densities in nonrhizosphere and rhizosphere soil. Rhizobia with the AS6 antigenic signature accounted for from 20 to 100% of the soil populations of R. leguminosarum in arable and pasture soils under legumes throughout the state of Oregon. Over a 12-month period, the population densities of the serotype AS6 complex and three minor nodule-occupying serotypes (AG4, AP17, and AS21) were measured in the rhizospheres of field-grown subclover and orchard grass and in nonrhizosphere Abiqua soil. Regardless of season or serotype, the orchard grass rhizosphere effect was minimal, with the ratio between rhizosphere and nonrhizosphere serotype population densities ranging between 2.5 (midsummer) and 10.5 (spring). In contrast, the magnitude of the subclover rhizosphere effect varied seasonally and among serotypes. Between October and December the ratios for all serotypes were similar (12.5 to 25.5). However, in the spring (April and May), the magnitude of the rhizosphere effect varied among the indigenous serotypes (ratios, 10.5 to 442) and for minor nodule-occupying serotypes AS21 (ratio, 442) and AP17 (ratio, 47) was as great as, or even greater than, the magnitude of the rhizosphere effect observed with the AS6 complex (ratio, 65.5).  相似文献   

9.
Rhizosphere response was studied as a factor in competition among indigenous Rhizobium japonicum serogroups for the nodulation of soybeans under field conditions. R. japonicum serogroups 110, 123, and 138 were found to coexist in a Waukegan field soil where they were determined to be the major nodulating rhizobia in soybean nodules. Competitive relationships among the three serogroups in that soil and in rhizospheres were examined during two growing seasons with several host cultivars with and without inoculation and with a nonlegume. Enumeration of each of the three competitors was carried out on inner rhizosphere and nonrhizosphere soil by immunofluorescence with serogroup-specific fluorescent antibodies. Rhizobia present in early- and late-season nodules were identified by fluorescent antibody analysis. Populations of each serogroup increased gradually in host rhizospheres, not exceeding 106/g of rhizosphere soil during the first few weeks after planting, whereas numbers in fallow soil remained at initial levels (104 to 105/g). The rhizosphere effects were minor in host plants during this period of nodule initiation and were about the same for all three serogroups. Although serogroup 123 gave no evidence of dominance in early host rhizospheres, it clearly dominated in nodule composition, occupying 60 to 100% of the nodules. High densities of all three serogroups were observed in host rhizospheres during flowering. Rhizosphere populations, especially of serogroup 123, were still high during pod fill and seed maturation. The rhizosphere responses of the R. japonicum serogroups were much greater with the soybean cultivars than with oats, but even in host rhizospheres the R. japonicum populations were greatly outnumbered by other bacteria. The success of serogroup 123 in achieving nodulation does not appear to be due to superior colonization of the host rhizosphere.  相似文献   

10.
The effect of several biotic and abiotic factors on the pattern of competition between two strains of Rhizobium japonicum was examined. In two Minnesota soils, Waseca and Waukegan, strain USDA 123 occupied 69% (Waseca) and 24% (Waukegan) of the root nodules on Glycine max L. Merrill cv. Chippewa. USDA 110 occupied 2% of the root nodules in the Waseca soil and 12% of the nodules in the Waukegan soil. Under a variety of other growth conditions—vermiculite, vermiculite amended with Waseca soil, and two Hawaiian soils devoid of naturalized Rhizobium japonicum strains—USDA 110 was more competitive than USDA 123. The addition of nitrate to or the presence of antibiotic-producing actinomycetes in the rhizosphere of soybeans did not affect the pattern of competition between the two strains. However, preexposure of young seedings to USDA 110 or USDA 123 before transplantation into soil altered the pattern of competition between the two strains significantly. In the Waseca soil, preexposure of cv. Chippewa to USDA 110 for 72 h increased the percentage of nodules occupied by USDA 110 from 2 to 55%. Similarly, in the Hawaiian soil Waimea, nodule occupancy by USDA 123 increased from 7 to 33% after a 72-h preexposure.  相似文献   

11.
A series of Rhizobium meliloti and Rhizobium trifolii strains were used as inocula for alfalfa and clover, respectively, grown under bacteriologically controlled conditions. Replicate samples of nodules formed by each strain were assayed for rates of H2 evolution in air, rates of H2 evolution under Ar and O2, and rates of C2H2 reduction. Nodules formed by all strains of R. meliloti and R. trifolii on their respective hosts lost at least 17% of the electron flow through nitrogenase as evolved H2. The mean loss from alfalfa nodules formed by 19 R. meliloti strains was 25%, and the mean loss from clover nodules formed by seven R. trifolii strains was 35%. R. meliloti and R. trifolii strains also were cultured under conditions that were previously established for derepression of hydrogenase synthesis. Only strains 102F65 and 102F51 of R. meliloti showed measurable activity under free-living conditions. Bacteroids from nodules formed by the two strains showing hydrogenase activity under free-living conditions also oxidized H2 at low rates. The specific activity of hydrogenase in bacteroids formed by either strain 102F65 or strain 102F51 of R. meliloti was less than 0.1% of the specific activity of the hydrogenase system in bacteroids formed by H2 uptake-positive Rhizobium japonicum USDA 110, which has been investigated previously. R. meliloti and R. trifolii strains tested possessed insufficient hydrogenase to recycle a substantial proportion of the H2 evolved from the nitrogenase reaction in nodules of their hosts. Additional research is needed, therefore, to develop strains of R. meliloti and R. trifolii that possess an adequate H2-recycling system.  相似文献   

12.
Rhizobium leguminosarum bv. trifolii T24 is ineffective in symbiotic nitrogen fixation, produces a potent antibiotic (referred to here as trifolitoxin) that is bacteriostatic to certain Rhizobium strains, and is very competitive for clover root nodulation (EA Schwinghamer, RP Belkengren 1968 Arch Mikrobiol 64: 130-145). The primary objective of this work was to demonstrate the roles of nodulation and trifolitoxin production in the expression of nodulation competitiveness by T24. Unlike wildtype T24, transposon mutants of T24 lacking trifolitoxin production were unable to decrease clover nodulation by an effective, trifolitoxin-sensitive strain of R. leguminosarum bv. trifolii. A non-nodulating transposon mutant of T24 prevented clover nodulation by a trifolitoxin-sensitive R. leguminosarum bv. trifolii when co-inoculated with a T24 mutant lacking trifolitoxin production. Neither mutant alone prevented nodulation by the trifolitoxin-sensitive strain. These results demonstrate that trifolitoxin production and nodulation are required for the expression of nodulation competitiveness by strain T24. A trifolitoxin-sensitive strain of R. meliloti did not nodulate alfalfa when co-inoculated with T24 and a trifolitoxin-resistant strain of R. meliloti. Thus, a trifolitoxin-producing strain was useful in regulating nodule occupancy on a legume host other than clover. Trifolitoxin production was constitutive in both minimal and enriched media. Trifolitoxin was found to inhibit the growth of 95% of all strains of R. leguminosarum bvs. trifolii, viceae, and phaseoli tested. Strains of all 13 biotypes of R. leguminosarum bv. trifolii were inhibited by trifolitoxin. Three strains of R. fredii were also inhibited. Strain T24 ineffectively nodulated 46 clover species, did not nodulate Trifolium ambiguum, and induced partially effective nodules on Trifolium micranthum. Since T24 produced partially effective nodules on T. micranthum and since a trifolitoxin-minus mutant of T24 induced ineffective nodules, trifolitoxin production is not the cause of the symbiotic ineffectiveness of T24.  相似文献   

13.
Rhizobium-Azospirillum interactions during establishment of Rhizobium-clover symbiosis were studied. When mixed cultures of Azospirillum and Rhizobium trifolii strains were simultaneously inoculated onto clover plants, no nodulation by R. trifolii was observed. R. trifolii ANU1030, which nodulated clover plants without attacking root hairs, i.e., does not cause root hair curling (Hac), did not show inhibition of nodulation when inoculated together with Azospirillum strains. Isolation of bacteria from surface-sterilized roots showed that azospirilla could be isolated both from within root segments and from nodules. Inhibition of nodulation could be mimicked by the addition of auxins to the plant growth medium.  相似文献   

14.
Antioxidant response to drought in red and white clover   总被引:1,自引:0,他引:1  
Antioxidant response to drought in red (Trifolium pratense L., cv. ??Start??) and white clover (Trifolium repens L, cv. ??Haifa?? and cv. ??Debut??) grown as soil cultures was evaluated in water-deprived and recovered plants. Drought provoked oxidative stress in leaves confirmed by the considerable changes in electrolyte leakage, malondialdehyde, hydrogen peroxides and proline contents. Immunoblot of ??-1-pyrroline-5-carboxylate synthetase (P5CS), which catalyzes the first two steps in proline biosynthesis, revealed strong induction of the enzyme in red clover plants submitted to drought. Water-deprived white clover plants exhibited distinct P5CS profiles. This was related to different drought tolerance of the studied T. repens cultivars. Isoenzyme analyses of superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) demonstrated certain differences in antioxidant defence among the tested varieties. It was confirmed that MnSOD (in both T. repens and T pratense) and FeSOD (in T. repens) isoforms were the most affected by drought. The red clover cultivar ??Start?? exhibited the lowest FeSOD and POX activities which could contribute to its poor performance under water deprivation.  相似文献   

15.
Strains of Rhizobium leguminosarum (biovar trifolii) isolated from two Ethiopian soils or obtained from a commercial source were evaluated for symbiotic effectiveness on five African annual clover species. Numerous Rhizobium trifolii strains that exhibited varying levels of symbiotic effectiveness were isolated from both soils (a nitosol and a vertisol), and it was possible to identify strains that were highly effective for each clover species. The soil isolates were, as a group, superior to the strains from the commercial source. Several R. trifolii strains were found to be effective on more than one clover species, and there appeared to be at least two and possibly three distinct cross-inoculation effectiveness groups.  相似文献   

16.
Competition between indigenous Rhizobium leguminosarum biovar trifolii strains and inoculant strains or between mixtures of inoculant strains was assessed in field and growth-room studies. Strain effectiveness under competition was compared with strain performance in the absence of competition. Field inoculation trials were conducted at Elora, Ontario, Canada, with soil containing indigenous R. leguminosarum biovar trifolii. The indirect fluorescent-antibody technique was used for the identification of nodule occupants. Treatments consisted of 10 pure strains, a commercial peat inoculant containing a mixture of strains, and an uninoculated control. Inoculant strains occupied 17.5 to 85% of nodules and resulted in increased dry weight and nitrogen content, as compared with the uninoculated control. None of the strains was capable of completely overcoming resident rhizobia, which occupied, on average, 50% of the total nodules tested. In growth-room studies single commercial strains were mixed in all possible two-way combinations and assessed in a diallel mating design. Significant differences in plant dry weight of red clover were observed among strain combinations. Specific combining ability effects were significant at the 10% level, suggesting that the effectiveness of strain mixtures depended on the specific strain combinations. Strains possessing superior effectiveness and competitive abilities were identified by field and growth-room studies. No relationship was detected between strain effectiveness and competitive ability or between strain recovery and host cultivar. The concentration of indigenous populations was not considered to be a limiting factor in the recovery of introduced strains at this site.  相似文献   

17.
High-throughput sequencing of the amplicon gene library revealed variations in the population structure of clover rhizobia (Rhizobium leguminosarum bv. trifolii) upon transition from soil into the root nodules of the host plant (Trifolium hybridum). Analysis of rhizobial diversity using the nodA gene revealed 3258 and 1449 nucleotide sequences (allelic variants) for the soil and root nodule population, respectively. They were combined into 29 operational taxonomic units (OTU) according to the 97% identity level; 24 OTU were found in the soil population, 12 were present in the root nodule population, and 7 were common. The predominant OTE13 (77.4 and 91.5% of the soil and root nodule populations, respectively) contained 155 and 200 variants of the soil and root nodule populations, respectively, with the nucleotide diversity increasing significantly upon the “soil → root” transition. The “moving window” approach was used to reveal the sites of the nodA gene in which polymorphism, including that associated with increased frequency of non-synonymous substitution frequency, increased sharply upon transition from soil into root nodules. PCR analysis of the IGS genotypes of individual strains revealed insignificant changes in rhizobial diversity upon transition from soil into root nodules. These results indicate that acceleration of rhizobial evolution in the course of symbiosis may be associated with development of highly polymorphic virulent subpopulations subjected to directional selection in the “plant-soil” system.  相似文献   

18.
The effect of infection by Meloidogyne javanica and Heterodera trifolii on number, size, structure and efficiency of nodules formed by Rhizobiurn trifolii on white clover roots was investigated. Introduction of nematodes one week before, simultaneously, or one week following inoculation with Rhizobium bacteria did not hinder nodule formation. Nodule size did not differ between nematode-infected and nematode-free plants. Formation of nodules on M. javanica galls and gall formation on the nodules have been reported. The structure of nodular tissues was not disturbed by nematode infection, even though giant cells were formed inside the vascular bundles. The nitrogen-fixation efficiency of nematode-infected nodules was not impaired; however, earlier disintegration of nodules as a result of M. javanica infection ultimately deprived the plants of nitrogenous materials. The drastic reduction of the total-N in H. trifolii-infected plants reflected stunting of the entire plant due to nematode infection. Both nematodes invaded the entire root system, uniformly showing preference for nodules.  相似文献   

19.
Receptor Site on Clover and Alfalfa Roots for Rhizobium   总被引:17,自引:4,他引:13       下载免费PDF全文
Sites on white clover and alfalfa roots that bind Rhizobium trifolii and R. meliloti capsular polysaccharides, respectively, were examined by fluorescence microscopy. Fluorescein isothiocyanate-labeled capsular material from R. trifolii bound specifically to root hairs of clover but not alfalfa. Binding was most intense at the root hair tips. Treatment of clover roots with 2-deoxyglucose (2-dG) prevented binding of R. trifolii capsular material to the roots. The sugar 2-dG enhanced the elution of clover root protein, which could bind to and specifically agglutinate R. trifolii but not R. meliloti or R. japonicum. The mild elution procedure left the roots intact. Agglutination of R. trifolii and passive hemagglutination of rabbit erythrocytes coated with the capsular material of R. trifolii were specifically inhibited by 2-dG. These results suggest that clover roots contain proteins that cross-link complementary polysaccharides on the surface of clover root hairs and infective R. trifolii through 2-dG-sensitive binding sites. Alfalfa root hairs were shown to specifically bind to a surface polysaccharide from R. meliloti.  相似文献   

20.
Rhizobium leguminosarum biovar trifolii strain TA1 nodulates a range of Trifolium plants including red, white and subterranean clovers. Nitrogen-fixing nodules are promptly initiated on the tap roots of these plants at the site of inoculation. In contrast to these associations, strain TA1 has a Nod- phenotype on a particular cultivar of subterranean clover called Woogenellup (A.H. Gibson, Aust J Agric Sci 19: (1968) 907–918) where it induces rare, poorly developed, slow-to-appear and ineffective lateral root nodules. By comparing the nodulation gene region of strain TA1 with that of another R. leguminosarum bv. trifolii strain ANU843, which is capable of efficiently nodulating cv. Woogenellup, we have shown that the nodT gene (B.P. Surin et al., Mol Microbiol 4: (1990) 245–252) is essential for nodulation on cv. Woogenellup. The nodT gene is naturally absent in strain TA1. A cosmid clone spanning the entire nodulation gene region of strain TA1 was capable of conferring nodulation ability to R.l. bv. trifolii strains deleted for nodulation genes, but only on cultivars of subterranean clovers nodulated by strain TA1. This shows that cultivar recognition events are, in part, determined by genes in the nodulation region of strain TA1. Complementation studies also indicated that strain TA1 contains negatively-acting genes located on the Sym plasmid and elsewhere, which specifically block nodulation of cv. Woogenellup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号