首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
L-Lysine acetate crystallises in the monoclinic space group P21 with a = 5.411 (1), b = 7.562(1), c = 12.635(2) A and beta = 91.7(1) degrees. The crystal structure was solved by direct methods and refined to an R value of 0.049 using the full matrix least squares method. The conformation and the aggregation of lysine molecules in the structure are similar to those found in the crystal structure of L-lysine L-aspartate. A conspicuous similarity between the crystal structures of L-arginine acetate and L-lysine acetate is that in both cases the strongly basic side chain, although having the largest pK value, interacts with the weakly acidic acetate group leaving the alpha-amino and the alpha-carboxylate groups to take part in head-to-tail sequences. These structures thus indicate that electrostatic effects are strongly modulated by other factors so as to give rise to head-to-tail sequences which have earlier been shown to be an almost universal feature of amino acid aggregation in the solid state.  相似文献   

2.
L-Lysine D-glutamate crystallizes in the monoclinic space group P2(1) with a = 4.902, b = 30.719, c = 9.679 A, beta = 90 degrees and Z = 4. The crystals of L-lysine D-aspartate monohydrate belong to the orthorhombic space group P2(1)2(1)2(1) with a = 5.458, b = 7.152, c = 36.022 A and Z = 4. The structures were solved by the direct methods and refined to R values of 0.125 and 0.040 respectively for 1412 and 1503 observed reflections. The glutamate complex is highly pseudosymmetric. The lysine molecules in it assume a conformation with the side chain staggered between the alpha-amino and the alpha-carboxylate groups. The interactions of the side chain amino groups of lysine in the two complexes are such that they form infinite sequences containing alternating amino and carboxylate groups. The molecular aggregation in the glutamate complex is very similar to that observed in L-arginine D-aspartate and L-arginine D-glutamate trihydrate, with the formation of double layers consisting of both types of molecules. In contrast to the situation in the other three LD complexes, the unlike molecules in L-lysine D-aspartate monohydrate aggregate into alternating layers as in the case of most LL complexes. The arrangement of molecules in the lysine layer is nearly the same as in L-lysine L-aspartate, with head-to-tail sequences as the central feature. The arrangement of aspartate ions in the layers containing them is, however, somewhat unusual. Thus the comparison between the LL and the LD complexes analyzed so far indicates that the reversal of chirality of one of the components in a complex leads to profound changes in molecular aggregation, but these changes could be of more than one type.  相似文献   

3.
The packing of peptide helices in crystals of the leucine-rich decapeptide Boc-Aib-Leu-Aib-Aib-Leu-Leu-Leu-Aib-Leu-Aib-OMe provides an example of ladder-like leucylleucyl interactions between neighboring molecules. The peptide molecule forms a helix with five 5----1 hydrogen bonds and two 4----1 hydrogen bonds near the C terminus. Three head-to-tail NH ... O = C hydrogen bonds between helices form continuous columns of helices in the crystal. The helicial columns associate in an antiparallel fashion, except for the association of Leu ... Leu side chains, which occurs along the diagonal of the cell where the peptide helices are parallel. The peptide, with formula C56H102N10O13, crystallizes in space group P2(1)2(1)2(1) with Z = 4 and cell parameters a = 16.774(3) A, b = 20.032(3) A and c = 20.117(3) A; overall agreement factor R = 10.7% for 2014 data with magnitude of F(obs) greater than 3 sigma (F); resolution 1.0 A.  相似文献   

4.
Crystals of DL-arginine hemisuccinate dihydrate (I)(monoclinic; P2(1)/c; a = 5.292, b = 16.296. c = 15.203 A; beta = 92.89 degrees; Z = 4) and L-arginine hemisuccinate hemisuccinic acid monohydrate (II) (triclinic; P1; a = 5.099; b = 10.222, c = 14.626 A; alpha = 77.31, beta = 89.46, gamma = 78.42 degrees; Z = 2) were grown under identical conditions from aqueous solutions of the components in molar proportions. The structures were solved by direct methods and refined to R = 0.068 for 2585 observed reflections in the case of (I) and R = 0.036 for 2154 observed reflections in the case of (II). Two of the three crystallographically independent arginine molecules in the complexes have conformations different from those observed so far in the crystal structures containing arginine. The succinic acid molecules and the succinate ions in the structures are centrosymmetric and planar. The crystal structure of (II) is highly pseudosymmetric. Arginine-succinate interactions in both the complexes involve specific guanidyl-carboxylate interactions. The basic elements of aggregation in both the structures are ribbons made up of alternating arginine dimers and succinate ions. However, the ribbons pack in different ways in the two structures. (II) presents an interesting case in which two ionisation states of the same molecule coexist in a crystal. The two complexes provide a good example of the effect of change in chirality on stoichiometry, conformation, aggregation, and ionisation state in the solid state.  相似文献   

5.
DL -Arginine DL -glutamate monohydrate and DL -arginine DL -aspartate, the first DL -DL amino acid–amino acid complexes to be prepared and x-ray analyzed, crystallize in the space group P1 with a = 5.139(2), b = 10.620(1), c = 14.473(2) Å, α = 101.34(1)°, β = 94.08(2)°, γ = 91.38(2)° and a = 5.402(3), b = 9.933(3), c = 13.881(2) Å, α = 99.24(2)°, β = 99.73(3)°, γ = 97.28(3)°, respectively. The structures were solved using counter data and refined to R values of 0.050 and 0.077 for 1827 and 1739 observed reflections, respectively. The basic element of aggregation in both structures is an infinite chain made up of pairs of molecules. Each pair, consisting of a L - and a D -isomer, is stabilized by two centrosymmetrically or nearly centrosymmetrically related hydrogen bonds involving the α-amino and the α-carboxylate groups. Adjacent pairs in the chain are then connected by specific guanidyl–carboxylate interactions. The infinite chains are interconnected through hydrogen bonds to form molecular sheets. The sheets are then stacked along the shortest cell translation. The interactions between sheets involve two head-to-tail sequences in the glutamate complex and one such sequence in the aspartate complex. However, unlike in the corresponding LL and DL complexes, head-to-tail sequences are not the central feature of molecular aggregation in the DL -DL complexes. Indeed, fundamental differences exist among the aggregation patterns in the LL , the LD , and the DL -DL complexes.  相似文献   

6.
L-Valyl-L-lysine hydrochloride, C11N3O3H23 HCl, crystallizes in the monoclinic space group P2(1) with a = 5.438(5), b = 14.188(5), c = 9.521(5) A, beta = 95.38(2) degrees and Z = 2. The crystal structure, solved by direct methods, refined to R = 0.036, using full matrix least-squares method. The peptide exists in a zwitterionic form, with the N atom of the lysine side-chain protonated. The two gamma-carbons of the valine side-chain have positional disorder, giving rise to two conformations, chi 1(11) = -67.3 and 65.9 degrees, one of which (65.9 degrees) is sterically less favourable and has been found to be less popular amongst residues branching at beta-C. The lysine side-chain has the geometry of g- tgt, not seen in crystal structures of the dipeptides reported so far. Interestingly, chi 2(3) (63.6 degrees) of lysine side-chain has a gauche+ conformation unlike in most of the other structures, where it is trans. The neighbouring peptide molecules are hydrogen bonded in a head-to-tail fashion, a rather uncommon interaction in lysine peptide structures. The structure shows considerable similarity with that of L-Lys-L-Val HCl in conformational angles and H-bond interactions [4].  相似文献   

7.
In the crystal, the backbone of Boc-(Aib-Val-Ala-Leu)2-Aib-OMe adopts a helical form with four alpha-type hydrogen bonds in the middle, flanked by 3(10)-type hydrogen bonds at either end. The helical molecules stack in columns with head-to-tail hydrogen bonds, either directly between NH and CO, or bridged by solvent molecules. The packing of the helices is parallel, even in space group P2(1). Cell parameters are a = 9.837(2) A, b = 15.565(3) A, c = 20.087(5) A, beta = 96.42(2) degrees, dcalc = 1.091 g/cm3 for C46H83N9O12.1.5H2O.0.67CH3OH. There appears to be some hydration of the backbone in this apolar helix.  相似文献   

8.
The dipeptide, L-prolyl-L-leucine monohydrate (C11H20N2O3.H2O, molecular weight, 246.3) crystallizes in the monoclinic space group P2(1), with cell constants: a = 6.492(2)A, b = 5.417(8)A, c = 20.491(5)A, beta = 96.59(2) degrees, Z = 2, Do = 1.15 g/cm3, and Dc = 1.142 g/cm3. The structure was solved by SHELX-86 and refined by full matrix least squares methods to a final R-factor of 0.081 for 660 unique reflections (I greater than 2 sigma (I)) measured on an Enraf Nonius CAD-4 diffractometer (CuK alpha, lambda = 1.5418 A, T = 293 K). The peptide linkage exists in the trans conformation. The pyrrolidine ring exists in the envelope conformation. The values of the sidechain torsion angles are: chi 1 = -59.3(13) degrees, chi 21 = -63.1(16) degrees and chi 22 = 174.8(15) degrees for leucine (C-terminal). The crystal structure is stabilised by a three-dimensional network of N-H ... O, O-H ... O, and C-H ... O hydrogen bonds.  相似文献   

9.
Lactitol trihydrate, C12H24O11.3H2O, crystallises in the orthorhombic space group, P2(1)2(1)2(1) with cell dimensions a = 8.306(2), b = 10.163(1), c = 21.321(1) A, and V = 1799.8(5) A3; Z = 4, Dx = 1.47 Mg m-3, lambda(Cu-K alpha) = 1.54178 A, mu = 1.14 mm-1, F(000) = 856, and T = 23 degrees. There are one intra- and thirteen inter-molecular hydrogen bonds in the structure. The bond lengths and angles agree well with the mean values of related structures. The galactopyranosyl ring has a chair conformation.  相似文献   

10.
The crystal and molecular structure of the nonapeptide antibiotic leucinostatin A, containing some uncommon amino acids and three Aib residues, has been determined by x-ray diffraction analysis. The molecule crystallizes in the orthorhombic space group P2(1)2(1)2(1), a = 10.924, b = 17.810, c = 40.50 A, C62H111N11O13, HCl.H2O, Z = 4. The peptide backbone folds in a regular right-handed alpha-helix conformation, with six intramolecular i----(i + 4) hydrogen bonds, forming C13 rings. The nonapeptide chain includes at the C end an unusual beta-Ala residue, which also adopts the helical structure of the other eight residues. In the crystal the helices are linked head to tail by electrostatic and hydrogen-bond interactions, forming continuous helical rods. The crystal packing is formed by adjacent parallel and antiparallel helical rods. Between adjacent parallel helical columns there are only van der Waals contacts, while between adjacent antiparallel helical columns hydrogen-bond interactions are formed.  相似文献   

11.
Thakur AK  Kishore R 《Biopolymers》2000,53(6):447-454
The chemical synthesis and x-ray crystal structure analysis of a model peptide incorporating a conformationally adaptable unsubstituted beta-Ala residue: Boc-beta-Ala-Acc6-OCH3 (C16H28N2O5, molecular weight = 328.41; 1) has been described. The peptide crystallized in the space group P2(1)2(1)2(1) a = 8.537 (3), b = 8.872 (10), c = 25.327 (8), alpha = beta = gamma = 90.0 degrees, Z = 4. An attractive feature of the crystal structure analysis of 1 is an accommodation of a significantly folded beta-Ala residue in a short linear peptide. The overall peptide conformation is typically folded into a beta-turn-like motif. The stabilization of the peptide backbone conformation by nonconventional C-H...O weak intramolecular hydrogen-bonding interactions, involving the ester terminal carbon atom and the ethereal oxygen of the Boc group, has been evoked. The conformational constraint that seems most apparent is the phi, psi value of the highly constrained hydrophobic Acc6 ring that may play a key role in inducing or sustaining the observed pseudo type III or III' beta-turn structure. The resulting 12-membered hydrogen bonding ring motif in 1 is distinctly different from the one found in classical beta-turn structures, stabilized by a conventional strong C=O...H-N intramolecular hydrogen bond, comprised of alpha-amino acids. The potential of the conformationally adaptable beta-Ala residue to occupy i + 1 position (left corner) of the folded beta-turn-like structure and to design and construct novel secondary structural features have been emphasized.  相似文献   

12.
A new form of L-histidine L-aspartate monohydrate crystallizes in space group P22 witha = 5.131(1),b = 6.881(1),c= 18.277(2) Å,β= 97.26(1)° and Z = 2. The structure has been solved by the direct methods and refined to anR value of 0.044 for 1377 observed reflections. Both the amino acid molecules in the complex assume the energetically least favourable allowed conformation with the side chains staggered between the α-amino and α-scarboxylate groups. This results in characteristic distortions in some bond angles. The unlike molecules aggregate into alternating double layers with water molecules sandwiched between the two layers in the aspartate double layer. The molecules in each layer are arranged in a head-to-tail fashion. The aggregation pattern in the complex is fundamentally similar to that in other binary complexes involving commonly occurring L amino acids, although the molecules aggregate into single layers in them. The distribution of crystallographic (and local) symmetry elements in the old form of the complex is very different from that in the new form. So is the conformation of half the histidine molecules. Yet, the basic features of molecular aggregation, particularly the nature and the orientation of head-to-tail sequences, remain the same in both the forms. This supports the thesis that the characteristic aggregation patterns observed in crystal structures represent an intrinsic property of amino acid aggregation.  相似文献   

13.
The incorporation of alpha-aminoisobutyryl (Aib) residues into peptide sequences facilitates helical folding. Aib-containing sequences have been chosen for the design of rigid helical segments in a modular approach to the construction of a synthetic protein mimic. The helical conformation of the synthetic peptide Boc-Aib-(Val-Ala-Leu-Aib)3-OMe in crystals is established by X-ray diffraction. The 13-residue apolar peptide adopts a helical form in the crystal with seven alpha-type hydrogen bonds in the middle and 3(10)-type hydrogen bonds at either end. The helices stack in columns, zigzag rather than linear, by means of direct NH...OC head to tail hydrogen bonds. Leucyl side chains are extended on one side of the helix and valyl side chains on the other side. Water molecules form hydrogen bonds with several backbone carbonyl oxygens that also participate in alpha-helix hydrogen bonds. There is no apparent distortion of the helix caused by hydration. The space group is P2(1)2(1)2(1), with a = 9.964 (3) A, b = 20.117 (3) A, c = 39.311 (6) A, Z = 4, and dx = 1.127 g/cm3 for C64H106N13O16.1.33H2O. The final agreement factor R was 0.089 for 3667 data observed greater than 3 sigma(F) with a resolution of 0.9 A.  相似文献   

14.
Yang L  Zhao Y  Tian W  Jin X  Weng S  Wu J 《Carbohydrate research》2001,330(1):125-130
The crystal structure of 2NdCl3.galactitol.14H2O has been determined. The crystal system is triclinic, space group: -1, with unit-cell dimensions: a = 9.736(2), b = 10.396, c = 8.027 A; alpha = 108.05(3), beta = 92.68(3), gamma = 88.44(3) degrees, V= 771.6(3) A3, Z = 2. Each Nd atom is coordinated to nine oxygen atoms, three from the alditol and six from water molecules, with Nd-O distances from 2.461 to 2.552 A. The seventh water molecule is hydrogen-bonded by the hydroxyl hydrogen on O-1 (O-1-H-ll...O-10, 2.639 A). The FT-IR spectra of 2NdCl3.galactitol.14H2O and 2PrCl3.galactitol.14H2O are analogous, and show that Pr and Nd have the same coordination mode. The IR results are consistent with the crystal structures.  相似文献   

15.
A series of rhenium(I) tricarbonyl complexes with bidentate P,O donor ligand o-(diphenylphosphino)benzaldehyde (P∩O) and its Schiff base P,N donor ligand o-[diphenylphosphino)benzylidene]analine (P∩N) have been synthesized and structurally characterized. All the complexes of the type [ReX(CO)(3)(LL)] (where LL = P∩O, P∩N) reveal a distorted octahedral structure with the three carbonyl ligands arranged in the facial fashion. Crystal data for 1, C(22)H(15)ClO(4)PRe·1/2C(6)H(14): triclinic, P1, a=8.7430(4), b=9.5767(4), c=13.9449(6) ?, α=93.651(1), β=101.265(1), γ=93.048(1); V=1140.20(9) ?(3), Z=2.2, C(22)H(15)BrO(4)Pre: monoclinic, C2/c, a=31.6800(16), b=8.8880(4), c=18.4517(9) ?, β=124.990(1); V=4256.4(4) ?(3), Z=8. 3, C(28)H(20)ClNO(3)Pre: monoclinic, C2/c, a=22.675(4), b=8.803(2), c=28.218(5) ?, β=100.192(3); V=5543.5(16) ?(3), Z=8.4, C(28)H(20)BrNO(3)Pre: monoclinic, C2/c, a=23.035(1), b=8.7561(4), c=28.269(1) ?, β=100.811(1); V=5600.4(5) ?(3), Z=8.  相似文献   

16.
A second example of insertion of a water molecule into the helical backbone of an apolar peptide is presented here and compared to a similar occurrence in a longer peptide with the same type of sequence of residues, i.e., Boc-Aib-(Ala-Leu-Aib)3-OMe. The backbone of the title compound assumes an approximate 3(10)-helical form with three 4----1 hydrogen bonds. In the place of a fourth 4----1 hydrogen bond, a water molecule is inserted between O(1) and N(4), and acts as a bridge by forming hydrogen bonds N(4) ... W(1) (2.95 A) and W(1) ... O(1) (2.81 A). The water molecule participates in a third hydrogen bond with a neighboring peptide molecule, W(1) ... O(4) (2.91 A). The insertion of the water molecule causes the apolar peptide to mimic an amphiphilic helix. Crystals grown from ethyl acetate/petroleum ether (reported here) or from methanol/water solution are in space group P2(1)2(1)2(1) with a = 12.024(4) A, b = 15.714(6) A, c = 21.411(7) A, Z = 4 and dcalc = 1.124 g/cm3 for C32H58N6O9.H2O. The overall agreement factor R is 6.3% for 2707 reflections observed with intensities greater than 3 sigma(F) and the resolution is 0.90 A.  相似文献   

17.
The design, synthesis, characterization and self-assembling properties of a new class of amphiphilic peptides, constructed from a bifunctional polar core attached to totally hydrophobic arms, are presented. The first series of this class, represented by the general structure Py(Aibn)2 (Py=2,6-pyridine dicarbonyl unit; Aib=alpha, alpha'-dimethyl glycine; n=1-4), is prepared in a single step by the condensation of commercially available 2,6-pyridine dicarbonyl dichloride with the methyl ester of homo oligoAib peptide (Aibn-OMe) in the presence of triethyl amine. 1H NMR VT and ROESY studies indicated the presence of a common structural feature of 2-fold symmetry and an NH...N hydrogen bond for all the members. Whereas the Aib3 segment in Py(Aib3)2 showed only the onset of a 3(10)-helical structure, the presence of a well-formed 3(10)-helix in both Aib4 arms of Py(Aib4)2 was evident in the 1H NMR of the bispeptide. X-ray crystallographic studies have shown that in the solid state, whereas Py(Aib2)2 molecules organize into a sheet-like structure and Py(Aib3)2 molecules form a double-stranded string assembly, the tetra Aib bispeptide, Py(Aib4)2, is organized to form a tetrameric assembly which in turn extends into a continuous channel-like structure. The channel is totally hydrophobic in the interior and can selectively encapsulate lipophilic ester (CH3COOR, R=C2H5, C5H11) molecules, as shown by the crystal structures of the encapsulating channel. The crystal structure parameters are: 1b, Py(Aib2)2, C25H37N5O8, sp. gr. P2(1)2(1)2(1), a=9.170(1) A, b=16.215(2) A, c=20.091(3) A, R=4.80; 1c, Py(Aib3)2, C33H51N7O10H2O, sp. gr. P1, a=11.040(1) A, b=12.367(1) A, c=16.959(1) A, alpha =102.41 degrees, beta =97.29 degrees, gamma =110.83 degrees, R1=6.94; 1 da, Py(Aib4)2.et ac, C41H65N9O12.1.5H2O.C4H8O2, sp. gr. P1, a=16.064(4) A, b=16.156 A, c=21.655(5) A, alpha =90.14(1)degrees, beta=101.38(2) degrees, gamma=97.07(1)degrees, Z=4, R1=9.03; 1db, Py(Aib4)2.amylac, C41H65N9O12.H2O.C7H14O2, P2(1)/c, a=16.890(1) A, b=17.523(1)A, c=20.411(1) A, beta=98.18 degrees, Z=4, R=11.1 (with disorder).  相似文献   

18.
Three crystalline polymorphs of the helical decapeptide, Boc-Aib-Ala-Leu-Ala-Leu-Aib-Leu-Ala-Leu-Aib-OMe, have been obtained. Antiparallel helix aggregation is observed in crystals grown from methanol (A), while completely parallel packing is observed in crystals from isopropanol (B) or an ethylene glycol-ethanol mixture (C). Crystals B and C are very similar in molecular conformation and packing. The packing motifs in crystals A and B consist of rows of parallel molecules, with an almost identical arrangement in both crystals. In crystal A, adjacent rows assemble with the helix axes pointed in opposite directions, whereas in crystal B all rows assemble with helix axes pointed in the same direction. Electrostatic interactions between helix dipoles do not appear to be a major determinant of packing modes. The structures also do not provide a ready rationalization of packing preferences in terms of side-chain interactions or solvation. The alpha-helix of the peptide in crystal A has seven 5----1 hydrogen bonds; the helix in crystal B is a mixed 3(10)/alpha-helix. The crystal parameters are as follows. Crystal A: C51H92N10O13.CH3OH, space group P2(1) with a = 10.498 (1) A, b = 18.189 (3) A, c = 16.475 (3) A, beta = 99.28 (1) degree, Z = 2, R = 9.6% for 1860 data. Crystal B: C51H92N10O13.C3H7OH, space group P2(1) with a = 10.534 (1) A, b = 28.571 (4) A, c = 11.055 (2) A, beta = 95.74 (1) degree, Z = 2, R = 6.5% for 3251 data. Crystal C: C51H92N10O13.C2H5OH, space group P2(1), with a = 10.450 (1) A, b = 28.442 (5) A, c = 11.020 (2) A, beta = 95.44(1) degree, Z = 2, R = 14.8% (isotropic) for 1948 data.  相似文献   

19.
The crystals of Boc-Tyr-Gly-Gly-Phe psi[CSNH]Leu-OBzl monohydrate (C40H51N5O8S.H2O), a monothionated Leu-enkephalin analogue, were obtained with space group P2(1), a = 12.616(3), b = 9.347(2), c = 18.548(5) A, beta = 96.31(4) degrees. The structure was elucidated by X-ray diffraction analysis, and refined to the R value of 0.091 for the observed 3294 reflections. Two antiparallel molecules related by a pseudo twofold symmetry were stabilized to each other by four intermolecular hydrogen bonds. The molecular conformation was bent at the Phe residue, and the extended moiety of the Tyr-Gly-Gly fragment was almost perpendicular to that of the Phe-Leu residues. Consequently the molecule, as a whole, formed an L-shape conformation with a slightly left-handed helicity.  相似文献   

20.
Vanadium(V) involvement in interactions with physiological ligands in biological media prompted us to delve into the systematic pH-dependent synthesis, spectroscopic characterization, and perusal of chemical properties of arising aqueous vanadium(V)-citrate species in the requisite system. To this end, facile reactions led to dinuclear complexes (NH(4))(4)[V(2)O(4)(C(6)H(5)O(7))(2)].4H(2)O (1) and (NH(4))(6)[V(2)O(4)(C(6)H(4)O(7))(2)].6H(2)O (2). Complex 1 and 2 were characterized by elemental analysis, FT-IR and X-ray crystallography. Complex 1 crystallizes in the monoclinic space group C2/c with a=16.998(5) A, b=16.768(5) A, c=9.546(3) A, beta=105.22(1) degrees, V=2625(1) A(3), and Z=4. Complex 2 crystallizes in the triclinic space group P1;, with a=9.795(4) A, b=9.942(4) A, c=9.126(3) A, alpha=90.32(1) degrees, beta=111.69(1) degrees, gamma=108.67(1) degrees, V=774.5(5) A(3), and Z=1. The structures of 1 and 2 were consistent with the presence of a V(V)(2)O(2) core, to which citrate ligands of differing protonation state were bound in a coordination mode consistent with past observations. Ultimately, the aqueous pH dependent transformations of a series of three dinuclear complexes, 1, 2 and (NH(4))(2)[V(2)O(4)(C(6)H(6)O(7))(2)].2H(2)O (3), all isolated at pH values from 3 to 7.5, were explored and revealed an important interconnection among all species. Collectively, pH emerged as a determining factor of structural attributes in all three complexes, with the adjoining acid-base chemistry unfolding around the stable V(V)(2)O(2) core. The results point to the participation of all three species in aqueous vanadium(V)-citrate speciation, and may relate the site-specific protonations-deprotonations on the dinuclear complexes to potential biological processes involving vanadium(V) and physiological ligand targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号