首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During early neural development, the Nkx6.1 homeodomain neural progenitor gene is specifically expressed in the ventral neural tube, and its activity is required for motoneuron generation in the spinal cord. We report that Nkx6.1 also controls oligodendrocyte development in the developing spinal cord, possibly by regulating Olig gene expression in the ventral neuroepithelium. In Nkx6.1 mutant spinal cords, expression of Olig2 in the motoneuron progenitor domain is diminished, and the generation and differentiation of oligodendrocytes are significantly delayed and reduced. The regulation of Olig gene expression by Nkx6.1 is stage dependent, as ectopic expression of Nkx6.1 in embryonic chicken spinal cord results in an induction of Olig2 expression at early stages, but an inhibition at later stages. Moreover, the regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 also appears to be region specific. In the hindbrain, unlike in the spinal cord, Olig1 and Olig2 can be expressed both inside and outside the Nkx6.1-expressing domains and oligodendrogenesis in this region is not dependent on Nkx6.1 activity.  相似文献   

3.
4.
5.
6.
Cai J  Qi Y  Hu X  Tan M  Liu Z  Zhang J  Li Q  Sander M  Qiu M 《Neuron》2005,45(1):41-53
In the developing spinal cord, early progenitor cells of the oligodendrocyte lineage are induced in the motor neuron progenitor (pMN) domain of the ventral neuroepithelium by the ventral midline signal Sonic hedgehog (Shh). The ventral generation of oligodendrocytes requires Nkx6-regulated expression of the bHLH gene Olig2 in this domain. In the absence of Nkx6 genes or Shh signaling, the initial expression of Olig2 in the pMN domain is completely abolished. In this study, we provide the in vivo evidence for a late phase of Olig gene expression independent of Nkx6 and Shh gene activities and reveal a brief second wave of oligodendrogenesis in the dorsal spinal cord. In addition, we provide genetic evidence that oligodendrogenesis can occur in the absence of hedgehog receptor Smoothened, which is essential for all hedgehog signaling.  相似文献   

7.
BACKGROUND AND RESULTS: Embryos from diabetic mice exhibit several forms of neural tube defects, including non-closure of the neural tube. In the present study, embryos collected at embryonic day 11.5 from diabetic pregnancies displayed open neural tube with architectural disruption of the surrounding tissues. The percentage of proliferating cells was found to be increased in the dorsal and ventral domains of the spinal neural tube of embryos from diabetic mice, indicating a defect in the proliferation index. We have analyzed the development of various cell types, including motoneurons, interneurons, oligodendrocytes and migrating neurons, as well as radial glial cells in the open neural tube using specific molecular markers. Immunofluorescence results revealed a significantly reduced number of Pax2+ interneurons and increased number of Isl-1+ motoneurons, as well as Olig2+ oligodendrocytes in the neural tube of embryos from diabetic mice as compared to controls. In addition, these embryos exhibited a decreased number of doublecortin positive migrating neurons and Glast/Blbp positive radial glial cells with shortened processes in the neural tube. Expression levels of several developmental control genes involved in the generation of different neuronal cell types (such as Shh, Ngn, Ngn2, Ascl1) were also found to be altered in the neural tube of embryos from diabetic mice. CONCLUSIONS: Overall, the open neural tube in embryos of diabetic mice exhibits defects in the specification of different cell types, including motoneurons and interneurons, as well as glial cells along the dorsoventral axis of the developing spinal cord. Although these defects are associated with altered expression of several development control genes, the exact mechanisms by which maternal diabetes contributes to these changes remain to be investigated.  相似文献   

8.
In the vertebrate spinal cord, oligodendrocytes arise from the ventral part of the neuroepithelium, a region also known to generate somatic motoneurons. The emergence of oligodendrocytes, like that of motoneurons, depends on an inductive signal mediated by Sonic hedgehog. We have defined the precise timing of oligodendrocyte progenitor specification in the cervico-brachial spinal cord of the chick embryo. We show that ventral neuroepithelial explants, isolated at various development stages, are unable to generate oligodendrocytes in culture until E5 but become able to do so in an autonomous way from E5.5. This indicates that the induction of oligodendrocyte precursors is a late event that occurs between E5 and E5.5, precisely at the time when the ventral neuroepithelium stops producing somatic motoneurons. Analysis of the spatial restriction of oligodendrocyte progenitors, evidenced by their expression of O4 or PDGFR(&agr;), indicate that they always lie within the most ventral Nkx2.2-expressing domain of the neuroepithelium, and not in the adjacent domain characterized by Pax6 expression from which somatic motoneurons emerge. We then confirm that Shh is necessary between E5 and E5.5 to specify oligodendrocyte precursors but is no longer required beyond this stage to maintain ongoing oligodendrocyte production. Furthermore, Shh is sufficient to induce oligodendrocyte formation from ventral neuroepithelial explants dissected at E5. Newly induced oligodendrocytes expressed Nkx2.2 but not Pax6, correlating with the in vivo observation. Altogether, our results show that, in the chick spinal cord, oligodendrocytes originate from Nkx2.2-expressing progenitors.  相似文献   

9.
During development, spinal cord oligodendrocyte precursors (OPCs) originate from the ventral, but not dorsal, neuroepithelium. Sonic hedgehog (SHH) has crucial effects on oligodendrocyte production in the ventral region of the spinal cord; however, less is known regarding SHH signalling and oligodendrocyte generation from neural stem cells (NSCs). We show that NSCs isolated from the dorsal spinal cord can generate oligodendrocytes following FGF2 treatment, a MAP kinase dependent phenomenon that is associated with induction of the obligate oligogenic gene Olig2. Cyclopamine, a potent inhibitor of hedgehog signalling, did not block the formation of oligodendrocytes from FGF2-treated neurosphere cultures. Furthermore, neurospheres generated from SHH null mice also produced oligodendrocytes, even in the presence of cyclopamine. These findings are compatible with the idea of a hedgehog independent pathway for oligodendrocyte generation from neural stem cells.  相似文献   

10.
11.
12.
13.
Vallstedt A  Klos JM  Ericson J 《Neuron》2005,45(1):55-67
Studies have indicated that oligodendrocytes in the spinal cord originate from a ventral progenitor domain defined by expression of the oligodendrocyte-determining bHLH proteins Olig1 and Olig2. Here, we provide evidence that progenitors in the dorsal spinal cord and hindbrain also produce oligodendrocytes and that the specification of these cells may result from a dorsal evasion of BMP signaling over time. Moreover, we show that the generation of ventral oligodendrocytes in the spinal cord depends on Nkx6.1 and Nkx6.2 function, while these homeodomain proteins in the anterior hindbrain instead suppress oligodendrocyte specification. The opposing roles for Nkx6 proteins in the spinal cord and hindbrain, in turn, appear to reflect that oligodendrocytes are produced by distinct ventral progenitor domains at these axial levels. Based on these findings, we propose that oligodendrocytes derive from several distinct positional origins and that the activation of Olig1/2 at different positions is controlled by distinct genetic programs.  相似文献   

14.
15.
16.
17.
Lu QR  Sun T  Zhu Z  Ma N  Garcia M  Stiles CD  Rowitch DH 《Cell》2002,109(1):75-86
The oligodendrocyte lineage genes Olig1 and Olig2 encode related bHLH proteins that are coexpressed in neural progenitors. Targeted disruption of these two genes sheds light on the ontogeny of oligodendroglia and genetic requirements for their development from multipotent CNS progenitors. Olig2 is required for oligodendrocyte and motor neuron specification in the spinal cord. Olig1 has roles in development and maturation of oligodendrocytes, evident especially within the brain. Both Olig genes contribute to neural pattern formation. Neither Olig gene is required for astrocytes. These findings, together with fate mapping analysis of Olig-expressing cells, indicate that oligodendrocytes are derived from Olig-specified progenitors that give rise also to neurons.  相似文献   

18.
Delta-Notch signaling regulates oligodendrocyte specification   总被引:7,自引:0,他引:7  
Oligodendrocytes, the myelinating cell type of the central nervous system, arise from a ventral population of precursors that also produces motoneurons. Although the mechanisms that specify motoneuron development are well described, the mechanisms that generate oligodendrocytes from the same precursor population are largely unknown. By analysing mutant zebrafish embryos, we found that Delta-Notch signaling is required for spinal cord oligodendrocyte specification. Using a transgenic, conditional expression system, we also learned that constitutive Notch activity could promote formation of excess oligodendrocyte progenitor cells (OPCs). However, excess OPCs are induced only in ventral spinal cord at the time that OPCs normally develop. Our data provide evidence that Notch signaling maintains subsets of ventral spinal cord precursors during neuronal birth and, acting with other temporally and spatially restricted factors, specifies them for oligodendrocyte fate.  相似文献   

19.
Spinal cord oligodendrocyte precursors arise in the ventral ventricular zone as a result of local signals. Ectopic oligodendrocyte precursors can be induced by sonic hedgehog (Shh) in explants of chick dorsal spinal cord over an extended developmental period. The role of Shh during normal oligodendrocyte development is, however, unclear. Here we demonstrate that Shh is localized to the ventral spinal cord immediately prior to, and during the appearance of oligodendrocyte precursors. Continued expression of Shh is required for the appearance of spinal cord oligodendrocyte precursors as neutralization of Shh signaling both in vivo and in vitro during a defined developmental period blocked their emergence. The inhibition of oligodendrocyte precursor emergence in the absence of Shh signaling was not the result of inhibiting precursor cell proliferation, and the neutralization of Shh signaling after the emergence of oligodendrocyte precursors had no effect on the appearance of additional cells or their subsequent differentiation. Similar concentrations of Shh induce motor neurons and oligodendrocytes in dorsal spinal cord explants. However, in explants from early embryos the motor neuron lineage is preferentially expanded while in explants from older embryos the oligodendrocyte lineage is preferentially expanded.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号