首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein quality mainly depends on the essential amino acid (EAA) profile, but also on its bioavailability, because EAA digestibility is generally lower than the analyzed amounts. This information is needed in the aquaculture industry for aquafeed formulation. For this purpose, the apparent digestibility coefficients of dry matter, protein, and essential amino acids of eight feedstuffs of terrestrial origin were determined for the juvenile whiteleg shrimp Litopenaeus vannamei (15-19 g), using 1% chromic oxide as an inert marker. A reference diet was formulated and produced in the laboratory. Eight experimental diets were prepared each with 30% of one of the experimental ingredients added to the reference diet: casein, porcine byproduct meal poultry byproduct meal, corn meal, wheat gluten meal, soybean paste, sorghum meal, and wheat meal. The experiment consisted of a single-factor, completely randomized design with three replicates per treatment. Samples of ingredients, diets and feces were analyzed for nitrogen and amino acids. For amino acid assay, we used reverse-phase high performance liquid chromatography. To avoid partial loss of methionine and cystine, samples of ingredients, diets, and feces were oxidized with performic acid to methionine sulfone and cysteic acid prior to acid hydrolysis. The apparent dry matter and protein digestive utilization coefficients varied from 68% to 109% and from 70% to 103%, respectively. Apparent digestibility of protein for casein, soy paste, wheat meal and wheat gluten were very high (over 90%), corn gluten and poultry byproducts meal showed high protein digestibility (over 80%), but porcine byproducts meal and sorghum meal had low digestibility (76% and 70%, respectively). There was a reasonable, but not total, correspondence between apparent protein digestibility and average essential amino acid digestibility coefficients, except for arginine in corn gluten, phenylalanine and leucine in sorghum meal, phenylalanine in soy paste and lysine in wheat meal and poultry by-product meal. The most digestible feed ingredients for whiteleg shrimp were: wheat gluten, wheat meal and soy paste; poultry byproduct meal and corn gluten were less digestible and the lowest digestibility occurred in porcine byproduct meal and sorghum meal. Feedstuffs exhibited great variability in dry matter, protein and amino acid digestive utilization coefficients, which should be considered when formulating shrimp feeds.  相似文献   

2.
Spring wheat ( Triticum aestivum L. cv. TRISO) was grown for three consecutive seasons in a free-air carbon dioxide (CO2) enrichment (FACE) field experiment in order to examine the effects on crop yield and grain quality. CO2 enrichment promoted aboveground biomass (+11.8%) and grain yield (+10.4%). However, adverse effects were predominantly observed on wholegrain quality characteristics. Although the thousand-grain weight remained unchanged, size distribution was significantly shifted towards smaller grains, which may directly relate to lower market value. Total grain protein concentration decreased significantly by 7.4% under elevated CO2, and protein and amino acid composition were altered. Corresponding to the decline in grain protein concentration, CO2 enrichment resulted in an overall decrease in amino acid concentrations, with greater reductions in non-essential than essential amino acids. Minerals such as potassium, molybdenum and lead increased, while manganese, iron, cadmium and silicon decreased, suggesting that adjustments of agricultural practices may be required to retain current grain quality standards. The concentration of fructose and fructan, as well as amounts per area of total and individual non-structural carbohydrates, except for starch, significantly increased in the grain. The same holds true for the amount of lipids. With regard to mixing and rheological properties of the flour, a significant increase in gluten resistance under elevated CO2 was observed. CO2 enrichment obviously affected grain quality characteristics that are important for consumer nutrition and health, and for industrial processing and marketing, which have to date received little attention.  相似文献   

3.
Spring wheat (Triticum aestivum L. cv. Triso) was grown in a free-air carbon dioxide (CO2) enrichment (FACE) system at Stuttgart–Hohenheim (Germany) in 2008 to examine effects on crop yield and grain quality. Elevated CO2 had no significant impacts on aboveground biomass and grain yield components except for an increase in thousand grain weight by 5.4% with size distribution shifted towards larger grains. Total grain protein concentration decreased by 7.9% under CO2 enrichment, and protein composition was altered. Total gliadins and their single types (ω5-gliadins, ω1,2-gliadins, α-gliadins, and γ-gliadins) were reduced, while albumins/globulins, total glutenins and their subunits were not influenced. The gluten proteins (gliadins plus glutenins) were lowered by 11.3% in the high-CO2 treatment, whereas proportions of gluten protein types were slightly affected as only ω1,2-gliadins decreased. Accordingly, all proteinogenic amino acids were decreased by 4.2 to 7.9% in concentrations per unit flour mass, although partly below the level of statistical significance. In contrast, the composition of amino acids on a per protein basis remained unaffected except for a decline in serine. Among the minerals, the concentrations of calcium, magnesium, iron and cobalt decreased, while an increase was observed for boron. The concentrations of total non-structural carbohydrates and starch decreased, whereas fructose, raffinose and fructan increased. Total lipid concentration remained unaffected by the CO2 enrichment, whereas the grain carbon/nitrogen relation was increased by 8.5%. Implications may occur for consumer nutrition and health, and for industrial processing, thus breeding of new wheat cultivars that exploit CO2 fertilisation and maintain grain quality properties is regarded as one potential option to assure the supply chain for the future.  相似文献   

4.
The influence of protein quality on the growth-depressing effect of excessive amount of 12 individual essential and semiessential amino acids was examined. Growing rats were fed for 3 weeks diets containing either 10.5% egg albumin or 11.6% wheat gluten (equivalent to the protein content of a 10% casein diet) supplemented with 5% of each of the l-amino acids. In general, the pattern of growth depression produced by the addition of excess amino acids to the egg albumin or the wheat gluten diet was similar to that of the case of casein diet obtained previously under the same experimental conditions. However, the extent of these effects was dependent not only upon the kind of amino acid supplemented with but also upon the source of protein used, and the depressing effect of each of excess amino acids added to the wheat gluten diet was usually severer than those added to casein and egg albumin diets. No evidence was noted of any striking changes in the liver protein and nucleic acid concentrations by either diets, but total liver protein, RNA and DNA contents were decreased in some amino acid groups of the egg albumin diet and in all amino acid groups of the wheat gluten diet except the lysine addition. The free amino acid level in plasma generally showed extreme elevation for the amino acid supplemented in excess in the diet, and in most cases the extent of the elevation was correlated with the growth depression.  相似文献   

5.
Distribution of gluten proteins in bread wheat (Triticum aestivum) grain   总被引:1,自引:0,他引:1  

Background and Aims

Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which forms white flour on milling, and interact during grain development to form large polymers which form a continuous proteinaceous network when flour is mixed with water to give dough. This network confers viscosity and elasticity to the dough, enabling the production of leavened products. The starchy endosperm is not a homogeneous tissue and quantitative and qualitative gradients exist for the major components: protein, starch and cell wall polysaccharides. Gradients in protein content and composition are the most evident and are of particular interest because of the major role played by the gluten proteins in determining grain processing quality.

Methods

Protein gradients in the starchy endosperm were investigated using antibodies for specific gluten protein types for immunolocalization in developing grains and for western blot analysis of protein extracts from flour fractions obtained by sequential abrasion (pearling) to prepare tissue layers.

Key Results

Differential patterns of distribution were found for the high-molecular-weight subunits of glutenin (HMW-GS) and γ-gliadins when compared with the low-molecular-weight subunits of glutenin (LMW-GS), ω- and α-gliadins. The first two types of gluten protein are more abundant in the inner endosperm layers and the latter more abundant in the subaleurone. Immunolocalization also showed that segregation of gluten proteins occurs both between and within protein bodies during protein deposition and may still be retained in the mature grain.

Conclusions

Quantitative and qualitative gradients in gluten protein composition are established during grain development. These gradients may be due to the origin of subaleurone cells, which unlike other starchy endosperm cells derive from the re-differentiation of aleurone cells, but could also result from the action of specific regulatory signals produced by the maternal tissue on specific domains of the gluten protein gene promoters.  相似文献   

6.
Male rats aged 45, 85, 145 and 270 days (daily body mass increments on an optimal diet containing casein were 6.73, 2.88, 0.53 and 0.31 g respectively) were fed 15 days ad libitum on a diet with a nutrient content physiological for their age, in which the protein source was milk casein (ratio of essential to nonessential amino acids E/N = 0.79, compensation coefficient K = 14) or wheat gluten (E/N = 0.30, K = -8). In the case of gluten, net protein utilization (NPU) fell markedly in rapidly growing animals aged 45 and 85 days (33 and 30% more than with casein), indicating that without essential amino acid compensation, gluten is inadequate for animals of this age, whose organism requires fully ensured proteosynthesis for growth and development. In adolescence and adulthood (145 and 270 days), the utilization of proteins is not dependent on their quality (the decrease in NPU 13 and 12%--is nonsignificant). That means that a smaller amount of essential amino acids, including the limiting amino acid in uncompensated protein, is sufficient for the maintenance and renewal of organs and tissues, i.e. for proteosynthesis. The activation of gluconeogenesis (phosphoenolpyruvate carboxykinase activity in the liver) after the intake of plant protein confirms the effect of proteins on catabolic processes.  相似文献   

7.
赵秀兰  李文雄 《生态学报》2005,25(8):1914-1920
以3个品质类型春小麦品种的施肥和播期试验为基础,通过建立籽粒蛋白质含量形成动态的拟合方程,定量揭示籽粒蛋白质含量形成动态及氮磷肥与气象条件的影响效应。结果表明,灌浆期籽粒蛋白质含量随时间动态变化的普遍规律符合一元三次多项式曲线,即呈自开花始先降低后升高的单谷曲线变化。氮磷肥与气象条件的影响及基因型差异通过方程特征量而体现。氮水平增加,高蛋白品种蛋白质含量增加,动态曲线谷值和峰值均明显提高且出现时间分别提前和推后。磷水平增加,高蛋白强筋品种蛋白质含量降低,高蛋白中筋品种则增加;高蛋白品种谷值和峰值均提高且出现时间推迟。低蛋白品种蛋白质含量随氮磷肥变化不明显且幅度很小。在没有水分胁迫的情况下,光温互作是影响籽粒蛋白质含量动态形成的首要因子,其次为降水;而气温日较差则为最敏感因子。较高光温条件互作前提下,增加灌浆期温度日较差使高蛋白品种蛋白质含量提高,低蛋白品种则降低。高蛋白相比于低蛋白品种更易受氮磷水平和气象条件影响。  相似文献   

8.
Genetic variation among 78 irrigated bread wheat genotypes was studied for their nutritional value and baking quality traits as well as some agronomic traits. The experiment was conducted in a randomized complete block design with three replicates under normal and terminal drought stress conditions in Kermanshah, Iran during 2012–2013 cropping season. The results of combined ANOVA indicated highly significant genotypic differences for all traits. All studied traits except grain yield, hectoliter weight and grain fiber content were significantly affected by genotype × environment interaction. Drought stress reduced grain yield, thousand kernel weight, gluten index, grain starch content and hectoliter weight and slightly promoted grain protein and fiber contents, falling number, total gluten and ratio of wet gluten to grain protein content. Grain yield by 31.66% and falling number by 9.20% attained the highest decrease and increase due to drought stress. There were negative and significant correlations among grain yield with grain protein and fiber contents under both conditions. Results of cluster analysis showed that newer genotypes had more grain yield and gluten index than older ones, but instead, they had the lower grain protein and fiber contents. It is thought that wheat breeders have bred cultivars with high grain yield, low protein content, and improved bread-making attributes during last seven decades. While older genotypes indicated significantly higher protein contents, and some of them had higher gluten index. We concluded from this study that it is imperative for breeders to pay more attention to improve qualitative traits coordinated to grain yield.  相似文献   

9.
Using mounting casein and wheat gluten protein values (0-40%) in the animals' diet, the optimum and minimum physiological daily doses were determined in 49-day-old growing rats from changes in their body water, body nitrogen and protein intake. The optimum physiological doses were identical with the peak of linearity of the given parameters, which coincided with a 15% casein protein and a 20% gluten protein concentration in the diet. This was also confirmed by the maximum body amino acid values, which were found in animals given a 15% casein or 20% gluten protein diet. It was further confirmed by the finding of significantly elevated alanine aminotransferase and aspartate aminotransferase activity in the liver of animals with a higher intake of the above protein sources. The minimum physiological dose of the given protein was determined from the equations of the regression curves in the presence of zero changes in the body nitrogen or body water content. The optimum physiological daily doses of casein and wheat gluten protein were 3.25 g and 4.05 g respectively. The minimum physiological daily doses of casein protein were 268 mg (from body nitrogen changes) and 371 mg (from body water changes) and the minimum physiological daily doses of gluten protein were 892 mg (from body nitrogen changes) and 1,000 mg (from body water changes). The above indicators demonstrate, in the presence of higher and high dietary concentrations, that an intake of the given proteins over and above the optimum physiological daily dose is at the very least uneconomical (gluten), if not harmful (casein), making this a highly topical problem for further study.  相似文献   

10.
11.
Corn gluten meal (CGM) is a major coproduct of corn wet milling; it has value because of high protein. However, variation in composition and high P content reduce market value. Data that characterize gluten streams would be helpful in identifying key processing steps that could be modified to improve the quality of CGM and increase processing efficiency. Few data are published in the literature on the detailed composition of gluten processing streams. The objective was to characterize the gluten process streams in a corn wet milling plant.Samples were obtained from one plant over a six month period and analyzed for dry matter (DM), total N (protein), ash and elements. DM and macroelement content of the streams were increased significantly during processing. Ash, priority pollutant elements and microelement concentrations were low and of little concern. About 38% of the N (protein) in light gluten was not recovered in the CGM; most of this was lost at the gluten thickener step into the gluten thickener overflow. Much of the P also was removed at this step. Modification of the gluten thickener overflow to increase N and reduce P could make CGM a more valuable coproduct and improve processing efficiency.  相似文献   

12.
The effects of γ-irradiation on wheat gluten were studied by means of gel filtration on Sephadex G-100, starch gel electrophoresis and analysis of amino acid composition. Analyses of gluten at a moisture content of 2% revealed no significant change in amino acid composition except for cystine which was decreased by about 8% with irradiation at 10 Mrad. Changes in the chromatogram from gel filtration were interpreted in terms of random depolymerization resulting from irradiation. The results of starch gel electrophoresis suggested that irradiation levels greater than 3 Mrad resulted in characteristic changes in the molecular configuration of gliadin components.  相似文献   

13.
Effects of various kinds of dietary protein on growth of the silkworm, Bombyx mori, were determined using semi-synthetic diets. Also, the ingestion, digestion and utilization of dry matter and of nitrogen were measured. Nutritive effects of dietary proteins and supplementation of limiting amino acids on haemolymph protein and amino acids pattern were also investigated. Larval growth was largely dependent on the dietary proteins. When the larvae were reared on a diet containing weakly nutritive proteins such as gluten and zein, haemolymph protein was decreased and uric acid excretion was markedly accelerated. The free amino acid composition of the haemolymph manifested characteristic patterns according to the kinds of dietary protein.The supplementation of gluten and zein with their limiting amino acids resulted in a rise of haemolymph protein and a drop in uric acid excretion. The amino acid patterns in the haemolymph were greatly changed according to supplementation.  相似文献   

14.

Introduction

Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates.

Results

We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB.

Conclusion

Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study.  相似文献   

15.
In a continuing study of protein-lipid interactions in egg yolk, the total apoprotein mixture (i.e. the 'apovitellenins') from the high-lipid, low-density lipoprotein (density 0.97 g/ml) of the yolk from hen's eggs has been isolated in a soluble form. By gel-filtration chromatography in 6M urea the mixture has been separated into several fractions from which three new low-molecular-weight proteins (I, Ia, and II), making up about 30% of the total, have been isolated. The most plentiful of these (I) consists of stable aggregates with several identical subunits each of molecular weight about 10 000. This protein is analogous to the principal protein from the corresponding lipoprotein of emu's egg yolk, i.e. emu's apovitellenin I. Hen's apovitellenin I has a slightly different amino acid composition from that of the emu; notably it contains a sulphydryl group. The hen's protein also forms more stable aggregates that are dissociated by detergent and by guanidine hydrochloride but are stable in urea. The molecular weight of Ia is similar to that of I and the amino acid composition is the same, with the exception that Ia has a higher proportion of amide groups. It aggregates less readily than I under the same conditions. The third new protein (II, 'hens's apovitellenin II') has a molecular weight of about 20 000. It has no tyrosine or methionine residues, but contains glucosamine and has several disulphide groups. It has been isolated in very small amount only.  相似文献   

16.
采取裂裂区试验设计,研究了播期和种植密度对强筋小麦临优145和中筋小麦临优2018蛋白质组分和品质性状的影响.结果表明:适期播种的小麦籽粒蛋白质含量和蛋白质产量均最高;推迟播期,强筋品种的醇溶蛋白和谷蛋白含量明显增加,而中筋品种变化不明显;强筋品种的品质性状受播期影响程度高于中筋品种.适期播种,小麦籽粒蛋白质、麦谷蛋白与湿面筋、沉降值、稳定时间、软化度和评价值呈显著或极显著正相关;推迟播期,醇溶蛋白与湿面筋含量呈显著正相关.播期变化引起的蛋白质各组分所占比例的改变是改善小麦品质性状的重要原因.在试验种植密度范围内(225万株·hm-2、300万株·hm-2和375万株·hm-2),小麦籽粒蛋白质含量变化不明显,密度对强筋品种的品质性状有一定调节作用;在低密度条件下(225万株·hm-2)中筋品种的品质性状最佳.  相似文献   

17.
选用强筋小麦品种济麦20和弱筋小麦品种山农1391,在大田试验条件下,分别于籽粒灌浆前期(花后6—9 d)、中期(花后16—19 d)和后期(花后26—29 d)对小麦进行弱光照处理,研究了籽粒产量、蛋白质组分及加工品质的变化。灌浆期弱光显著降低小麦籽粒产量,灌浆中期对济麦20和灌浆后期对山农1391的产量降幅最大。弱光处理后,籽粒氮素积累量及氮素收获指数减少。但弱光使籽粒蛋白质含量显著升高,其中灌浆中期弱光升幅最大,原因可能是由于其粒重降低造成的。弱光对可溶性谷蛋白无显著影响,但增加不溶性谷蛋白含量,使谷蛋白聚合指数显著升高,面团形成时间和稳定时间亦升高,籽粒灌浆中、后期弱光对上述指标的影响较前期大。灌浆期短暂的弱光照对改善强筋小麦粉质仪参数有利,但使弱筋小麦变劣;并均伴随籽粒产量的显著降低这一不利影响。  相似文献   

18.
The total composition, the N-terminal amino acid sequence, and the amino acid sequences of four internal regions have been determined for the ribonucleotide reductase large subunit, protein B1, prepared from a recombinant lambda-lysogenic Escherichia coli K strain, which overproduces the enzyme 30-50-fold. The data have been compared with those previously reported for B1 prepared from a thymine-starved E. coli B strain and with the indirectly derived primary structure of B1 recently reported from the nucleotide sequence of the E. coli K nrdA gene. Two major differences to these results were found. First, the B1 polypeptides started with initiator Met-1 (45%), Asn-2 (30%) or Gln-3 (15%), demonstrating a different type of N-terminal heterogeneity than that found earlier. Secondly, the total amino acid composition as derived from hydrolyzed protein B1 differed substantially from the amino acid composition derived from the nucleotide data. This has the consequence that Cys, Arg, Thr and possibly Val and Ser appear more frequently whereas Asx, Glx, Tyr and possibly Gly appear less frequently in the nucleotide-derived data as compared to direct protein hydrolysates. We suggest usage of other reading frames in the approximate area of residues 630-700 of the primary structure of the nrdA gene to compensate for these discrepancies and for the relatively high incidence of uncommon codons in the reading frame proposed for this area of the gene. Such changes have implications on the previously assigned putative active-site region of protein B1.  相似文献   

19.
Effects of the change of dietary protein on serine dehydrase activity in rat liver have been studied, using egg albumin, casein, rice protein, and wheat gluten as protein source. At 35% of dietary protein level, the activity induced by egg albumin and casein diets were higher than those by rice protein and wheat gluten diets. Parallel relation was observed between the enzyme activity and the protein intake. These results suggest that the dietary induction of this enzyme are based on the protein intake, which reflects the nutritional quality of dietary protein, rather than merely on the dietary protein level.

The contribution of individual amino acid for the enzyme induction by the egg albumin diet at 35% level was investigated, and it was concluded that this enzyme induction is dependent not on a specific amino acid but on the combined effect of each amino acid.  相似文献   

20.
酸雨是中国重要的环境问题,为研究酸雨对小麦籽粒品质的可能影响,以小麦品种扬麦15和汶农17为材料开展盆栽试验,研究了不同酸度(pH2.5、p H4.0和p H5.6)酸雨对小麦花后氮硫代谢关键酶活性和籽粒蛋白质含量及组分的影响。结果显示:酸雨处理抑制叶片硝酸还原酶(NR)活性,提高了扬麦15整个灌浆期及汶农17灌浆中后期叶片谷氨酰胺合成酶(GS)活性,促进了叶片蛋白的降解,降低了叶片可溶性蛋白含量。不同酸度酸雨提高了成熟期籽粒中蛋白质含量,酸度越强,增加幅度越大,籽粒中各蛋白组分含量和大部分氨基酸含量也有明显提高。酸雨提高了扬麦15叶片丝氨酸乙酰转移酶(SAT)和O-乙酰丝氨酸硫裂解酶(OAS-TL)活性,但对汶农17硫代谢关键酶活性影响较小,酸雨处理还提高了籽粒中二硫键和含硫氨基酸含量。可见酸雨对小麦氮硫代谢有不同程度影响,进而影响了小麦籽粒蛋白质含量和组成,酸度越强影响越大,但不同品种对酸雨响应有一定差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号