首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《Free radical research》2013,47(6-7):511-516
Abstract

The molecule 8-oxo-7,8-dihydroguanine (8-oxoGua), an oxidized form of guanine, can pair with adenine or cytosine during nucleic acid synthesis. RNA sequences that contain 8-oxoGua cause translational errors that lead to the synthesis of abnormal proteins. Human Nudix type 5 (NUDT5), a MutT-related protein, catalyzes the hydrolysis of 8-oxoGDP to 8-oxoGMP, thereby preventing the misincorporation of 8-oxoGua into RNA. To investigate the biological roles of NUDT5 in human fibroblast cells, we established cell lines with decreased levels of NUDT5 expression. In NUDT5 knockdown cells, the RNA oxidation levels were significantly higher, the rates of cellular senescence and cell apoptosis were significantly increased, and the cell viability was significantly decreased in comparison with control cells. These results suggested that the NUDT5 protein could play significant roles in the prevention of RNA oxidation and survival in human fibroblast cells.  相似文献   

2.
The molecule 8-oxo-7,8-dihydroguanine (8-oxoGua), an oxidized form of guanine, can pair with adenine or cytosine during nucleic acid synthesis. Moreover, RNA containing 8-oxoGua causes translational errors, thus leading to the production of abnormal proteins. Human NUDT5, a MutT-related protein, catalyzes the hydrolysis of 8-oxoGDP to 8-oxoGMP, thereby preventing misincorporation of 8-oxoGua into RNA. To investigate the biological roles of NUDT5 in mammalian cells, we established cell lines with decreased level of NUDT5 expression. In NUDT5 inhibited cells, the RNA oxidation was not significantly higher than that of normal cells. However, the cell cycle G1 phase was significantly delayed, and cell numbers in both S and G2/M phases were reduced, indicating that cell proliferation was hampered by NUDT5 suppression. Key proteins for preventing the G1-S transition, including p53, p16, and Rb were increased, while the Rb phosphorylation was decreased. These results suggested that the NUDT5 protein may play significant roles in regulating the G1-S transition in mammalian cells.  相似文献   

3.
MutT-related proteins, including the Escherichia coli MutT and human MutT homologue 1 (MTH1) proteins, degrade 8-oxo- 7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP) to a monophosphate, thereby preventing mutations caused by the misincorporation of 8-oxoguanine into DNA. Here, we report that human cells have another mechanism for cleaning up the nucleotide pool to ensure accurate DNA replication. The human Nudix type 5 (NUDT5) protein hydrolyses 8-oxo-dGDP to monophosphate with a Km of 0.77 µM, a value considerably lower than that for ADP sugars, which were originally identified as being substrates of NUDT5. NUDT5 hydrolyses 8-oxo-dGTP only at very low levels, but is able to substitute for MutT when it is defective. When NUDT5 is expressed in E. coli mutT cells, the increased frequency of spontaneous mutations is decreased to normal levels. Considering the enzymatic parameters of MTH1 and NUDT5 for oxidized guanine nucleotides, NUDT5 might have a much greater role than MTH1 in preventing the occurrence of mutations that are caused by the misincorporation of 8-oxoguanine in human cells.  相似文献   

4.
MutT-related proteins, including Escherichia coli MutT and the human MTH1 (NUDT1), degrade 8-oxo-7, 8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP) to 8-oxo-dGMP and thereby prevent mutations caused by the misincorporation of 8-oxoguanine into DNA. The human NUDT5, which has an intrinsic activity to cleave ADP sugars to AMP and sugar phosphate, possesses the ability to degrade 8-oxo-dGDP to the monophosphate. Since 8-oxo-dGDP and 8-oxo-dGTP are interconvertible by cellular enzymes, NUDT5 has the potential to prevent errors during DNA replication. The two activities associated with NUDT5 exhibit different pH dependencies; the optimum for the cleavage of ADP ribose is pH 7-9, while that for 8-oxo-dGDPase is around pH 10. The kinetic parameters for the two types of reactions indicated that ADP ribose is a better substrate for NUDT5 compared with oxidized guanine nucleotides. The 8-oxo-dGDP cleavage was competitively inhibited by ADP ribose and its reaction product, AMP, and in reverse, the cleavage of ADP ribose was inhibited by 8-oxo-dGDP. These results imply that the two types of substrates may share the same binding site for catalysis.  相似文献   

5.
Hayakawa H  Sekiguchi M 《Biochemistry》2006,45(21):6749-6755
8-Oxo-7,8-dihydroguanine (8-oxoGua) is generated in nucleic acids as well as in their precursors due to the actions of oxygen radicals produced through a normal cellular metabolism. Since oxidized guanine can pair with both cytosine and adenine, it causes alterations in the phenotypic expression when it is present in RNA. To prevent such an outcome, organisms must have some mechanism for eliminating such oxidized guanine nucleotides from RNA and its precursors. In mammalian cells, MTH1 and NUDT5 proteins degrade 8-oxoGTP and 8-oxoGDP to 8-oxoGMP, which is an unusable form for RNA synthesis. In a search for proteins functioning at the RNA level, polynucleotide phosphorylase (PNP) protein has been suggested to be a good candidate for such a role. The human PNP protein has an ability to bind specifically to RNA containing 8-oxoGua. When human cells are exposed to agents that induce oxidative stress, such as hydrogen peroxide and menadion, the amounts of PNP protein decrease rapidly while amounts of other proteins in the cells do not change after such treatments. No specific decrease in the PNP protein level is observed when cells are treated with ACNU and cycloheximide at doses sufficient to provide the same degree of growth suppression. These results imply that the PNP protein might thus play a role in excluding oxidized forms of RNA from the translation mechanism.  相似文献   

6.
7.
One of the major biomarkers of oxidative stress and oxidative damage of cellular DNA is 8-oxo-7,8-dihydroguanine (8-oxoGua), which is more easily oxidized than guanine to diverse oxidative products. In this work, we have investigated further oxidative transformations of 8-oxoGua in single- and double-stranded oligonucleotides to the dehydroguanidinohydantoin, oxaluric acid, and diastereomeric spiroiminodihydantoin lesions. The relative distributions of these end products were explored by a combined kinetic laser spectroscopy and mass spectrometry approach and are shown to depend markedly on the presence of superoxide radical anions. The 8-oxaGua radicals were produced by one-electron oxidation of 8-oxoGua by 2-aminopurine radicals generated by the two-photon ionization of 2-aminopurine residues site specifically positioned in 5'-d(CC[2-aminopurine]TC[8-oxoGua]CTACC). The hydrated electrons also formed in the photoionization process were trapped by dissolved molecular oxygen thus producing superoxide. A combination reaction between the 8-oxoGua and superoxide radicals occurs with the rate constant of (1.3 +/- 0.2) x 10(8) m(-1) s(-1) and (1.0 +/- 0.5) x 10(8) m(-1) s(-1) in single- and double-stranded DNA, respectively. The major end products of this reaction are the dehydroguanidinohydantoin lesions that slowly hydrolyze to oxaluric acid residues. In the presence of Cu,Zn-superoxide dismutase, an enzyme that induces the rapid catalytic dismutation of superoxide to the less reactive H(2)O(2) and O(2), the yields of the dehydroguanidinohydantion lesions become negligible. Under these conditions, the 8-oxoGua radicals do not exhibit any observable reactivities with oxygen (k < 10(2) m(-1) s(-1)), decay on the time interval of several seconds, and the major reaction products are the spiroiminodihydantoin lesions. The possible biological implications of the 8-oxoGua oxidation are discussed.  相似文献   

8.
9.
8-oxo-dGTP is generated in the nucleotide pool by direct oxidation of dGTP or phosphorylation of 8-oxo-dGDP. It can be incorporated into DNA during replication, which would result in mutagenic consequences. The frequency of spontaneous mutations remains low in cells owing to the action of enzymes degrading such mutagenic substrates. Escherichia coli MutT and human MTH1 hydrolyze 8-oxo-dGTP to 8-oxo-dGMP. Human NUDT5 as well as human MTH1 hydrolyze 8-oxo-dGDP to 8-oxo-dGMP. These enzymes prevent mutations caused by misincorporation of 8-oxo-dGTP into DNA. In this study, we identified a novel MutT homolog (NDX-1) of Caenorhabditis elegans that hydrolyzes 8-oxo-dGDP to 8-oxo-dGMP. NDX-1 did not hydrolyze 8-oxo-dGTP, 2-hydroxy-dATP or 2-hydroxy-dADP. Expression of NDX-1 significantly reduced spontaneous A:T to C:G transversions and mitigated the sensitivity to a superoxide-generating agent, methyl viologen, in an E. coli mutT mutant. In C. elegans, RNAi of ndx-1 did not affect the lifespan of the worm. However, the sensitivity to methyl viologen and menadione bisulfite of the ndx-1-RNAi worms was enhanced compared with that of the control worms. These facts indicate that NDX-1 is involved in sanitization of 8-oxo-dGDP and plays a critical role in defense against oxidative stress in C. elegans.  相似文献   

10.
MutT-related proteins degrade 8-oxo-7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP), a mutagenic substrate for DNA synthesis, in the nucleotide pool, thereby preventing DNA replication errors. During a search of GenBank EST database, we found a new member of MutT-related protein, MTH2, which possesses the 23-amino acid MutT module. The cloned mouse MTH2 (mMTH2) cDNA was expressed in Escherichia coli mutT(-) cells and the protein was purified. mMTH2 protein hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, with Km of 32 microM. Expression of cDNA for mMTH2 reduced significantly the elevated level of spontaneous mutation frequency of E. coli mutT(-) cells. Thus, MTH2 has a potential to protect the genetic material from the untoward effects of endogenous oxygen radicals. MTH2 could act as an MTH1 redundancy factor.  相似文献   

11.
Mammalian MTH1 protein, a MutT-related protein, catalyzes the hydrolysis of 8-oxo-7,8-dihydroguanosine triphosphate (8-oxoGTP) to monophosphate, thereby preventing incorporation of 8-oxo-7,8-dihydroguanine (8-oxoguanine) into RNA. In this study, we applied immunohistochemistry to follow the expression of MTH1 and the amount of 8-oxoguanine in RNA during aging. There were increased amounts of 8-oxoguanine in RNA in the CAl and CA3 subregions of hippocampi of 8- and 12-month-old SAMP8 mice, which exhibited early aging syndromes and declining learning and memory abilities compared to those of age-matched control SAMR1 mice. The expression levels of MTH1 in the hippocampi of 8- and 12-month-old SAMP8 mice were significantly lower than those of control mice. Therefore, in this mouse model, age-related accumulation of 8-oxoguanine in RNA is correlated with decreased expression of MTH1. Increased amounts of 8-oxoguanine in the RNA, and decreased expression of MTH1 were also observed in the hippocampi of patients suffering from Alzheimer’s disease. These results suggest that MTH1 deficiency might be a causative factor for aging and age-related disorders.  相似文献   

12.
Unlike normal tissues, tumor cells possess a propensity for genomic instability, resulting from elevated oxidant levels produced by oncogenic signaling and aberrant cellular metabolism. Thus, targeting mechanisms that protect cancer cells from the tumor-inhibitory consequences of their redox imbalance and spontaneous DNA-damaging events is expected to have broad-spectrum efficacy and a high therapeutic index. One critical mechanism for tumor cell protection from oxidant stress is the hydrolysis of oxidized nucleotides. Human MutT homolog 1 (MTH1), the mammalian nudix (nucleoside diphosphate X) pyrophosphatase (NUDT1), protects tumor cells from oxidative stress-induced genomic DNA damage by cleansing the nucleotide pool of oxidized purine nucleotides. Depletion or pharmacologic inhibition of MTH1 results in genomic DNA strand breaks in many cancer cells. However, the mechanisms underlying how oxidized nucleotides, thought mainly to be mutagenic rather than genotoxic, induce DNA strand breaks are largely unknown. Given the recent therapeutic interest in targeting MTH1, a better understanding of such mechanisms is crucial to its successful translation into the clinic and in identifying the molecular contexts under which its inhibition is likely to be beneficial. Here we provide a comprehensive perspective on MTH1 function and its importance in protecting genome integrity, in the context of tumor-associated oxidative stress and the mechanisms that likely lead to irreparable DNA strand breaks as a result of MTH1 inhibition.  相似文献   

13.
Oxidative damage of nucleotides within DNA or precursor pools caused by oxygen radicals is thought to play an important role in spontaneous mutagenesis, as well as carcinogenesis and aging. In particular, 8-oxodGTP and 2-OHdATP are potent mutagenic substrate for DNA synthesis. Mammalian MTH1 catalyzes hydrolysis of these mutagenic substrates, suggesting that it functions to prevent mutagenesis caused by these oxidized nucleotides. We have established MTH1(-/-) mice lacking the 8-oxodGTPase activity, which were shown to be susceptible to lung, liver and stomach cancers. To examine in vivo mutation events due to the MTH1-deficiency, a reporter gene, rpsL of Escherichia coli, was introduced into MTH1(-/-) mice. Interestingly, the net frequency of rpsL(-) forward mutants showed no apparent increase in MTH1(-/-) mice as compared to MTH1(+/+) mice. However, we found differences between these two genotypes in the class- and site-distributions of the rpsL(-) mutations recovered from the mice. Unlike MutT-deficient E. coli showing 1000-fold higher frequency of A:T-->C:G transversion than the wild type cells, an increase in frequency of A:T-->C:G transversion was not evident in MTH1 nullizygous mice. Nevertheless, the frequency of single-base frameshifts at mononucleotide runs was 5.7-fold higher in spleens of MTH1(-/-) mice than in those of wild type mice. Since the elevated incidence of single-base frameshifts at mononucleotide runs is a hallmark of the defect in MSH2-dependent mismatch repair system, this weak site-specific mutator effect of MTH1(-/-) mice could be attributed to a partial sequestration of the mismatch repair function that may act to correct mispairs with the oxidized nucleotides. Consistent with this hypothesis, a significant increase in the frequency of G:C-->T:A transversions was observed with MTH1(-/-) MSH2(-/-) mice over MSH2(-/-) mice alone. These results suggest a possible involvement of multiple anti-mutagenic pathways, including the MTH1 protein and other repair system(s), in mutagenesis caused by the oxidized nucleotides.  相似文献   

14.
In human and rodent cells, MTH1, an oxidized purine nucleoside triphosphatase, efficiently hydrolyzes oxidized dGTP, GTP, dATP and ATP such as 2'-deoxy-8-oxoguanosine triphosphate (8-oxo-dGTP) and 2'-deoxy-2-hydroxyadenosine triphosphate (2-OH-dATP) in nucleotide pools, thus avoiding their incorporation into DNA or RNA. MTH1 is expressed in postmitotic neurons as well as in proliferative tissues, and it is localized both in the mitochondria and nucleus, thus suggesting that MTH1 plays an important role in the prevention of the mutagenicity and cytotoxicity of such oxidized purines as 8-oxoG which are known to accumulate in the cellular genome. Our recent studies with MTH1-deficient mice or cells revealed that MTH1 efficiently minimizes accumulation of 8-oxoG in both nuclear and mitochondrial DNA in the mouse brain as well as in cultured cells, thus contributing to the protection of the brain from oxidative stress.  相似文献   

15.
Mammalian MTH1 proteins, homologs of Escherichia coli MutT, are enzymes decomposing 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP) to 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-monophosphate and inorganic pyrophosphate. They play an antimutagenic role by preventing the incorporation of promutagenic 8-oxo-dGTP into DNA. MTH1 gene expression is higher in some physiological types of mammalian cells and in numerous cancer cells, but the mechanism of that upregulation still remains unclear. It has been hypothesized that MTH1 expression might be associated with a proliferation rate of the cells. Therefore, we tested this hypothesis by comparing the functional levels of MTH1 gene expression measured as the 8-oxo-dGTPase activity of its protein products in normal mouse livers and hepatectomized regenerating livers. Although the proliferation rate of the hepatocytes in the regenerating livers was much higher than that in control livers, as confirmed by immunohistochemical assay of proliferating cell nuclear antigen, the 8-oxo-dGTPase activity was not different. In a second approach, we used 57 lines of human cancer cells in which 8-oxo-dGTPase activity was measured and confronted with cell population doubling time. No significant correlations between 8-oxo-dGTPase activity and proliferation rate were observed within groups of six leukemia, eight melanoma, nine lung, seven colon, six central nervous system, six ovarian, eight renal, and seven breast cancer cell lines. Thus, we conclude that the MTH1 expression manifested as the 8-oxo-dGTPase activity of its protein products in mammalian cells is not associated with proliferation rate. Our results will help in further testing of the hypothesis that MTH1 overexpression may be a specific marker of carcinogenesis and/or oxidative stress.  相似文献   

16.
17.
Oxidative damage to guanine (8-oxoGua) is one of the most abundant lesions induced by oxidative stress and documented mutagenic. 8-Oxoguanine DNA glycosylase 1 (OGG1) removes 8-oxoGua from DNA by excision. The urinary excretion of 8-oxoGua is a biomarker of exposure, reflecting the rate of damage in the steady state. The aim of this study was to investigate urinary 8-oxoGua as a risk factor for lung cancer. In a nested case-cohort design we examined associations between urinary excretion of 8-oxoGua and risk of lung cancer as well as potential interaction with the OGG1 Ser326Cys polymorphism in a population-based cohort of 25,717 men and 27,972 women aged 50-64 years with 3-7 years follow-up. We included 260 cases with lung cancer and a subcohort of 263 individuals matched on sex, age, and smoking duration for comparison. Urine collected at entry was analysed for 8-oxoGua by HPLC with electrochemical detection. There was no significant effect of smoking or OGG1 genotype on the excretion of 8-oxoGua. Overall the incidence rate ratio (IRR) (95% confidence interval) of lung cancer was 1.06 (0.97-1.15) per doubling of 8-oxoGua excretion. The association between lung cancer risk and 8-oxoGua excretion was significant among men [IRR: 1.17 (1.03-1.31)], never-smokers [IRR: 9.94 (1.04-94.7)], and former smokers [IRR: 1.19 (1.07-1.33)]. There was no significant interaction with the OGG1 genotype, although the IRR was 1.14 (0.98-1.34) among subjects homozygous for Cys326. The association between urinary 8-oxoGua excretion and lung cancer risk among former and never-smokers suggests that oxidative stress with damage to DNA is important in this group.  相似文献   

18.
The most commonly measured marker of oxidative DNA damage is 8-oxo-7,8-dihydroguanine (8-oxoGua) or its deoxyribonucleoside (8-oxodGuo). Published estimates of the concentration of 8-oxoGua/8-oxodGuo in DNA of normal human cells vary over a range of three orders of magnitude. Analysis by chromatographic methods (GC-MS, HPLC with electrochemical detection (ECD) or HPLC-MS/MS) is beset by the problem of adventitious oxidation of guanine during sample preparation. An alternative approach, based on the use of the DNA repair enzyme formamidopyrimidine DNA N-glycosylase (FPG) to make breaks in the DNA at sites of the oxidised base, gives much lower values. ESCODD, the European Standards Committee on Oxidative DNA Damage, has been testing the ability of different laboratories using a variety of methods to measure 8-oxoGua in standard samples of 8-oxodGuo, calf thymus DNA, pig liver, oligonucleotides, and HeLa cells, and in lymphocytes isolated from blood of volunteers. HPLC-ECD is capable of measuring 8-oxodGuo induced experimentally in calf thymus DNA or HeLa cells with high accuracy. However, there is no sign of consensus over the background level of this damage, suggesting that, even though standard extraction procedures were used, variable oxidation of Gua is still occurring. GC-MS failed to detect a dose response of induced 8-oxoGua and cannot be regarded as a reliable method for measuring low levels of damage. HPLC-MS/MS as yet has not proved capable of measuring low levels of oxidative DNA damage. FPG-based methods seem to be less prone to the artefact of additional oxidation. Although they can be used quantitatively, they require careful calibration and standardisation if they are to be used in human biomonitoring. The background level of DNA oxidation in normal human cells is likely to be around 0.3-4.2 8-oxoGua per 10(6) Gua. An effort should be made to develop alternative, validated methods for estimating oxidative DNA damage.  相似文献   

19.
Russian Journal of Bioorganic Chemistry - MTH1 (MutT homologue 1, NUDT1), a member of the Nudix phosphohydrolase superfamily of enzymes, was speculated to contribute to hampering tumor growth based...  相似文献   

20.
Binding capacity of human YB-1 protein for RNA containing 8-oxoguanine   总被引:7,自引:0,他引:7  
8-oxoguanine (8-oxo-7,8-dihydroguanine) is generated in the cellular nucleotide pool as well as in nucleic acids, by the action of oxygen radicals produced in cells. 8-oxoguanine has the potential to pair with both cytosine and adenine, and thus, the persistence of this base in messenger RNA would cause translational errors. To prevent such an outcome, organisms should have mechanisms for preventing the misincorporation of 8-oxoguanine-containing nucleotide into RNA and for removing 8-oxoguanine-containing RNA from processes of translation. We now report that mammalian Y box-binding protein 1 (YB-1 protein) possesses the activity to bind specifically to RNA containing 8-oxoguanine. On incubation with a purified preparation of YB-1 protein, 8-oxoguanine-containing RNA forms stable complexes with the protein while normal RNA scarcely forms such a complex. Using a series of deletion mutants which produce altered forms of YB-1 protein lacking some parts of the sequence, domains of the protein necessary for RNA binding were identified. Escherichia coli cells expressing normal or truncated forms of YB-1 protein with the binding capacity acquire resistance against paraquat, a drug that induces oxidative stress in cells, whereas cells with truncated proteins lacking such an activity do not. YB-1 protein may disturb the bacterial system in recognizing oxidatively damaged RNA, thus exerting a dominant negative effect on cell growth. We propose that YB-1 protein may discriminate the oxidized RNA molecule from normal ones, thus contributing to the high fidelity of translation in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号