首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Secondary hyperparathyroidism in chronic renal failure is stimulated by dietary phosphate (P(i)) loading and ameliorated by dietary P(i) restriction. We investigated the rapidity of the response of serum parathyroid hormone (PTH) to changes in dietary P(i). When uremic rats adapted to a high P(i) diet (HPD) were fed a single meal of low P(i) diet (LPD), plasma PTH fell 80% within 2 h; plasma P(i) fell 1 mg/dl with no change in plasma ionized Ca (ICa). When uremic rats on the HPD were gavaged with LPD, PTH fell 60% within 15 min; plasma P(i) fell by 3.0 mg/dl with no change in total plasma Ca. However, HPD gavage increased PTH by 80% within 15 min with no change in plasma P or Ca, suggesting that the response may be independent of altered plasma P(i). Duodenal infusion of sodium P(i) increased PTH twofold within 10 min, with no change in ICa but an increase in plasma P(i), whereas duodenal infusion of NaCl had no effect on any of these parameters. Intravenous infusion of sodium phosphate also increased PTH within 10 min with no change in plasma ICa; intravenous NaCl had no effect. Additionally, duodenal infusion of phosphonoformate, a nonabsorbable phosphate analog, increased PTH fourfold within 5 min, but did not change plasma P or ICa. These findings indicate that oral P(i) increases PTH release in vivo more rapidly than previously reported; this response may be from both plasma phosphate and an additional signal arising from the gastrointestinal tract.  相似文献   

2.
The conformation of two highly potent parathyroid hormone (PTH) antagonists was investigated in water/2, 2, 2-trifluoroethanol mixtures. The two peptides are derived from the sequence (7-34) of PTH and of PTH-related protein (PTHrP) and have a D -Trp replacing Gly in position 12. In the analogue derived from PTHrP, Lys11 was replaced by Leu to remove the residual agonist activity. The study was conducted by CD and two-dimensional proton magnetic resonance spectroscopy, and the nuclear Overhauser effects found were utilized in restrained distance geometry and molecular dynamics simulations. Both peptides adopt a helical C-terminal conformation, which seems more stable in the case of the PTHrP analogue. A type II′ β-turn centered around D -Trp12 and Lys13 is present inboth structures. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Fibroblast growth factor (FGF)-23 was identified as a causative factor of tumor-induced osteomalacia and also as a responsible gene for autosomal dominant hypophosphatemic rickets. To clarify the pathophysiological roles of FGF-23 in these diseases, we generated its transgenic mice. The transgenic mice expressing human FGF-23 reproduced the common clinical features of these diseases such as hypophosphatemia probably due to increased renal phosphate wasting, inappropriately low serum 1,25-dihydroxyvitamin D level, and rachitic bone. The renal phosphate wasting in the transgenic mice was accompanied by the reduced expression of sodium phosphate cotransporter type IIa in renal proximal tubules. These results reinforce the notion that the excessive action of FGF-23 plays a causative role in the development of several hypophosphatemic rickets/osteomalacia.  相似文献   

4.
We have employed parathyroid hormone (PTH) responsive human cells cultured from dermis or giant cell tumors of bone (GT) to evaluate the biological properties of a newly developed in vivo PTH inhibitor, [Tyr34]bPTH-(7-34)-amide (PTH-Inh). Short periods of incubation of cells from dermis or GT with maximal stimulatory concentrations of PTH in the presence of increasing concentrations of PTH-Inh resulted in a dose-dependent inhibition of the adenosine cyclic 3',5'-phosphate (cAMP) response (Ki = 3 X 10(-7) M and 4.2 X 10(-7) M for GT and dermal cells, respectively). In both cell cultures, PTH-Inh alone did not increase cAMP levels, and in desensitization experiments, preincubation with PTH-Inh alone did not desensitize cells to PTH. Hence, the analogue displayed no agonist properties. Unexpectedly, when PTH-Inh was incubated with dermal cells in the presence of PTH, the PTH-Inh failed to block desensitization, suggesting a loss of biological effectiveness of the inhibitor. When medium containing PTH-Inh alone was removed from dermal cells and tested for inhibition of the acute PTH response in untreated cells, there was apparent loss of inhibitory efficacy (t1/2 = 20 h). In contrast, incubation of native PTH or bPTH-(1-34) with cells did not affect the biological activity of these ligands. Unlike the dermal cells, the PTH-Inh did block desensitization to PTH in GT, and there was no loss of inhibitor efficacy when medium containing PTH-Inh was incubated with GT (48 h) and then tested in untreated cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The epithelial Ca(2+) channel transient receptor potential vanilloid 5 (TRPV5) constitutes the apical entry gate for active Ca(2+) reabsorption in the kidney. Ca(2+) influx through TRPV5 induces rapid channel inactivation, preventing excessive Ca(2+) influx. This inactivation is mediated by the last ~30 residues of the carboxy (C) terminus of the channel. Since the Ca(2+)-sensing protein calmodulin has been implicated in Ca(2+)-dependent regulation of several TRP channels, the potential role of calmodulin in TRPV5 function was investigated. High-resolution nuclear magnetic resonance (NMR) spectroscopy revealed a Ca(2+)-dependent interaction between calmodulin and a C-terminal fragment of TRPV5 (residues 696 to 729) in which one calmodulin binds two TRPV5 C termini. The TRPV5 residues involved in calmodulin binding were mutated to study the functional consequence of releasing calmodulin from the C terminus. The point mutants TRPV5-W702A and TRPV5-R706E, lacking calmodulin binding, displayed a strongly diminished Ca(2+)-dependent inactivation compared to wild-type TRPV5, as demonstrated by patch clamp analysis. Finally, parathyroid hormone (PTH) induced protein kinase A (PKA)-dependent phosphorylation of residue T709, which diminished calmodulin binding to TRPV5 and thereby enhanced channel open probability. The TRPV5-W702A mutant exhibited a significantly increased channel open probability and was not further stimulated by PTH. Thus, calmodulin negatively modulates TRPV5 activity, which is reversed by PTH-mediated channel phosphorylation.  相似文献   

6.
The scales of bony fish represent a significant reservoir of calcium but little is known about their contribution, as well as of bone, to calcium balance and how calcium deposition and mobilization are regulated in calcified tissues. In the present study we report the action of parathyroid hormone-related protein (PTHrP) on calcium mobilization from sea bream (Sparus auratus) scales in an in vitro bioassay. Ligand binding studies of piscine 125I-(1-35(tyr))PTHrP to the membrane fraction of isolated sea bream scales revealed the existence of a single PTH receptor (PTHR) type. RT-PCR of fish scale cDNA using specific primers for two receptor types found in teleosts, PTH1R, and PTH3R, showed expression only of PTH1R. The signalling mechanisms mediating binding of the N-terminal amino acid region of PTHrP were investigated. A synthetic peptide (10(-8) M) based on the N-terminal 1-34 amino acid residues of Fugu rubripes PTHrP strongly stimulated cAMP synthesis and [3H]myo-inositol incorporation in sea bream scales. However, peptides (10(-8) M) with N-terminal deletions, such as (2-34), (3-34) and (7-34)PTHrP, were defective in stimulating cAMP production but stimulated [3H]myo-inositol incorporation. (1-34)PTHrP induced significant osteoclastic activity in scale tissue as indicated by its stimulation of tartrate-resistant acid phosphatase. In contrast, (7-34)PTHrP failed to stimulate the activity of this enzyme. This activity could also be abolished by the adenylyl cyclase inhibitor SQ-22536, but not by the phospholipase C inhibitor U-73122. The results of the study indicate that one mechanism through which N-terminal (1-34)PTHrP stimulates osteoclastic activity of sea bream scales, is through PTH1R and via the cAMP/AC intracellular signalling pathway. It appears, therefore, that fish scales can act as calcium stores and that (1-34)PTHrP regulates calcium mobilization from them; it remains to be established if this mechanism contributes to calcium homeostasis in vivo.  相似文献   

7.
8.
Bone loss is a typical pathological feature of chronic inflammatory bone diseases including rheumatoid arthritis, in which CD4 effector T cells play critical roles. We found that activated mouse Th2 and not Th1 cells produced the parathyroid hormone (PTH). Unlike in the parathyroid cells, PTH expression in Th2 cells was not regulated by the fluctuation of calcium level, but rather it required the full activation of the T cells. Although PTH was expressed in immature Th2 cells, and its receptor was transiently expressed during Th1 and Th2 cell differentiation, PTH did not significantly affect the outcome of the differentiation. In primary osteoblasts cultured in Th2 cell condition medium, the alkaline phosphatase (ALP) activity was maintained at a basal level. However, antagonizing PTH in the condition medium resulted in a significant reduction of the ALP activity. These results demonstrated an important role of the Th2 cell-derived PTH in maintaining the bone-forming activity of the osteoblasts under inflammatory conditions. In osteoblasts cultured in the Th1 cell condition medium, the ALP activity was significantly suppressed. Neutralizing IFN-gamma alleviated the suppression. Conversely, treatment of osteoblasts with IFN-gamma suppressed the ALP activity. Unlike ALP, expression of the major bone matrix proteins by the osteoblasts was only minimally affected by either Th1 or Th2 cytokine environment. In addition, the Th2 cytokine environment also regulated to expression of receptor activator of NF-kappaB ligand and osteoprotegerin through both PTH-dependent and -independent mechanisms. Our study therefore identified new regulatory events in bone remodeling under inflammatory conditions.  相似文献   

9.
10.
Binding of ATP to the inositol 1,4,5-trisphosphate receptor (IP(3)R) results in a more pronounced Ca(2+)release in the presence of inositol 1,4,5-trisphosphate (IP(3)). Two recently published studies demonstrated a different ATP sensitivity of IP(3)-induced Ca(2+)release in cell types expressing different IP(3)R isoforms. Cell types expressing mainly IP(3)R3 were less sensitive to ATP than cell types expressing mainly IP(3)R1 (Missiaen L, Parys JB, Sienaert I et al. Functional properties of the type 3 InsP(3)receptor in 16HBE14o- bronchial mucosal cells. J Biol Chem 1998;273: 8983-8986; Miyakawa T, Maeda A, Yamazawa T et al. Encoding of Ca(2+)signals by differential expression of IP(3)receptor subtypes. EMBO J 1999;18: 1303-1308). In order to investigate the difference in ATP sensitivity between IP(3)R isoforms at the molecular level, microsomes of Sf9 insect cells expressing full-size IP(3)R1 or IP(3)R3 were covalently labeled with ATP by using the photoaffinity label 8-azido[alpha-(32)P]ATP. ATP labeling of the IP(3)R was measured after immunoprecipitation of IP(3)Rs with isoform-specific antibodies, SDS-PAGE and Phosphorimaging. Unlabeled ATP inhibited covalent linking of 8-azido[alpha-(32)P]ATP to the recombinant IP(3)R1 and IP(3)R3 with an IC(50)of 1.6 microM and 177 microM, respectively. MgATP was as effective as ATP in displacing 8-azido[alpha-(32)P]ATP from the ATP-binding sites on IP(3)R1 and IP(3)R3, and in stimulating IP(3)-induced Ca(2+)release from permeabilized A7r5 and 16HBE14o- cells. The interaction of ATP with the ATP-binding sites on IP(3)R1 and IP(3)R3 was different from its interaction with the IP(3)-binding domains, since ATP inhibited IP(3)binding to the N-terminal 581 amino acids of IP(3)R1 and IP(3)R3 with an IC(50)of 353 microM and 4.0 mM, respectively. The ATP-binding sites of IP(3)R1 bound much better ATP than ADP, AMP and particularly GTP, while IP(3)R3 displayed a much broader nucleotide specificity. These results therefore provide molecular evidence for a differential regulation of IP(3)R1 and IP(3)R3 by ATP.  相似文献   

11.
Electrogenic cotransporters are membrane proteins that use the electrochemical gradient across the cell membrane of a cosubstrate ion, for example Na+ or H+, to mediate uphill cotransport of a substrate specific to the transport protein. The cotransport process involves recognition of both cosubstrate and substrate and translocation of each species according to a defined stoichiometry. Electrogenicity implies net movement of charges across the membrane in response to the transmembrane voltage and therefore, in addition to isotope flux assays, the cotransport kinetics can be studied in real-time using electrophysiological methods. As well as the cotransport mode, many cotransporters also display a uniport or slippage mode, whereby the cosubstrate ions translocate in the absence of substrate. The current challenge is to define structure–function relationships by identifying functionally important elements in the protein that confer the transport properties and thus contribute to the ultimate goal of having a 3-D model of the protein that conveys both structural and functional information. In this review we focus on a functional approach to meet this challenge, based on a combination of real-time electrophysiological assays, together with molecular biological and biochemical methods. This is illustrated, by way of example, using data obtained by heterologous expression of the renal Na+-coupled inorganic phosphate cotransporter (NaPi-IIa) for which structure–function relationships are beginning to emerge.  相似文献   

12.
Mutations in the apically located Na(+)-dependent phosphate (NaPi) cotransporter, SLC34A3 (NaPi-IIc), are a cause of hereditary hypophosphatemic rickets with hypercalciuria (HHRH). We have characterized the impact of several HHRH mutations on the processing and stability of human NaPi-IIc. Mutations S138F, G196R, R468W, R564C, and c.228delC in human NaPi-IIc significantly decreased the levels of NaPi cotransport activities in Xenopus oocytes. In S138F and R564C mutant proteins, this reduction is a result of a decrease in the V(max) for P(i), but not the K(m). G196R, R468W, and c.228delC mutants were not localized to oocyte membranes. In opossum kidney (OK) cells, cell surface labeling, microscopic confocal imaging, and pulse-chase experiments showed that G196R and R468W mutations resulted in an absence of cell surface expression owing to endoplasmic reticulum (ER) retention. G196R and R468W mutants could be partially stabilized by low temperature. In blue native-polyacrylamide gel electrophoresis analysis, G196R and R468W mutants were either denatured or present in an aggregation complex. In contrast, S138F and R564C mutants were trafficked to the cell surface, but more rapidly degraded than WT protein. The c.228delC mutant did not affect endogenous NaPi uptake in OK cells. Thus, G196R and R468W mutations cause ER retention, while S138F and R564C mutations stimulate degradation of human NaPi-IIc in renal epithelial cells. Together, these data suggest that the NaPi-IIc mutants in HHRH show defective processing and stability.  相似文献   

13.
The locus for the human parathyroid hormone gene (PTH) was assigned to a region proximal to 11p15.4 using restriction fragment length polymorphisms and gene dose studies performed on a patient with the Beckwith-Wiedemann syndrome accompanied with a chromosome abnormality [46,XX,-14,+der(14),t(14;11)(q32.3;p15.3)pat]. Our data suggest that PTH is localized in 11p15.3----p15.1, most likely near the border of the bands 11p15.4 and 11p15.3.  相似文献   

14.
15.
The conversion of proparathyroid hormone (proparathormone) to parathyroid hormone (parathormone) by subcellular fractions of the bovine parathyroid has been investigated. The identification of the conversion product as parathormone was established by its elution postion during ion exchange chromatography and gel filtration, and by partial amino acid sequence analysis of its NH2-terminal region. Total homogenates and derived subcellular fractions (600 X g pellet, 5,000 X g pellet, 20,000 X g pellet, 190,000 X g pellet, and 190,000 X g supernatant) all catalyzed the conversion of exogenous [3H]- or [14C]prohormone. Over 60% of the converting activity was in the particulate fractions; the 190,000 X g particulate fraction contained the highest specific converting activity. The converting activity appeared to be an integral component of the membranes since it could only be partially removed by extraction with Triton X-100. The production of parathormone by the particulate converting enzyme increased with time and the concentration of enzyme protein. The optimum pH range was between 7 and 9, and the enzyme was inactive below pH 6. Conversion by the particulate enzyme was inhibited by benzamidine or chloroquine, but not by pancreatic trypsin inhibitor, indicating its dissimilarity to trypsin. When a mixture of [14C]proparathormone and [3H]parathormone was used as substrate, the particulate enzyme did not metabolize the hormone despite over 70% conversion of the prohormone to hormone and other peptides. There was a close correlation between the subcellular distribution of converting activity and that of newly formed parathormone found in the membrane fraction. These data suggest that the particulate converting activity is that concerned with the formation of parathormone in vivo.  相似文献   

16.
Adult sheep were given intravenous infusions of a solution of Na2HPO4 and the effects on parotid salivary composition and on plasma parathyroid hormone levels were studied. Infusion of the phosphate solution resulted in increases in the concentration of inorganic phosphate in the plasma and to proportional increases in the concentration and amount of phosphate secreted in the saliva. There was, however, no evidence that the salivary response was dependent upon a change in endogenous parathyroid hormone release. In other studies infusion of bovine parathyroid hormone or stimulation of endogenous hormone release through infusion of EDTA both led to a fall in the concentration of inorganic phosphate in the plasma and to a fall in the concentration and amount of phosphate secreted in the saliva. Taken together these results suggest that the major factor affecting salivary phosphate secretion in these studies was the concentration of inorganic phosphate in the plasma. Parathyroid hormone does not appear to have any direct effect on salivary phosphate secretion in the sheep though it may indirectly influence phosphate secretion through its effects on plasma inorganic phosphate level.  相似文献   

17.
18.
In the absence of DNA aggregation, spermidine inhibited the relaxation of negatively supercoiled DNA by Escherichia coli topoisomerase I at concentrations of the polyamine normally found intracellularly. Spermidine also curtailed the cleavage of negatively supercoiled ColE1 DNA by the enzyme in the absence of Mg2+. On the contrary, knotting of M13 single-stranded DNA circles catalyzed by topoisomerase I was stimulated by the polyamine. Relaxation of supercoiled DNA by eukaryotic type 1 topoisomerases, such as calf thymus topoisomerase I and wheat germ topoisomerase, was significantly stimulated by spermidine in the same range of concentrations that inhibited the prokaryotic enzyme. In reactions catalyzed by S1 nuclease, the polyamine enhanced the digestion of single-stranded DNA and inhibited the nicking of negatively supercoiled DNA. These results suggest that spermidine modifies the supercoiled duplex substrate in these reactions by modulating the degree of single strandedness.  相似文献   

19.
Humoral hypercalcemia of malignancy has been associated with the production of a recently cloned peptide human parathyroid hormone related protein (hPTHRP). One of the markers of this disease is an increased urinary excretion of cyclic AMP. The postreceptor mechanism of action and physiological role of hPTHRP remain obscure. To study the activity of hPTHRP 1-34 compared to rat and human parathyroid hormone (PTH) 1-34 we incubated these peptides with rat kidney slices and measured the cyclic AMP generated in the supernatant. hPTHRP 1-34 was equipotent with human PTH 1-34 but both were 5 times less active than rat PTH 1-34. Previous studies have suggested that a low dietary phosphate intake results in renal resistance to the phosphaturic action of PTH perhaps mediated by reduced adenylate cyclase activation by PTH. To determine whether, during dietary phosphate restriction, hPTHRP 1-34 has actions different from hPTH 1-34 we studied their effects following dietary phosphate deprivation. Dietary phosphate restriction had no significant effect on the cyclic AMP generating activity of any of the peptides. We conclude that hPTHRP 1-34 may be operating through similar mechanisms as human PTH 1-34 and that the previously observed effects of dietary phosphate deprivation on PTH mediated cyclic AMP generation in a broken cell preparation do not occur in intact cell preparations.  相似文献   

20.
Nicotinamide, like parathyroid hormone, is a rapidly acting specific inhibitor of Na+-dependent transport of phosphate (Pi) across the brush-border membrane of the proximal tubule of the mammalian kidney. Pretreatment of rats with colchicine (0.7 mg/kg body weight) for 1 h led to a significantly diminished phosphaturic response to parathyroid hormone (synthetic 1-34 fragment, 4 micrograms/kg). In contrast, the same dose of colchicine had no effect on the renal response to nicotinamide (1.0 g/kg), measured both as the change in urinary Pi excretion and as Na+-dependent Pi uptake by isolated brush-border membrane vesicles. These data suggest indirectly that the intracellular mechanism that mediates the inhibitory effects of nicotinamide on renal Pi transport does not require intact microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号