首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The final maturation of spermatozoa produced in the testis takes place during their passage through the epididymis. In this process, the proteins secreted into the epididymal lumen along with changes in the pH and salt composition of the epididymal fluid cause several biochemical changes and remodeling of the sperm plasma membrane. The Crisp family is a group of cysteine-rich secretory proteins that previously consisted of three members, one of which-CRISP1-is an epididymal protein shown to attach to the sperm surface in the epididymal lumen and to inhibit gamete membrane fusion. In the present paper, we introduce a new member of the Crisp protein family, CRISP4. The new gene was discovered through in silico analysis of the epididymal expressed sequence tag library deposited in the UniGene database. The peptide sequence of CRISP4 has a signal sequence suggesting that it is secreted into the epididymal lumen and might thus interact with sperm. Unlike the other members of the family, Crisp4 is located on chromosome 1 in a cluster of genes encoding for cysteine-rich proteins. Crisp4 is expressed in the mouse exclusively in epithelial cells of the epididymis in an androgen-dependent manner, and the expression of the gene starts at puberty along with the onset of sperm maturation. The identified murine CRISP4 peptide has high homology with human CRISP1, and the homology is higher than that between murine and human CRISP1, suggesting that CRISP4 represents the mouse counterpart of human CRISP1 and could have similar effects on sperm membrane as mouse and human CRISP1.  相似文献   

2.
During epididymal transit, spermatozoa acquire selected proteins secreted by epithelial cells. We recently showed that P25b, a protein with predictive properties for bull fertility, is transferred from prostasome-like particles present in the cauda epididymal fluid (PLPCd) to the sperm surface. To further characterize the interactions between PLPCd and epididymal spermatozoa, PLPCd were prepared by ultracentrifugation of bull epididymal fluid, then surface-exposed proteins were biotinylated and coincubated in different conditions with caput epididymal spermatozoa. Western blot analysis revealed that only selected proteins are transferred from PLPCd to spermatozoa. MALDI-TOF analysis revealed that these transferred proteins are closely related. The pattern of distribution of the PLPCd transferred varied from one sperm cell to the other, with a bias toward the acrosomal cap. This transfer appeared to be temperature sensitive, being more efficient at 32-37 degrees C than at 22 degrees C. Transfer of PLPCd proteins to spermatozoa was also pH dependant, the optimal pH for transfer being 6.0-6.5. The effect of divalent cations on PLPCd protein transfer to caput spermatozoa was investigated. Whereas Mg(2+) and Ca(2+) have no effect on the amount of proteins remaining associated with spermatozoa following coincubation, Zn(2+) had a beneficial effect. These results are discussed with regard to the function of PLPCd in epididymal sperm maturation.  相似文献   

3.
1. alpha-d-Mannosidase from rat epididymis was purified 300-fold. beta-N-Acetyl-glucosaminidase and beta-galactosidase were removed from the preparation by treatment with pyridine. Zn(2+) was added during the purification to stabilize the alpha-mannosidase. 2. Mammalian alpha-mannosidase is most stable at pH6. At lower pH values it undergoes reversible spontaneous inactivation. The enzyme is also subject to irreversible inactivation, which is delayed by the addition of albumin. 3. Reversible inactivation of alpha-mannosidase is accelerated by EDTA and reversed or prevented by Zn(2+). Other cations, such as Co(2+), Cd(2+) and Cu(2+), accelerate inactivation and the action of a toxic cation can be prevented by Zn(2+) or by EDTA in suitable concentration. 4. The enzyme is stabilized by substrate and neither Zn(2+), EDTA nor a toxic cation has more than a small effect in the assay of an untreated preparation. The addition of Zn(2+) is necessary, however, for a constant rate of hydrolysis during prolonged incubation of the enzyme with substrate. In an EDTA-treated preparation, Zn(2+) reactivates the enzyme during the assay. 5. Evidence is presented that alpha-mannosidase is a dissociable Zn(2+)-protein complex, in which Zn(2+) is essential for enzyme activity.  相似文献   

4.
Cysteine-rich secretory protein 1 (CRISP1) is a secretory glycoprotein produced by the rat epididymal epithelium in two forms, referred to as proteins D and E. CRISP1 has been implicated in sperm-egg fusion and has been shown to suppress capacitation in rat sperm. Several studies have suggested that CRISP1 associates transiently with the sperm surface, whereas others have shown that at least a portion of CRISP1 persists on the surface. In the present study, we demonstrate that protein D associates transiently with the sperm surface in a concentration-dependent manner, exhibiting saturable binding to both caput and cauda sperm in a concentration range that is consistent with its capacitation-inhibiting activity. In contrast, protein E persists on the sperm surface after all exogenous protein D has been dissociated. Comparison of caput and cauda sperm reveal that protein E becomes bound to the sperm in the cauda epididymidis. We show that protein E associates with caput sperm, which do not normally have it on their surfaces, in vitro in a time- and temperature-dependent manner. These studies demonstrate that most CRISP1 interacts with sperm transiently, possibly with a specific receptor on the sperm surface, consistent with its action in suppressing capacitation during epididymal storage of sperm. These studies also confirm a tightly bound population of protein E that could act in the female tract.  相似文献   

5.
The photoreceptor cGMP phosphodiesterase (PDE6) plays a key role in vertebrate vision, but its enzymatic mechanism and the roles of metal ion co-factors have yet to be determined. We have determined the amount of endogenous Zn(2+) in rod PDE6 and established a requirement for tightly bound Zn(2+) in catalysis. Purified PDE6 contained 3-4-g atoms of zinc/mole, consistent with an initial content of two tightly bound Zn(2+)/catalytic subunit. PDE with only tightly bound Zn(2+) and no free metal ions was inactive, but activity was fully restored by Mg(2+), Mn(2+), Co(2+), or Zn(2+). Mn(2+), Co(2+), and Zn(2+) also induced aggregation and inactivation at higher concentrations and longer times. Removal of 93% of the tightly bound Zn(2+) by treatment with dipicolinic acid and EDTA at pH 6.0 resulted in almost complete loss of activity in the presence of Mg(2+). This activity loss was blocked almost completely by Zn(2+), less potently by Co(2+) and almost not at all by Mg(2+), Mn(2+), or Cu(2+). The lost activity was restored by the addition of Zn(2+), but Co(2+) restored only 13% as much activity, and other metals even less. Thus tightly bound Zn(2+) is required for catalysis but could also play a role in stabilizing the structure of PDE6, whereas distinct sites where Zn(2+) is rapidly exchanged are likely occupied by Mg(2+) under physiological conditions.  相似文献   

6.
CRISP2, originally known as Tpx-1, is a cysteine-rich secretory protein specifically expressed in male haploid germ cells. Although likely to be involved in gamete interaction, evidence for a functional role of CRISP2 in fertilization still remains poor. In the present study, we used a mouse model to examine the subcellular localization of CRISP2 in sperm and its involvement in the different stages of fertilization. Results from indirect immunofluorescence and protein extraction experiments indicated that mouse CRISP2 is an intraacrosomal component that remains associated with sperm after capacitation and the acrosome reaction (AR). In vitro fertilization assays using zona pellucida-intact mouse eggs showed that an antibody against the protein significantly decreased the percentage of penetrated eggs, with a coincident accumulation of perivitelline sperm. The failure to inhibit zona pellucida penetration excludes a detrimental effect of the antibody on sperm motility or the AR, supporting a specific participation of CRISP2 at the sperm-egg fusion step. In agreement with this evidence, recombinant mouse CRISP2 (recCRISP2) specifically bound to the fusogenic area of mouse eggs, as previously reported for rat CRISP1, an epididymal protein involved in gamete fusion. In vitro competition investigations showed that incubation of mouse zona-free eggs with a fixed concentration of recCRISP2 and increasing amounts of rat CRISP1 reduced the binding of recCRISP2 to the egg, suggesting that the proteins interact with common complementary sites on the egg surface. Our findings indicate that testicular CRISP2, as observed for epididymal CRISP1, is involved in sperm-egg fusion through its binding to complementary sites on the egg surface, supporting the idea of functional cooperation between homologous molecules to ensure the success of fertilization.  相似文献   

7.
During the passage through the epididymis, testicular spermatozoa are directly exposed to epididymal fluid and undergo maturation. Proteins and glycoproteins of epididymal fluid may be adsorbed on the sperm surface and participate in the sperm maturation process, potentially in sperm capacitation, gamete recognition, binding and fusion. In present study, we separated proteins from boar epididymal fluid and tested their binding abilities. Boar epididymal fluid proteins were separated by size exclusion chromatography and by high-performance liquid chromatography with reverse phase (RP HPLC). The protein fractions were characterized by SDS-electrophoresis and the electrophoretic separated proteins after transfer to nitrocellulose membranes were tested for the interaction with biotin-labeled ligands: glycoproteins of zona pellucida (ZP), hyaluronic acid and heparin. Simultaneously, changes in the interaction of epididymal spermatozoa with biotin-labeled ligands after pre-incubation with epididymal fluid fractions were studied on microtiter plates by the ELBA (enzyme-linked binding assay) test. The affinity of some low-molecular-mass epididymal proteins (12-17 kDa and 23 kDa) to heparin and hyaluronic acid suggests their binding ability to oviductal proteoglycans of the porcine oviduct and a possible role during sperm capacitation. Epididymal proteins of 12-18 kDa interacted with ZP glycoproteins. One of them was identified as Crisp3-like protein. The method using microtiter plates showed the ability of epididymal fluid fractions to change the interaction of the epididymal sperm surface with biotin-labeled ligands (ZP glycoproteins, hyaluronic acid and heparin). These findings indicate that some epididymal fluid proteins are bound to the sperm surface during epididymal maturation and might play a role in the sperm capacitation or the sperm-zona pellucida binding.  相似文献   

8.
1. Incorporation of [(3)H]thymidine into DNA was inhibited by EDTA and diethylenetriamine-NNN'N'N'-penta-acetate but not by nitrilotriacetate even when Ca(2+) was present at more than twice the concentration of the chelators. 2. The inhibition caused by EDTA was most effectively reversed by Zn(2+) but also to a lesser extent by Cd(2+). Very little if any activation of the EDTA-inhibited system was obtained with Co(2+), Cu(2+), Fe(3+), Mn(2+) or Ni(2+) added alone. 3. Fe(3+) added to the Zn(2+)-activated lymphocytes in the presence of EDTA markedly increased thymidine incorporation. Addition of Cd(2+) prevented the inhibition of incorporation which occurred at high Zn(2+) concentrations. 4. If EDTA was added more than 15h after phytohaemagglutinin, the inhibition of incorporation was less than that obtained by its addition at zero time. If Zn(2+) was added later than 12h after EDTA and phytohaemagglutinin, the inhibition of incorporation by EDTA was not fully reversed. A study of the time-course of the effects of delayed additions of EDTA and Zn(2+) suggested that, on average, the cells required Zn(2+) between 20 and 30h after phytohaemagglutinin addition to allow the full rate of thymidine incorporation at 37h. 5. The increase in the rate of protein synthesis caused by phytohaemagglutinin was not inhibited by EDTA until about 8h. The further increase after this was totally inhibited by EDTA but this inhibition was fully reversible with Zn(2+). The rate of protein synthesis in EDTA-inhibited cultures at 40h was the same as that at 10h. 6. There was a close similarity between the effects of EDTA on lymphocyte stimulation and those reported by Kay et al. (1969) with low doses of actinomycin D.  相似文献   

9.
We demonstrated that mouse spermatozoa cleave their DNA into approximately 50 kb loop-sized fragments with topoisomerase IIB when treated with MnCl(2) and CaCl(2) in a process we term sperm chromatin fragmentation (SCF). SCF can be reversed by EDTA. A nuclease then further degrades the DNA in a process we term sperm DNA degradation (SDD). MnCl(2) alone could elicit this activity, but CaCl(2) had no effect. Here, we demonstrate the existence of a nuclease in the vas deferens that can be activated by ethylene glycol tetraacetic acid (EGTA) to digest the sperm DNA by SDD. Spermatozoa were extracted with salt and dithiothreitol to remove protamines and then incubated with EGTA. Next, the EGTA was removed and divalent cations were added. We found that Mn(2+), Ca(2+), or Zn(2+) could each activate SDD in spermatozoa but Mg(2+) could not. When the reaction was slowed by incubation on ice, EGTA pretreatment followed by incubation in Ca(2+) elicited the reversible fragmentation of sperm DNA evident in SCF. When the reactions were then incubated at 37 degrees C they progressed to the more complete degradation of DNA by SDD. EDTA could also be used to activate the nuclease, but required a higher concentration than EGTA. This EGTA-activatable nuclease activity was found in each fraction of the vas deferens plasma: in the spermatozoa, in the surrounding fluid, and in the insoluble components in the fluid. These results suggest that this sperm nuclease is regulated by a mechanism that is sensitive to EGTA, possibly by removing inhibition of a calcium binding protein.  相似文献   

10.
Trace metals are required for many cellular processes. The acquisition of trace elements from the environment includes a rapid adsorption of metals to the cell surface, followed by a slower internalization. We investigated the uptake of the trace elements Co(2+), Cu(2+), Mn(2+), Ni(2+), and Zn(2+) and the non-essential divalent cation Cd(2+) in the cyanobacterium Nostoc punctiforme. For each metal, a dose response study based on cell viability showed that the highest non-toxic concentrations were: 0.5?μM Cd(2+), 2?μM Co(2+), 0.5?μM Cu(2+), 500?μM Mn(2+), 1?μM Ni(2+), and 18?μM Zn(2+). Cells exposed to these non-toxic concentrations with combinations of Zn(2+) and Cd(2+), Zn(2+) and Co(2+), Zn(2+) and Cu(2+) or Zn(2+) and Ni(2+), had reduced growth in comparison to controls. Cells exposed to metal combinations with the addition of 500?μM Mn(2+) showed similar growth compared to the untreated controls. Metal levels were measured after one and 72?h for whole cells and absorbed (EDTA-resistant) fractions and used to calculate differential uptake rates for each metal. The differences in binding and internalisation between different metals indicate different uptake processes exist for each metal. For each metal, competitive uptake experiments using (65)Zn showed that after 72?h of exposure Zn(2+) uptake was reduced by most metals particularly 0.5?μM Cd(2+), while 2?μM Co(2+) increased Zn(2+) uptake. This study demonstrates that N. punctiforme discriminates between different metals and favourably substitutes their uptake to avoid the toxic effects of particular metals.  相似文献   

11.
Family II pyrophosphatases (PPases), recently found in bacteria and archaebacteria, are Mn(2+)-containing metalloenzymes with two metal-binding subsites (M1 and M2) in the active site. These PPases can use a number of other divalent metal ions as the cofactor but are inactive with Zn(2+), which is known to be a good cofactor for family I PPases. We report here that the Mg(2+)-bound form of the family II PPase from Streptococcus gordonii is nearly instantly activated by incubation with equimolar Zn(2+), but the activity thereafter decays on a time scale of minutes. The activation of the Mn(2+)-form by Zn(2+) was slower but persisted for hours, whereas activation was not observed with the Ca(2+)- and apo-forms. The bound Zn(2+) could be removed from PPase by prolonged EDTA treatment, with a complete recovery of activity. On the basis of the effect of Zn(2+) on PPase dimerization, the Zn(2+) binding constant appeared to be as low as 10(-12) M for S. gordonii PPase. Similar effects of Zn(2+) and EDTA were observed with the Mg(2+)- and apo-forms of Streptococcus mutans and Bacillus subtilis PPases. The effects of Zn(2+) on the apo- and Mg(2+)-forms of HQ97 and DE15 B. subtilis PPase variants (modified M2 subsite) but not of HQ9 variant (modified M1 subsite) were similar to that for the Mn(2+)-form of wild-type PPase. These findings can be explained by assuming that (a) the PPase tightly binds Mg(2+) and Mn(2+) at the M2 subsite; (b) the activation of the corresponding holoenzymes by Zn(2+) results from its binding to the M1 subsite; and (c) the subsequent inactivation of Mg(2+)-PPase results from Zn(2+) migration to the M2 subsite. The inability of Zn(2+) to activate apo-PPase suggests that Zn(2+) binds more tightly to M2 than to M1, allowing direct binding to M2. Zn(2+) is thus an efficient cofactor at subsite M1 but not at subsite M2.  相似文献   

12.
Ram sperm, isolated from the caput, corpus, and cauda epididymidis, plus ejaculated cells were washed free of loosely bound components and tested for their ability to bind fluorescein-conjugated lectins (Con A, SBA, RCA, PNA, ECA and WGA) as assessed by epiluminescent-fluorescence light microscopy and flow cytometry. Detailed preliminary studies established an appropriate lectin-to-sperm ratio and incubation conditions for quantitative comparisons of sperm cell types and permitted a detailed analysis of both the amount of lectin bound as well as its distribution on the various aspects of the cell surface. Con A (mannose positive) bound weakly over the entire surface, with little change associated with maturation in the male tract. SBA (N-acetylgalactosamine positive) bound moderately strongly to caput sperm, with an emphasis on the apical ridge portion of the cell; during epididymal transit this binding was greatly diminished and was regained upon ejaculation. RCA, PNA, and ECA (galactose positive) gave generally equivalent results, where initially strong binding to the entire sperm surface decreased (over all parts of the surface except the anterior head) during epididymal maturation, with no change associated with ejaculation. WGA (sialic acid positive) binding initially was weak, but increased with epididymal transit and ejaculation. In vitro incubations with beta-galactosidase and neuraminidase confirmed the assignments given above. These data, when coupled with previous reports describing the heterogeneous distribution of proteins and lipids and changes in their distribution associated with epididymal maturation, serve to quantitatively describe changes in those aspects of the cell surface that are probably responsible for the acquisition of the capacity of the sperm to bind successfully to the oocyte.  相似文献   

13.
Miyoshi D  Nakao A  Toda T  Sugimoto N 《FEBS letters》2001,496(2-3):128-133
The thermodynamic parameters of an antiparallel G-quartet formation of d(G4T4G4) with 1 mM divalent cation (Mg(2+), Ca(2+), Mn(2+), Co(2+), and Zn(2+)) were obtained. The thermodynamic parameters showed that the divalent cation destabilizes the antiparallel G-quartet of d(G4T4G4) in the following order: Zn(2+)>Co(2+)>Mn(2+)>Mg(2+)>Ca(2+). In addition, a higher concentration of a divalent cation induced a transition from an antiparallel to a parallel G-quartet structure. These results indicate that these divalent cations are a good tool for regulating the G-quartet structures.  相似文献   

14.
Lactoferrin has been for the first time purified from the porcine cauda epididymal fluid as a 70 kDa protein. Both Western and Northern blot analyses show that lactoferrin is synthesized in the regions from the distal caput to the cauda epididymis and secreted into the luminal fluid. Lactoferrin is first secreted as a 75 kDa glycoprotein and its carbohydrate moieties are gradually digested to form 70 kDa protein in the cauda epididymis. Lactoferrin has already bound to the surface of the epididymal sperm because the anti-lactoferrin antiserum induces the mature sperm tail-to-tail agglutination. These results strongly suggest new physiological functions of lactoferrin on the sperm maturation in the epididymis. Mol. Reprod. Dev. 47:490–496, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Deng X  Jia P 《Bioresource technology》2011,102(3):3083-3088
A recombinant photosynthetic bacterium, Rhodopseudomonas palustris, was constructed to simultaneously express mercury transport system and metallothionein for Hg(2+) removal from heavy metal wastewater. The effects of essential process parameters, including pH, ionic strength and presence of co-ions on Hg(2+) uptake were evaluated. The results showed that compared with wild type R. palustris, recombinant strain displayed stronger resistance to toxic Hg(2+), and its Hg(2+) binding capacity was enhanced threefolds. In the range of pH 4-10, recombinant R. palustris maintained effective accumulation of Hg(2+). The presence of 10 mg L(-1) Mg(2+), Ca(2+), Zn(2+) or Ni(2+) did not significantly influence Hg(2+) bioaccumulation by recombinant R. palustris from solutions containing 0.2 mg L(-1) Hg(2+), while Na(+) and Cd(2+) posed serious adverse effect on Hg(2+) uptake. Furthermore, EDTA treatment experiment confirmed that different from wild type R. palustris that mainly absorbed Hg(2+) on the cell surface, recombinant R. palustris transported most of the bound Hg(2+) into the cells.  相似文献   

16.
Comparative studies of 45Ca(2+)-transport across the plasma membrane were performed using porcine caput, corpus and cauda epididymal sperm. The Ca(2+)-uptake is dependent on the presence of the substrates for respiration and is sensitive to verapamil. The Ca(2+)-efflux is mediated by both Na(+)-dependent and -independent systems. In the immature sperm in caput epididymis, Na(+)-independent efflux is predominant, but it is gradually replaced by Na(+)-dependent efflux during the epididymal transit. The net activity of Ca2+ accumulation into sperm increases with the epididymal maturation.  相似文献   

17.
Although the role of the epididymis, a male accessory sex organ, in sperm maturation has been established for nearly four decades, the maturation process itself has not been linked to a specific molecule of epididymal origin. Here we show that Bin1b, a rat epididymis-specific beta-defensin with antimicrobial activity, can bind to the sperm head in different regions of the epididymis with varied binding patterns. In addition, Bin1b-expressing cells, either of epididymal origin or from a Bin1b-transfected cell line, can induce progressive sperm motility in immotile immature sperm. This induction of motility is mediated by the Bin1b-induced uptake of Ca(2+), a mechanism that has a less prominent role in maintaining motility in mature sperm. In vivo antisense experiments show that suppressed expression of Bin1b results in reduced binding of Bin1b to caput sperm and in considerable attenuation of sperm motility and progressive movement. Thus, beta-defensin is important for the acquisition of sperm motility and the initiation of sperm maturation.  相似文献   

18.
Botulinum toxin is a zinc-dependent endoprotease that acts on vulnerable cells to cleave polypeptides that are essential for exocytosis. To exert this poisoning effect, the toxin must proceed through a complex sequence of events that involves binding, productive internalization, and intracellular expression of catalytic activity. Results presented in this study show that soluble chelators rapidly strip Zn(2+) from its binding site in botulinum toxin, and this stripping of cation results in the loss of catalytic activity in cell-free or broken cell preparations. Stripped toxin is still active against intact neuromuscular junctions, presumably because internalized toxin binds cytosolic Zn(2+). In contrast to soluble chelators, immobilized chelators have no effect on bound Zn(2+), nor do they alter toxin activity. The latter finding is because of the fact that the spontaneous loss of Zn(2+) from its coordination site in botulinum toxin is relatively slow. When exogenous Zn(2+) is added to toxin that has been stripped by soluble chelators, the molecule rebinds cation and regains catalytic and neuromuscular blocking activity. Exogenous Zn(2+) can restore toxin activity either when the toxin is free in solution on the cell exterior or when it has been internalized and is in the cytosol. The fact that stripped toxin can reach the cytosol means that the loss of bound Zn(2+) does not produce conformational changes that block internalization. Similarly, the fact that stripped toxin in the cytosol can be reactivated by ambient Zn(2+) or exogenous Zn(2+) means that productive internalization does not produce conformational changes that block rebinding of cation.  相似文献   

19.
We have shown previously that electrophoretically and immunologically homogeneous polyclonal IgGs from the sera of autoimmune-prone MRL mice possess DNase activity. Here we have analyzed for the first time activation of DNase antibodies (Abs) by different metal ions. Polyclonal DNase IgGs were not active in the presence of EDTA or after Abs dialysis against EDTA, but could be activated by several externally added metal (Me(2+)) ions, with the level of activity decreasing in the order Mn(2+)> or =Mg(2+)>Ca(2+)> or =Cu(2+)>Co(2+)> or =Ni(2+)> or =Zn(2+), whereas Fe(2+) did not stimulate hydrolysis of supercoiled plasmid DNA (scDNA) by the Abs. The dependencies of the initial rate on the concentration of different Me(2+) ions were generally bell-shaped, demonstrating one to four maxima at different concentrations of Me(2+) ions in the 0.1-12 mM range, depending on the particular metal ion. In the presence of all Me(2+) ions, IgGs pre-dialyzed against EDTA produced only the relaxed form of scDNA and then sequence-independent hydrolysis of relaxed DNA followed. Addition of Cu(2+), Zn(2+), or Ca(2+) inhibited the Mg(2+)-dependent hydrolysis of scDNA, while Ni(2+), Co(2+), and Mn(2+) activated this reaction. The Mn(2+)-dependent hydrolysis of scDNA was activated by Ca(2+), Ni(2+), Co(2+), and Mg(2+) ions but was inhibited by Cu(2+) and Zn(2+). After addition of the second metal ion, only in the case of Mg(2+) and Ca(2+) or Mn(2+) ions an accumulation of linear DNA (single strand breaks closely spaced in the opposite strands of DNA) was observed. Affinity chromatography on DNA-cellulose separated DNase IgGs into many subfractions with various affinities to DNA and very different levels of the relative activity (0-100%) in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. In contrast to all human DNases having a single pH optimum, mouse DNase IgGs demonstrated several pronounced pH optima between 4.5 and 9.5 and these dependencies were different in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. These findings demonstrate a diversity of the ability of IgG to function at different pH and to be activated by different optimal metal cofactors. Possible reasons for the diversity of polyclonal mouse abzymes are discussed.  相似文献   

20.
Cysteine-rich secretory protein (CRISP) 2 (previously TPX1) is a testis-enriched member of the CRISP family, and has been localized to both the sperm acrosome and tail. Like all members of the mammalian CRISP family, its expression pattern is strongly suggestive of a role in male fertility, but functional support for this hypothesis remains limited. In order to determine the biochemical pathways within which CRISP2 is a component, the putative mature form of CRISP2 was used as bait in a yeast two-hybrid screen of a mouse testis expression library. One of the most frequently identified interacting partners was mitogen-activated protein kinase kinase kinase 11 (MAP3K11). Sequencing and deletion experiments showed that the carboxyl-most 20 amino acids of MAP3K11 interacted with the CRISP domain of CRISP2. This interaction was confirmed using pull-down experiments and the cellular context was supported by the localization of CRISP2 and MAP3K11 to the acrosome of the developing spermatids and epididymal spermatozoa. Interestingly, mouse epididymal sperm contained an approximately 60-kDa variant of MAP3K11, which may have been a result of proteolytic cleavage of the longer 93-kDa form seen in many tissues. These data raise the possibility that CRISP2 is a MAP3K11-modifying protein or, alternatively, that MAP3K11 acts to phosphorylate CRISP2 during acrosome development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号