首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Macrophage metalloelastase (MMP-12) is described to be involved in pulmonary inflammatory response. To determine the mechanisms linking MMP-12 and inflammation, we examined the effect of recombinant human MMP-12 (rhMMP-12) catalytic domain on IL-8/CXCL8 production in cultured human airway epithelial (A549) cells. Stimulation with rhMMP-12 resulted in a concentration-dependent IL-8/CXCL8 synthesis 6 h later. Similar results were also observed in cultured BEAS-2B bronchial epithelial cells. In A549 cells, synthetic matrix metalloproteinase (MMP) inhibitors prevented rhMMP-12-induced IL-8/CXCL8 release. We further demonstrated that in A549 cells, rhMMP-12 induced transient, peaking at 5 min, activation of ERK1/2. Selective MEK inhibitors (U0126 and PD-98059) blocked both IL-8/CXCL8 release and ERK1/2 phosphorylation. IL-8/CXCL8 induction and ERK1/2 activation were preceded by EGF receptor (EGFR) tyrosine phosphorylation, within 2 min, and reduced by selective EGFR tyrosine kinase inhibitors (AG-1478 and PD168393) by a neutralizing EGFR antibody and by small interfering RNA oligonucleotides directed against EGFR, implicating EGFR activation. In addition, we observed an activation of c-Fos in A549 cells stimulated by rhMMP-12, dependent on ERK1/2. Using small interfering technique, we showed that c-Fos is involved in rhMMP-12-induced IL-8/CXCL8 production. From these results, we conclude that one mechanism, by which MMP-12 induces IL-8/CXCL8 release from the alveolar epithelium, is the EGFR/ERK1/2/activating protein-1 pathway.  相似文献   

2.
3.
赵莹  魏晓晴  吕广艳  高颖  金海威 《生物磁学》2009,(16):3053-3055
目的:探讨幽门螺杆菌热休克蛋白60(H.pylori—HSP60)感染胃上皮细胞后ERK与白介素-8(IL-8)分泌的关系。方法:利用ELISA技术,对活菌(IntactH.pylori)、死菌(Heat—killedH.pylori)及H.pylori—HSP60刺激胃上皮细胞KATOIII的IL_8蛋白分泌水平进行分析,观察IL-8随以上抗原浓度梯度的变化及ERK抑制剂PD98059对其分泌量的影响;利用Westernblot技术,观察KATOⅢ胞中磷酸化ERK随IntactH.pylori、Heat—killedH.pylori及H.pylori—HSP60刺激时间的变化状况。结果:IL-8的分泌随着IntactH.pylori、Heat—killedH.pylori及H.pylori—HSP60刺激浓度的升高而增高;H.pylori刺激KATOⅢ胞1h后ERK开始表达,其中IntactH.pylori在9h时表达达到高峰,Heat·killedH.pylori在24h时达到高峰,而H.pylori-HSP60刺激KATOⅢ胞6h后ERK开始表达,9h时达到高峰;PD98059抑制了H.pylori—HSP60诱导的IL-8的分泌。结论:ERK介导了H.pylori—HSP60感染的胃上皮细胞的IL-8的分泌。  相似文献   

4.
5.
Defective DNA damage response (DDR) is frequently associated with carcinogenesis. Abrogation of DDR leads to chromosomal instability, a most common characteristic of tumors. However, the molecular mechanisms underlying regulation of DDR are still elusive. The ubiquitin ligase RNF8 mediates the ubiquitination of γH2AX and recruits 53BP1 and BRCA1 to DNA damage sites which promotes DDR and inhibits chromosomal instability. Though RNF8 is a key player involved in DDR, regulation of its expression is still poorly understood. Here, we show that miR-214 could abrogate DDR by repressing RNF8 expression through direct binding to 3′-untranslated region (3′ UTR) of RNF8 mRNA in human ovarian cancer cells. Antagonizing miR-214 by expressing its inhibitors in A2780 cells significantly increased RNF8 expression and thus promoted DNA damage repair. Consistent with the role of miR-214 in regulating RNF8 expression, the impaired DNA repair induced by miR-214 overexpression can be rescued by overexpressing RNF8 mRNA lacking the 3′ UTR. Together, our results indicate that down-regulation of RNF8 mediated by miR-214 impedes DNA damage response to induce chromosomal instability in ovarian cancers, which may facilitate the understanding of mechanisms underlying chromosomal instability.  相似文献   

6.
Summary Differentiated neuroblastoma cells exhibit both the delayed rectifier potassium current (I K) and the M-current (I M). The present study was designed to determine the roles of protein kinase C (PKC) and of the calmodulin-binding protein 80K/MARCKS, a prominent substrate for PKC and possible regulator of these currents. Neuroblastoma x glioma (NG108-15) hybrid cells transfected with m1 muscarinic receptors were grown with 1% fetal bovine serum (FBS) without the prostaglandin E1 (PGE1) and isobutylmethylxanthine (IBMX) usually added in preparation for electrophysiological studies. Under these conditions, the usual pleomorphism was largely abolished, leaving two populations of small cells with stellate and spherically symmetrical geometries. Whole-cell patch clamping indicated that the two cell types had identical electrophysiological properties, displaying: I k, a small current through a T-like Ca2+ channel, and no M-current.Stimulation with carbachol shifted the distribution of cells to a more stellate morphology within 24 hr and later (after 48 hr) reduced the PKC substrate 80K/MARCKS by 22±7%. In contrast to the stimulation of I k observed with cardiac cells, PKC activation produced only a small inhibition of I k, which was independent of carbachol pretreatment. Thus, PKC and 80K/MARCKS can be dissociated from the regulation of I k in neuroblastoma cells.Supported in part by research grants from the National Institutes of Health (DK-40145 and EY-08343) and from the U.K. Medical Research Council.We thank Dr. Peter J. Parker for his generous gift of PKC, and Yvonne Vallis for her skillful assistance with the cultures and harvesting of the NG108-15 transfected cells.  相似文献   

7.
8.
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells.  相似文献   

9.
10.
11.
MUC8 gene expression is overexpressed in nasal polyp epithelium and is also increased by treatment with inflammatory mediators in nasal epithelial cells. These data suggest that MUC8 may be one of important mucin genes expressed in human airway. However, the mechanisms of various inflammatory mediator-induced MUC8 gene expression in normal nasal epithelial cells remain unclear. We examined the mechanism by which prostaglandin E(2) (PGE2), an arachidonic acid metabolite, increases MUC8 gene expression levels. Here, we show that ERK mitogen-activated protein kinase is essential for PGE2-induced MUC8 gene expression in normal human nasal epithelial cells and that p90 ribosomal S 6 protein kinase 1 (RSK1) mediates the PGE2-induced phosphorylation of cAMP-response element binding protein. Our results also indicate that cAMP-response element at the -803 region of the MUC8 promoter is an important site of PGE2-induced MUC8 gene expression. In conclusion, this study gives insights into the molecular mechanism of PGE2-induced MUC8 gene expression in human airway epithelial cells.  相似文献   

12.
13.
The ERKs are a subfamily of the MAPKs that have been implicated in cell growth and differentiation. By using the rat ERK7 cDNA to screen a human multiple tissue cDNA library, we identified a new member of the ERK family, ERK8, that shares 69% amino acid sequence identity with ERK7. Northern analysis demonstrates that ERK8 is present in a number of tissues with maximal expression in the lung and kidney. Fluorescence in situ hybridization localized the ERK8 gene to chromosome 8, band q24.3. Expression of ERK8 in COS cells and bacteria indicates that, in contrast to constitutively active ERK7, ERK8 has minimal basal kinase activity and a unique substrate profile. ERK8, which contains two SH3-binding motifs in its C-terminal region, associates with the c-Src SH3 domain in vitro and co-immunoprecipitates with c-Src in vivo. Co-transfection with either v-Src or a constitutively active c-Src increases ERK8 activation indicating that ERK8 can be activated downstream of c-Src. ERK8 is also activated following serum stimulation, and the extent of this activation is reduced by pretreatment with the specific Src family inhibitor PP2. The ERK8 activation by serum or Src was not affected by the MEK inhibitor U0126 indicating that activation of ERK8 does not require MEK1, MEK2, or MEK5. Although most closely related to ERK7, the relatively low sequence identity, minimal basal activity, and different substrate profile identify ERK8 as a distinct member of the MAPK family that is activated by an Src-dependent signaling pathway.  相似文献   

14.
Natural or recombinant neutrophil activating cytokine (IL-8) induced migration across polycarbonate filters of human A 2058 melanoma cells. Anti-IL-8 antibodies blocked IL-8 induced melanoma cell migration. Checkerboard experiments revealed a gradient-dependent response of A2058 melanoma cells to IL-8. Filters exposed to IL-8 and washed supported melanoma cell migration, thus implying a haptotactic component in the response. The homologous polypeptide platelet factor 4 was inactive. The observation that IL-8 affects melanoma cells emphasizes the need for a comprehensive analysis of the spectrum of action of platelet factor 4-related peptides. The effect of the inflammatory cytokine IL-8 on melanoma cells may be relevant to augmented secondary localization of tumors at sites of inflammation.  相似文献   

15.
16.
High continuous hydrostatic pressure has been shown to affect many cellular functions within the pressurised cells, for instance, accumulation of heat shock protein 70 occurs during pressurisation. Various signal transduction pathways are likely to mediate these changes, however, at the present time our knowledge of the pathways involved is rather limited. The aim of this study was to investigate whether some of the well known transduction pathways are activated by the exposure of human chondrosarcoma cells to 15-30 MPa hydrostatic pressure. The results showed an increased presence of the active, phosphorylated forms of extracellular signal-related kinase (ERK) and phosphoinositide 3-kinase (PI3K) in cells exposed to 15 and 30 MPa continuous hydrostatic pressure, while 0.5 Hz cyclic loading had weaker effects. Inhibition of ERK-pathway with UO126 did not prevent the accumulation of heat shock protein 70. No activation of c-Jun N-terminal protein kinase (JNK) or p38 could be noticed in pressurised cells. In conclusion, we could identify at least two different signal transduction pathways that are activated under high continuous hydrostatic pressure. Accumulation of heat shock protein 70 was independent of ERK-activation.  相似文献   

17.
At diagnosis, the majority of pancreatic cancer patients present with advanced disease when curative resection is no longer feasible and current therapeutic treatments are largely ineffective. An improved understanding of molecular targets for effective intervention of pancreatic cancer is thus urgent. The Met receptor tyrosine kinase is one candidate implicated in pancreatic cancer. Notably, Met is over expressed in up to 80% of invasive pancreatic cancers but not in normal ductal cells correlating with poor overall patient survival and increased recurrence rates following surgical resection. However the functional role of Met signaling in pancreatic cancer remains poorly understood. Here we used RNA interference to directly examine the pathobiological importance of increased Met signaling for pancreatic cancer. We show that Met knockdown in pancreatic tumor cells results in decreased cell survival, cell invasion, and migration on collagen I in vitro. Using an orthotopic model for pancreatic cancer, we provide in vivo evidence that Met knockdown reduced tumor burden correlating with decreased cell survival and tumor angiogenesis, with minimal effect on cell growth. Notably, we report that Met signaling regulates the secretion of the pro-angiogenic chemokine interleukin-8/CXCL8. Our data showing that the interleukin-8 receptors CXCR1 and CXCR2 are not expressed on pancreatic tumor cells, suggests a paracrine mechanism by which Met signaling regulates interleukin-8 secretion to remodel the tumor microenvironment, a novel finding that could have important clinical implications for improving the effectiveness of treatments for pancreatic cancer.  相似文献   

18.
Neutrophil-activating peptide 1/interleukin 8 (NAP-1/IL-8) is a recently described cytokine with potent chemotactic activity for human neutrophil granulocytes (PMN) and T cells. In psoriasis, a chronic hyperproliferative and inflammatory skin disorder, PMN and T cells are found as prominent cells in the inflammatory infiltrate of the lesions; however, monocytes were shown to be the first cells invading a newly formed plaque. NAP-1/IL-8 was found to be present in high amounts in the skin and in scale material of psoriatic patients. Psoriasis responds well to systemic treatment with cyclosporin A (CsA), an immunosuppressive peptide. Therefore, we addressed the question of whether the clinical improvement of psoriatic patients during CsA therapy may be due to an inhibition of NAP-1/IL-8 production and secretion from monocytes. Purified human monocytes were stimulated by lipopolysaccharide in the presence or absence of various concentrations of CsA. Production of NAP-1/IL-8 was determined as expression of specific mRNA by fluorescent in situ hybridization. Secreted peptide was measured by bioassay (PMN chemotaxis) and enzyme-linked immunosorbent assay (ELISA) using specific monoclonal antibodies. The results show that CsA neither inhibited mRNA expression for NAP-1/IL-8 nor secretion of the peptide. These findings support the hypothesis that the pharmacological effect of CsA may be restricted to the inhibition of T-cell activation and proliferation.  相似文献   

19.
Cao H 《Biochemistry》2004,43(43):13724-13738
Tristetraprolin (TTP) is a hyperphosphorylated protein that destabilizes mRNA by binding to an AU-rich element (ARE). Mice deficient in TTP develop a severe inflammatory syndrome. The biochemical properties of TTP have not been adequately characterized, due to the difficulties in protein purification and lack of a high-titer antiserum. Full-length human TTP was expressed in human HEK293 cells and purified to at least 70% homogeneity. The purified protein was free of endogenous ARE binding activity, and was used for investigating its size, zinc dependency, and binding kinetics for tumor necrosis factor alpha mRNA ARE. A high-titer rabbit antiserum was raised against the MBP-hTTP fusion protein expressed in Escherichia coli. Cellular localization studies of the transfected cells indicated that approximately 80% of the expressed TTP was in the cytosol, with 20% in the nuclei. TTP from both locations bound to the ARE and formed similar complexes. The purified TTP was shown to be intact by N-terminal His-tag purification, C-terminal peptide sequencing, and mass spectrometry analysis. Results from size exclusion chromatography are consistent with the predominant form of active TTP being a tetramer. TTP's ARE binding activity was increased by 10 microM Zn(2+). The half-maximal binding of TTP from HEK293 cells was approximately 30 nM in assays containing 10 nM ARE. This value was about twice that of TTP from E. coli. TTP from HEK293 cells was highly phosphorylated, and its electrophoretic mobility was increased by alkaline phosphatase treatment and somewhat by T271A mutation, but not by PNGase F or S186A mutation. The gel mobility of TTP from E. coli was decreased by in vitro phosphorylation with p42/ERK2 and p38 mitogen-activated protein kinases. These results suggest that TTP's zinc-dependent ARE binding affinity is reduced by half by posttranslational modifications, mainly by phosphorylation but not by glycosylation, in mammalian cells. The results support a model in which each subunit of the TTP tetramer binds to one of the five overlapping UUAUUUAUU sequences of the ARE, resulting in a stable TTP-ARE complex.  相似文献   

20.
Diverse higher plant species synthesize low molecular weight (LMW) heat shock proteins (HSPs) which localize to chloroplasts. These proteins are homologous to LMW HSPs found in the cytoplasm of all eukaryotes, a class of HSPs whose molecular mode of action is not understood. To obtain basic information concerning the role of chloroplast HSPs, we examined the accumulation, stability, tissue specificity, and intra-chloroplast localization of HSP21, the major LMW chloroplast HSP in pea. Intact pea plants were subjected to heat stress conditions which would be encountered in the natural environment and HSP21 mRNA and protein levels were measured in leaves and roots. HSP21 was not detected in leaves or roots before stress, but the mature, 21-kD protein accumulated in direct proportion to temperature and HSP21 mRNA levels in both tissues. All of the HSP21 in leaves was localized to chloroplasts; there was no evidence for its transport into other organelles. In chloroplast fractionation experiments, greater than 80% of HSP21 was recovered in the soluble chloroplast protein fraction. The half-life of HSP21 at control temperatures was 52 +/- 12 h, suggesting the protein's function is critical during recovery as well as during stress. We hypothesize that HSP21 functions in a catalytic fashion in both photosynthetic and nonphotosynthetic plastids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号