首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Apoptotic-cell removal is critical for development, tissue homeostasis, and resolution of inflammation. Although many candidate systems exist, only phosphatidylserine has been identified as a general recognition ligand on apoptotic cells. We demonstrate here that calreticulin acts as a second general recognition ligand by binding and activating LDL-receptor-related protein (LRP) on the engulfing cell. Since surface calreticulin is also found on viable cells, a mechanism preventing inadvertent uptake was sought. Disruption of interactions between CD47 (integrin-associated protein) on the target cell and SIRPalpha (SHPS-1), a heavily glycosylated transmembrane protein on the engulfing cell, permitted uptake of viable cells in a calreticulin/LRP-dependent manner. On apoptotic cells, CD47 was altered and/or lost and no longer activated SIRPalpha. These changes on the apoptotic cell create an environment where "don't eat me" signals are rendered inactive and "eat me" signals, including calreticulin and phosphatidylserine, congregate together and signal for removal.  相似文献   

2.
In the central nervous system (CNS), apoptosis plays an important role during development and is a primary pathogenic mechanism in several adult neurodegenerative diseases. A main feature of apoptotic cell death is the efficient and fast removal of dying cells by macrophages and nonprofessional phagocytes, without eliciting inflammation in the surrounding tissue. Apoptotic cells undergo several membrane changes, including the externalization of so-called "eat me" signals whose cognate receptors are present on professional phagocytes. Among these signals, the aminophospholipid phosphatidylserine (PS) appears to have a crucial and unique role in preventing the classical pro-inflammatory activation of macrophages, thus ensuring the silent and safe removal of apoptotic cells. Although extensively studied in the peripheral organs, the process of recognition and removal of apoptotic cells in the brain has only recently begun to be unraveled. Here, we summarize the evidence suggesting that upon interaction with PS-expressing apoptotic neurons, microglia may no longer promote the inflammatory cascade, but rather facilitate the elimination of damaged neurons through antiinflammatory and neuroprotective functions. We propose that the anti-inflammatory microglial phenotype induced through the activation of the specific PS receptor (PtdSerR), expressed by resting and activated microglial cells, could be relevant to the final outcome of neurodegenerative diseases, in which apoptosis seems to play a crucial role.  相似文献   

3.
Interaction of macrophages with apoptotic cells involves multiple steps including recognition, tethering, phagocytosis, and anti-inflammatory macrophage responses. Defective apoptotic cell clearance is associated with pathogenesis of autoimmune disease. CD14 is a surface receptor that functions in vitro in the removal of apoptotic cells by human and murine macrophages, but its mechanism of action has not been defined. Here, we demonstrate that CD14 functions as a macrophage tethering receptor for apoptotic cells. Significantly, CD14(-/-) macrophages in vivo are defective in clearing apoptotic cells in multiple tissues, suggesting a broad role for CD14 in the clearance process. However, the resultant persistence of apoptotic cells does not lead to inflammation or increased autoantibody production, most likely because, as we show, CD14(-/-) macrophages retain the ability to generate anti-inflammatory signals in response to apoptotic cells. We conclude that CD14 plays a broad tethering role in apoptotic cell clearance in vivo and that apoptotic cells can persist in the absence of proinflammatory consequences.  相似文献   

4.

Background

Clearance of apoptotic neutrophils in the lung is an essential process to limit inflammation, since they could become a pro-inflammatory stimulus themselves. The clearance is partially mediated by alveolar macrophages, which phagocytose these apoptotic cells. The phagocytosis of apoptotic immune cells by monocytes in vitro has been shown to be augmented by several constituents of pulmonary surfactant, e.g. phospholipids and hydrophobic surfactant proteins. In this study, we assessed the influence of exogenous poractant alfa (Curosurf®) instillation on the in vivo phagocytosis of apoptotic neutrophils by alveolar macrophages.

Methods

Poractant alfa (200 mg/kg) was instilled intratracheally in the lungs of three months old adult male C57/Black 6 mice, followed by apoptotic neutrophil instillation. Bronchoalveloar lavage was performed and alveolar macrophages and neutrophils were counted. Phagocytosis of apoptotic neutrophils was quantified by determining the number of apoptotic neutrophils per alveolar macrophages.

Results

Exogenous surfactant increased the number of alveolar macrophages engulfing apoptotic neutrophils 2.6 fold. The phagocytosis of apoptotic neutrophils was increased in the presence of exogenous surfactant by a 4.7 fold increase in phagocytosed apoptotic neutrophils per alveolar macrophage.

Conclusions

We conclude that the anti-inflammatory properties of surfactant therapy may be mediated in part by increased numbers of alveolar macrophages and increased phagocytosis of apoptotic neutrophils by alveolar macrophages.  相似文献   

5.
Clearance of apoptotic cells (efferocytosis) is critical to the homeostasis of the immune system by restraining inflammation and autoimmune response to intracellular Ags released from dying cells. TLRs-mediated innate immunity plays an important role in pathogen clearance and in regulation of the adaptive immune response. However, the regulation of efferocytosis by activation of TLRs has not been well characterized. In this study, we found that activation of TLR3 or TLR9, but not of TLR2, enhances engulfment of apoptotic cells by macrophages. We found that the activation of TLR3 upregulates the expression of triggering receptor expressed on myeloid cells (TREM)-like protein 2 (TLT2), a member of the TREM receptor family, on the surface of macrophages. Blocking TLT2 on the macrophage surface by either specific anti-TLT2 Ab or soluble TLT2 extracellular domain attenuated the enhanced ability of macrophages with TLR3 activation to engulf apoptotic cells. To the contrary, overexpression of TLT2 increased the phagocytosis of apoptotic cells. We found that TLT2 specifically binds to phosphatidylserine, a major "eat me" signal that is exposed on the surface of apoptotic cells. Furthermore, we found that TLT2 mediates phagocytosis of apoptotic cells in vivo. Thus, our studies identified TLT2 as an engulfment receptor for apoptotic cells. Our data also suggest a novel mechanism by which TREM receptors regulate inflammation and autoimmune response.  相似文献   

6.
Granulocytes undergoing apoptosis are recognized and removed by phagocytes before their lysis. The release of their formidable arsenal of proteases and other toxic intracellular contents into tissues can create significant damage, prolonging the inflammatory response. Binding and/or uptake of apoptotic cells by macrophages inhibits release of proinflammatory cytokines by mechanisms that involve anti-inflammatory mediators, including TGF-beta. To model the direct effects of necrotic cells on macrophage cytokine production, we added lysed or apoptotic neutrophils and lymphocytes to mouse and human macrophages in the absence of serum to avoid complement activation. The results confirmed the ability of lysed neutrophils, but not lymphocytes, to significantly stimulate production of macrophage-inflammatory protein 2 or IL-8, TNF-alpha, and IL-10. Concomitantly, induction of TGF-beta1 by lysed neutrophils was significantly lower than that observed for apoptotic cells. The addition of selected serine protease inhibitors and anti-human elastase Ab markedly reduced the proinflammatory effects, the lysed neutrophils then behaving as an anti-inflammatory stimulus similar to intact apoptotic cells. Separation of lysed neutrophils into membrane and soluble fractions showed that the neutrophil membranes behaved like apoptotic cells. Thus, the cytokine response seen when macrophages were exposed to lysed neutrophils was largely due to liberated proteases. Therefore, we suggest that anti-inflammatory signals can be given by PtdSer-containing cell membranes, whether from early apoptotic, late apoptotic, or lysed cells, but can be overcome by proteases liberated during lysis. Therefore, the outcome of an inflammatory reaction and the potential immunogenicity of Ags within the damaged cell will be determined by which signals predominate.  相似文献   

7.
Proteinase 3 (PR3) is the target of anti-neutrophil cytoplasm Abs in granulomatosis with polyangiitis, a form of systemic vasculitis. Upon neutrophil apoptosis, PR3 is coexternalized with phosphatidylserine and impaired macrophage phagocytosis. Calreticulin (CRT), a protein involved in apoptotic cell recognition, was found to be a new PR3 partner coexpressed with PR3 on the neutrophil plasma membrane during apoptosis, but not after degranulation. The association between PR3 and CRT was demonstrated in neutrophils by confocal microscopy and coimmunoprecipitation. Evidence for a direct interaction between PR3 and the globular domain of CRT, but not with its P domain, was provided by surface plasmon resonance spectroscopy. Phagocytosis of apoptotic neutrophils from healthy donors was decreased after blocking lipoprotein receptor-related protein (LRP), a CRT receptor on macrophages. In contrast, neutrophils from patients with granulomatosis with polyangiitis expressing high membrane PR3 levels showed a lower rate of phagocytosis than those from healthy controls not affected by anti-LRP, suggesting that the LRP-CRT pathway was disturbed by PR3-CRT association. Moreover, phagocytosis of apoptotic PR3-expressing cells potentiated proinflammatory cytokine in vitro by human monocyte-derived macrophages and in vivo by resident murine peritoneal macrophages, and diverted the anti-inflammatory response triggered by the phagocytosis of apoptotic cells after LPS challenge in thioglycolate-elicited murine macrophages. Therefore, membrane PR3 expressed on apoptotic neutrophils might amplify inflammation and promote autoimmunity by affecting the anti-inflammatory "reprogramming" of macrophages.  相似文献   

8.
Rapid phagocytic clearance of apoptotic cells is crucial for the prevention of both inflammation and autoimmune responses. Phosphatidylserine (PS) at the external surface of the plasma membrane has been proposed to function as a general 'eat me' signal for apoptotic cells. Although several soluble bridging molecules have been suggested for the recognition of PS, the PS-specific membrane receptor that binds directly to the exposed PS and provides a tickling signal has yet to be definitively identified. In this study, we provide evidence that stabilin-2 is a novel PS receptor, which performs a key function in the rapid clearance of cell corpses. It recognizes PS on aged red blood cells and apoptotic cells, and mediates their engulfment. The downregulation of stabilin-2 expression in macrophages significantly inhibits phagocytosis, and anti-stabilin-2 monoclonal antibody provokes the release of the anti-inflammatory cytokine, transforming growth factor-beta. Furthermore, the results of time-lapse video analyses indicate that stabilin-2 performs a crucial function in the rapid clearance of aged and apoptotic cells. These data indicate that stabilin-2 is the first of the membrane PS receptors to provide tethering and tickling signals, and may also be involved in the resolution of inflammation and the prevention of autoimmunity.  相似文献   

9.
An important consequence of macrophage engulfment of apoptotic cells is suppression of inflammatory responses, which was first defined by assay of TNF-alpha release stimulated by LPS. These effects are apparently mediated in part by paracrine effects of TGF-beta released by the subset of stimulated macrophages that ingest apoptotic cells, which suppresses neighboring cells. However, the apoptotic cell-derived signal that stimulates TGF-beta release, and the nature of any additional signals required for the anti-inflammatory response remain poorly defined. In this study, we investigate the requirements for apoptotic cell engagement of macrophage surface receptors in these responses. We show that the apoptotic cell receptors CD36 and alphavbeta3 contribute to apoptotic cell phagocytosis by mouse macrophages, but are not essential for anti-inflammatory responses, suggesting that the mechanisms of response and phagocytosis are separate. In further defining requirements for response, we confirm the importance of TGF-beta in suppression by apoptotic cells, and identify an additional level of control of these effects. We show that LPS-stimulated mouse macrophage TNF-alpha release is only suppressed if macrophages have first contacted apoptotic cells, and hence, bystander macrophages are refractory to TGF-beta released by phagocytosing macrophages. We conclude that the profound suppression of LPS-driven TNF-alpha release by macrophage populations requires hitherto obscure contact-dependent licensing of macrophage responsiveness to TGF-beta by apoptotic cells.  相似文献   

10.
Guzik K  Potempa J 《Biochimie》2008,90(2):405-415
Physiologically the only acceptable fate for almost all damaged or unwanted cells is their apoptotic death, followed by engulfment of the corpses by healthy neighbors or professional phagocytes. Efficient clearance of cells that have succumbed to apoptosis is crucial for normal tissue homeostasis, and for the modulation of immune responses. The disposal of apoptotic cells is finely regulated by a highly redundant system of receptors, bridging molecules and 'eat me' signals. The complexity of the system is reflected by the term: 'engulfment synapse', used to describe the interaction between a phagocytic cell and its target. In healthy humans, dying neutrophils are the most abundant and important targets for such recognition and engulfment. In inflammation the scope and importance of this complicated task is further increased. Paradoxically, despite growing evidence highlighting the priority of neutrophils clearance, the recognition of these cells by phagocytes is not as well understood as the recognition of other apoptotic cell types. New findings indicate that the interaction of phosphatidylserine (PS) on apoptotic neutrophils with its receptor on macrophages is not as critical for the specific clearance of neutrophil corpses it was previously believed. In this review we focus on recent findings regarding alternative, PS-independent "eat me" signals expressed on neutrophils during cell death and activation. Based on our own research, we emphasize the clearance of dying neutrophils, especially at the focus of bacterial infection; and the associated inflammatory reaction, which occurs in a highly proteolytic milieu containing both host and bacteria-derived proteinases. In these environments, eat-me signals expressed by neutrophils are drastically modified; arguing against the phospholipid-based detection of apoptotic cells, but supporting the importance of proteinaceous ligand(s) for the recognition of neutrophils by macrophages. In this context we discuss the effect of the gingipain R (Rgp) proteinases from Porphyromonas gingivalis on neutrophils interactions with macrophages. Since the recognition of apoptotic neutrophils is an important fundamental process, serving multiple functions in the regulation of immunity and homeostasis, we hypothesize that many pathogenic bacteria may have developed similar strategies to confuse macrophage-neutrophil interaction as a common pathogenic strategy.  相似文献   

11.
12.
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.  相似文献   

13.
Apoptotic cells are removed by phagocytes without causing inflammation. It remains largely unresolved whether anti-inflammatory mediators prevent neutrophil infiltration upon apoptotic cell clearance in vivo. In this study, we showed that, upon induction of apoptosis in the thymus by x-ray, inducible NO synthase knockout (KO) mice exhibited higher levels of neutrophil infiltration and production of MIP-2 and keratinocyte-derived chemokine (KC) in the thymus than wild-type (WT) mice. Furthermore, administration of NG-nitro-L-arginine methyl ester, an inhibitor of NO synthase, to x-irradiated WT mice increased the level of neutrophil infiltration to that of KO mice by the augmentation of MIP-2 and KC production. Additionally, thymic macrophages isolated from x-irradiated KO mice produced more MIP-2 and KC than those from WT mice. Thus, although apoptosis is believed to be noninflammatory, this is actually achieved by the production of immunosuppressive signals such as NO that counteract proinflammatory chemokines such as MIP-2 and KC.  相似文献   

14.
The identification of RAGE as a phophatidylserine receptor—in this issue of EMBO reports by He et al—adds to the range of molecules that can sense this ‘eat-me'' signal, and suggests new potential therapeutic opportunities.EMBO Rep (2011) advance online publication. doi:10.1038/embor.2011.28The recognition of apoptotic cells by phagocytes is a complex, yet highly orchestrated event. Many receptors have been identified that recognize phosphatidylserine (PS; Fig 1)—which is exposed on early apoptotic cells—leading to downstream signalling and apoptotic cell engulfment. In a paper published this month in EMBO reports, the receptor for advanced glycation end-products (RAGE) is described as a new PS receptor on alveolar macrophages that participates in the clearance of apoptotic cells (He et al, 2011).…[RAGE] is described as a new phosphatidylserine receptor on alveolar macrophages that participates in the clearance of apoptotic cellsOpen in a separate windowFigure 1Phosphatidylserine-dependent apoptotic cell recognition.Schematic of the known PS receptors and downstream signalling to Rac. Dashed lines indicate unknown signalling mechanisms. PS, phosphatidylserine; RAGE, receptor for advanced glycation end-products; sRAGE, soluble RAGE.More than 200 billion cells undergo apoptosis every day in a human body, yet few apoptotic cells are detected in healthy tissue (Ravichandran, 2010). Apoptotic cells are generated during development, as part of normal homeostatic turnover and in disease states. The efficient clearance of apoptotic cells is crucial to prevent them from becoming secondarily necrotic, thereby limiting the immune response to apoptotic cell-derived self-antigens (Green et al, 2009). Disruptions to the clearance of apoptotic cells are linked to several diseases including atherosclerosis, chronic inflammation and autoimmunity (Elliott & Ravichandran, 2010).More than 200 billion cells undergo apoptosis every day in a human body, yet few apoptotic cells are detected in healthy tissueApoptotic cell engulfment can be divided into several steps. The first is the release of ‘find-me'' signals—such as triphosphate nucleotides (ATP and UTP), sphingosine-1-phosphate (S1P), lysophosphatidylcholine (LPC) and the chemokine CX3CL1—by apoptotic cells (Ravichandran, 2010). Then, phagocytes sense the find-me signals and migrate toward the apoptotic cell. When they are in close proximity, recognition is mediated by the interaction between engulfment receptors on phagocytes and ligands, known as ‘eat-me'' signals, that are expressed on the dying cells (Ravichandran, 2010). The best-studied eat-me signal is PS, which is flipped from the inner leaflet to the outer leaflet of the plasma membrane during early apoptosis. Many receptors have been linked to the recognition of the exposed PS on apoptotic cells, and they are discussed below. The recognition of an apoptotic cell results in a downstream signalling cascade that leads to cytoskeletal rearrangement of the phagocytic membrane and subsequent engulfment of the apoptotic cell. Once the corpse is internalized, the phagocyte must process and digest the cellular contents.The exposure of PS on the outer leaflet of the membrane is the most-characteristic marker of an apoptotic cell. Phagocytes can recognize PS directly through receptors such as Bai1, TIM-4 and stabilin 2, or through soluble bridging molecules that bind to both PS and specific phagocyte receptors. For example, bridging molecules MFG-E8 and Gas6 interact with αVβ3/5 and MER on the phagocytic membrane, respectively. Other eat-me signals and the molecules that bind to them have been characterized: thrombospondin is recognized by the vitronectin receptor, calreticulin by LRP1, oxidized LDL by scavenger receptors, ICAM3 might bind to CD14 and altered sugars bind to lectins (Lauber et al, 2004). Not all receptors need to be engaged for engulfment to occur, and different cell types have different receptor-expression levels.In a paper published this month in EMBO reports, the Yamamoto team identify RAGE as a new type of PS receptor on macrophages (He et al, 2011). There are two functional forms of RAGE, an abundant full-length transmembrane form that can initiate signalling through its intracellular tail, and a soluble isoform (sRAGE) that acts as a decoy receptor. RAGE is characteristically regarded as a pro-inflammatory receptor and has a variety of ligands, including advanced glycation end-products (AGEs) and many other damage-associated molecular patterns (DAMPs; Sims et al, 2010). One ligand in particular—high-mobility group protein B1 (HMGB1)—is released by cells undergoing necrosis and has been shown to bind to RAGE and induce inflammation (Sims et al, 2010). Therefore, RAGE might function during pro-inflammatory conditions and—as proposed by He and colleagues—during the anti-inflammatory process of apoptotic cell clearance. RAGE is mainly expressed in the lungs, but levels of it quickly increase at sites of inflammation, mostly on inflammatory and epithelial cells. Given the multitude of RAGE ligands and its inducible expression levels, RAGE is implicated in a variety of inflammation-related pathological states such as neurological and pulmonary disorders, vascular disease, cancer and diabetes (Sims et al, 2010).He and colleagues suggest that RAGE is a PS receptor during apoptotic cell engulfment in alveolar macrophages (He et al, 2011). Furthermore, sRAGE—which can bind to PS and apoptotic thymocytes—acts as a decoy and inhibits RAGE recognition of PS. By using PS liposomes as an artificial apoptotic target, the authors find RAGE in areas of the membrane in which a pseudopod forms to engulf a PS liposome. Additionally, sRAGE can compete with transmembrane RAGE to block the recognition of PS by the phagocyte and subsequently decrease the engulfment of apoptotic cells. Under homeostatic conditions, alveolar macrophages isolated from RAGE-deficient mice have defects in phagocytosis of apoptotic thymocytes. In a model of lung injury induced by lipopolysaccharide administration, RAGE-deficient mice accumulate neutrophils in the alveolar space and RAGE-deficient macrophages have defects in neutrophil engulfment. Previous works have implicated RAGE expression and/or upregulation in inflammatory conditions. In fact, genetic deletion of RAGE in mice can result in attenuated atherosclerosis, resistance to septic shock and reduced diabetic kidney disease (Ramasamy et al, 2010). Apoptotic cell clearance is generally an immunologically silent process and, therefore, if RAGE significantly contributes to engulfment, RAGE-deficient mice would be expected to have defects in cell clearance, leading to enhanced inflammation and disease. However, this does not seem to be the case. Thus, future studies should examine cell-type specific deletions of RAGE to clarify its apparently contradictory role in cell clearance and inflammation in these diseases.Given that several modes of PS recognition have been identified (Ravichandran, 2010), there must be some redundancy. The way in which RAGE contributes to this scenario remains to be investigated. Analysis of the expression levels of each PS receptor on different cell types will also help to define their relative importance in individual cells. As RAGE is highly expressed in the lung, it would be interesting to analyse its contribution to apoptotic cell engulfment in this tissue, in comparison with the other PS receptors. Furthermore, RAGE is induced by inflammation, suggesting that it is probably important during disease states to facilitate engulfment and reduce inflammation in the microenvironment.Another interesting question that remains is how RAGE signals to the phagocyte for engulfment. RAGE signalling results in pro-inflammatory cytokine production through activation of NF-κB (Yan et al, 1994), which seems to be different from the production of anti-inflammatory cytokines—such as IL-10 and TGFβ—by phagocytes during cell engulfment. However, as several RAGE ligands exist, the way in which they bind to RAGE could result in differential signalling. RAGE has also been shown to interact with mouse Dia1, leading to downstream activation of Rac1 and Cdc42, and cell migration (Hudson et al, 2008). Now, He and colleagues suggest that RAGE signals to Rac1 through Dia1 in the context of apoptotic cell clearance, as RAGE-deficient macrophages have decreased Rac1 activity in response to PS-liposome engulfment. Two evolutionarily conserved Rac-dependent pathways have been identified to mediate corpse internalization. Engagement of some engulfment receptors such as Bai1, results in Rac activation through the ELMO–Dock180–CrkII complex. ELMO and Dock180 mediate the exchange of GDP to GTP on Rac, whereas CrkII has been proposed to function as an adaptor protein. Another pathway involves signalling from the engulfment receptor LRP1 or stabilin 2, leading to Rac activation through the engulfment adaptor protein (GULP). Additional work is necessary to determine whether RAGE–mDia1 signalling constitutes a third intracellular signalling pathway for cell engulfment.Another interesting question that remains is how RAGE signals to the phagocyte for engulfmentThe study from the Yamamoto team identifies RAGE as a new PS-recognition molecule implicated in apoptotic cell-clearance in the lung. As each new receptor is identified, we are reminded of the redundancy and cell-type-specific expression of PS receptors. Defects in apoptotic cell-clearance lead to a variety of inflammatory diseases, including cardiovascular and autoimmune diseases. This study could also open an interesting therapeutic avenue; if sRAGE blocks the recognition of PS by RAGE and other PS receptors, it might be beneficial as a therapy by enhancing cell clearance and decreasing the severity of cell-clearance-associated diseases.  相似文献   

15.
Clearance of apoptotic cells is critical to tissue homeostasis and resolution of inflammatory lesions. Macrophages are known to remove dying cells and release anti-inflammatory mediators in response; however, many cells traditionally thought of as poor phagocytes can mediate this function as well. In the lactating mammary gland following weaning, alveolar epithelial cell death is massive, yet the gland involutes rapidly, attaining its prepregnancy state in a matter of days. We found histologic evidence of apoptotic cell phagocytosis by viable mammary epithelial cells (MEC) in the involuting mouse mammary gland. Cultured MEC were able to engulf apoptotic cells in vitro, utilizing many of the same receptors used by macrophages, including the phosphatidylserine receptor (PSR), CD36, the vitronectin receptor alpha(v)beta3, and CD91. In addition, MEC, like macrophages, produced TGFbeta in response to stimulation of the PSR by apoptotic cells or the anti-PSR ab 217G8E9, and downregulated endotoxin-stimulated proinflammatory cytokine production. These data support the hypothesis that amateur phagocytes play a significant role in apoptotic cell clearance and its regulation of inflammation.  相似文献   

16.
The distinction between physiological (apoptotic) and pathological (necrotic) cell deaths reflects mechanistic differences in cellular disintegration and is of functional significance with respect to the outcomes that are triggered by the cell corpses. Mechanistically, apoptotic cells die via an active and ordered pathway; necrotic deaths, conversely, are chaotic and passive. Macrophages and other phagocytic cells recognize and engulf these dead cells. This clearance is believed to reveal an innate immunity, associated with inflammation in cases of pathological but not physiological cell deaths. Using objective and quantitative measures to assess these processes, we find that macrophages bind and engulf native apoptotic and necrotic cells to similar extents and with similar kinetics. However, recognition of these two classes of dying cells occurs via distinct and noncompeting mechanisms. Phosphatidylserine, which is externalized on both apoptotic and necrotic cells, is not a specific ligand for the recognition of either one. The distinct modes of recognition for these different corpses are linked to opposing responses from engulfing macrophages. Necrotic cells, when recognized, enhance proinflammatory responses of activated macrophages, although they are not sufficient to trigger macrophage activation. In marked contrast, apoptotic cells profoundly inhibit phlogistic macrophage responses; this represents a cell-associated, dominant-acting anti-inflammatory signaling activity acquired posttranslationally during the process of physiological cell death.  相似文献   

17.
Apoptotic cells express eat-me signals which are recognized by several receptors mainly on professional phagocytes of the mononuclear phagocyte system. This “engulfment synapse” can define a safe and effective clearance of apoptotic cells in order to maintain tissue homeostasis in the entire body. We show that the expression of four genes related to apoptotic cell clearance is strongly up-regulated in human macrophages 30 min after administration of apoptotic neutrophils. Out of these the significant role of the up-regulated intercellular adhesion molecule 3 (ICAM3) in phagocytosis of apoptotic neutrophils could be demonstrated in macrophages by gene silencing as well as treatment with blocking antibodies. Blocking ICAM3 on the surface of apoptotic neutrophils also resulted in their decreased uptake which confirmed its role as an eat-me signal expressed by apoptotic cells. In macrophages but not in neutrophils silencing and blocking integrin alphaL and beta2 components of lymphocyte function-associated antigen 1 (LFA-1), which can strongly bind ICAM3, resulted in a decreased phagocytosis of apoptotic cells indicating its possible role to recognize ICAM3 on the surface of apoptotic neutrophils. Finally, we report that engulfing portals formed in macrophages during phagocytosis are characterized by accumulation of ICAM3, integrin alphaL and beta2 which show co-localization on the surface of phagocytes. Furthermore, their simultaneous knock-down in macrophages resulted in a marked deficiency in phagocytosis and a slight decrease in the anti-inflammatory effect of apoptotic neutrophils. We propose that ICAM3 and LFA-1 act as recognition receptors in the phagocytosis portals of macrophages for engulfment of apoptotic neutrophils.  相似文献   

18.
Neutrophils are essential for host defense and their programmed cell death and removal are critical for the optimal expression as well as for efficient resolution of inflammation. Delayed neutrophil apoptosis or impaired clearance of apoptotic neutrophils by macrophages contributes to the progression of chronic inflammation. Under most conditions, neutrophils are exposed to multiple factors and their fate would ultimately depend on the balance between pro‐survival and pro‐apoptotic signals. Life or death decisions are tightly controlled by a complex network of intracellular signaling pathways. Accumulating data indicate that receptors, such as the formyl peptide receptor 2/lipoxin receptor or β2‐integrins can generate contrasting cues in neutrophils in a ligand‐specific manner and suggest a hierarchy among these signals. In this article, we review recent advances on how pro‐apoptosis and pro‐survival signals interact to determine the fate of neutrophils and the inflammatory response, and highlight novel pharmacological strategies that could be used to enhance the resolution of inflammation by redirecting neutrophils to apoptosis. J. Cell. Biochem. 108: 1039–1046, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Efficient engulfment of the intact cell corpse is a critical end point of apoptosis, required to prevent secondary necrosis and inflammation. The presentation of "eat-me" signals on the dying cell is an important part of this process of recognition and engulfment by professional phagocytes. Here, we present evidence that apoptotic cells secrete chemotactic factor(s) that stimulate the attraction of monocytic cells and primary macrophages. The activation of caspase-3 in the apoptotic cell was found to be required for the release of this chemotactic factor(s). The putative chemoattractant was identified as the phospholipid, lysophosphatidylcholine. Further analysis showed that lysophosphatidylcholine was released from apoptotic cells due to the caspase-3 mediated activation of the calcium-independent phospholipase A(2). These data suggest that in addition to eat-me signals, apoptotic cells display attraction signals to ensure the efficient removal of apoptotic cells and prevent postapoptotic necrosis.  相似文献   

20.
Exposure of phosphatidylserine (PS) on the cell surface occurs early during apoptosis and serves as a recognition signal for phagocytes. Clearance of apoptotic cells by a membrane PS receptor is one of the critical anti-inflammatory functions of macrophages. However, the PS binding receptors and their recognition mechanisms have not been fully investigated. Recently, we reported that stabilin-2 is a PS receptor that mediates the clearance of apoptotic cells, thus releasing the anti-inflammatory cytokine, transforming growth factor β. In this study, we showed that epidermal growth factor (EGF)-like domain repeats (EGFrp) in stabilin-2 can directly and specifically recognize PS. The EGFrps also competitively impaired apoptotic cell uptake by macrophages in in vivo models. We also showed that calcium ions are required for stabilin-2 to mediate phagocytosis via EGFrp. Interestingly, at least four tandem repeats of EGF-like domains were required to recognize PS, and the second atypical EGF-like domain in EGFrp was critical for calcium-dependent PS recognition. Considering that PS itself is an important target molecule for both apoptotic cells and nonapoptotic cells during various cellular processes, our results should help elucidate the molecular mechanism by which apoptotic cell clearance in the human body occurs and also have implications for targeting PS externalization of nonapoptotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号