首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Creep contributes to the fatigue behavior of bovine trabecular bone.   总被引:3,自引:0,他引:3  
Repetitive, low-intensity loading from normal daily activities can generate fatigue damage in trabecular bone, a potential cause of spontaneous fractures of the hip and spine. Finite element models of trabecular bone (Guo et al., 1994) suggest that both creep and slow crack growth contribute to fatigue failure. In an effort to characterize these damage mechanisms experimentally, we conducted fatigue and creep tests on 85 waisted specimens of trabecular bone obtained from 76 bovine proximal tibiae. All applied stresses were normalized by the previously measured specimen modulus. Fatigue tests were conducted at room temperature; creep tests were conducted at 4, 15, 25, 37, 45, and 53 degrees C in a custom-designed apparatus. The fatigue behavior was characterized by decreasing modulus and increasing hysteresis prior to failure. The hysteresis loops progressively displaced along the strain axis, indicating that creep was also involved in the fatigue process. The creep behavior was characterized by the three classical stages of decreasing, constant, and increasing creep rates. Strong and highly significant power-law relationships were found between cycles-to-failure, time-to-failure, steady-state creep rate, and the applied loads. Creep analyses of the fatigue hysteresis loops also generated strong and highly significant power law relationships for time-to-failure and steady-state creep rate. Lastly, the products of creep rate and time-to-failure were constant for both the fatigue and creep tests and were equal to the measured failure strains, suggesting that creep plays a fundamental role in the fatigue behavior of trabecular bone. Additional analysis of the fatigue strain data suggests that creep and slow crack growth are not separate processes that dominate at high and low loads, respectively, but are present throughout all stages of fatigue.  相似文献   

2.
Accumulation of fatigue microdamage in cortical bone specimens is commonly measured by a modulus or stiffness degradation after normalizing tissue heterogeneity by the initial modulus or stiffness of each specimen measured during a preloading step. In the first experiment, the initial specimen modulus defined using linear elastic beam theory (LEBT) was shown to be nonlinearly dependent on the preload level, which subsequently caused systematic error in the amount and rate of damage accumulation measured by the LEBT modulus degradation. Therefore, the secant modulus is recommended for measurements of the initial specimen modulus during preloading. In the second experiment, different measures of mechanical degradation were directly compared and shown to result in widely varying estimates of damage accumulation during fatigue. After loading to 400,000 cycles, the normalized LEBT modulus decreased by 26% and the creep strain ratio decreased by 58%, but the normalized secant modulus experienced no degradation and histology revealed no significant differences in microcrack density. The LEBT modulus was shown to include the combined effect of both elastic (recovered) and creep (accumulated) strain. Therefore, at minimum, both the secant modulus and creep should be measured throughout a test to most accurately indicate damage accumulation and account for different damage mechanisms. Histology revealed indentation of tissue adjacent to roller supports, with significant sub-surface damage beneath large indentations, accounting for 22% of the creep strain on average. The indentation of roller supports resulted in inflated measures of the LEBT modulus degradation and creep. The results of this study suggest that investigations of fatigue microdamage in cortical bone should avoid the use of four-point bending unless no other option is possible.  相似文献   

3.
Bone creep-fatigue damage accumulation   总被引:8,自引:0,他引:8  
Creep and fatigue tests were performed on human femoral cortical bone and the results were compared to a cumulative damage model for bone fracture. Fatigue tests in tension, compression, and reversed loading with a tensile mean stress were conducted at 2 Hz and 0.02 Hz. Load frequency had a strong influence on the number of cycles to failure but did not influence the total time to failure. Bone displayed poor creep-fracture properties in both tension and compression. The fracture surfaces of the tensile creep specimens are distinctly different than those of the compressive specimens. The results suggest that tensile cyclic loading creates primarily time-dependent damage and compressive cyclic loading creates primarily cycle-dependent damage. However, data for load histories involving both tensile and compressive loading indicate lower time to failure than predicted by a simple summation of time-dependent and cycle-dependent damage.  相似文献   

4.
During fatigue tests of cortical bone specimens, at the unload portion of the cycle (zero stress) non-zero strains occur and progressively accumulate as the test progresses. This non-zero strain is hypothesised to be mostly, if not entirely, describable as creep. This work examines the rate of accumulation of this strain and quantifies its stress dependency. A published relationship determined from creep tests of cortical bone (Journal of Biomechanics 21 (1988) 623) is combined with knowledge of the stress history during fatigue testing to derive an expression for the amount of creep strain in fatigue tests. Fatigue tests on 31 bone samples from four individuals showed strong correlations between creep strain rate and both stress and "normalised stress" (sigma/E) during tensile fatigue testing (0-T). Combined results were good (r(2)=0.78) and differences between the various individuals, in particular, vanished when effects were examined against normalised stress values. Constants of the regression showed equivalence to constants derived in creep tests. The universality of the results, with respect to four different individuals of both sexes, shows great promise for use in computational models of fatigue in bone structures.  相似文献   

5.
Strain-controlled uniaxial fatigue and monotonic tensile tests were conducted on turned femoral cortical bone specimens obtained from baboons at various ages of maturity. Fatigue loading produced a progressive loss in stiffness and an increase in hysteresis prior to failure, indicating that immature primate cortical bone responds to repeated loading in a fashion similar to that previously observed for adult human cortical bone. Bone fatigue resistance under this strain controlled testing decreased during maturation. Maturation was also associated with an increase in bone dry density, ash fraction and elastic modulus. The higher elastic modulus of more mature bone meant that these specimens were subjected to higher stress levels during testing than more immature bone specimens. Anatomical regions along the femoral shaft exhibited differences in strength and fatigue resistance.  相似文献   

6.
Despite its clinical importance, the fatigue behaviour of cortical bone has not been examined as widely as its static behaviour. In the present study, specimens from the tibiae of horses have been subjected to load-controlled single step tests. The cyclic deformation behaviour was described by the development of stress-strain hysteresis parameters over the lifetime. The fatigue behaviour of bone is characterised by cyclic softening which is most distinctive towards the end of the lifetime. The microstructural damage accumulated during cyclic loading results in a loss of stiffness, asymmetrical deformation of the bone in tension and compression in cyclic creep. As shown by light and scanning electron microscopy, microcrack formation and growth is the main damage mechanism. The crack growth behaviour is strongly influenced by the microstructure, the stress components and the absolute value of the local stresses. Lower local stresses and/or compressive mean stresses lead to a dominant influence of the shear stress components with shear failure at inner interfaces. With increasing crack length, that is, higher local stress amplitudes, or tensile mean stresses, the microstructure is more and more ignored and failure occurs primarily under the influence of the normal stress components. This can be clearly seen on the fracture and specimen surfaces.  相似文献   

7.
We present results on the growth of damage in 29 fatigue tests of human femoral cortical bone from four individuals, aged 53-79. In these tests we examine the interdependency of stress, cycles to failure, rate of creep strain, and rate of modulus loss. The behavior of creep rates has been reported recently for the same donors as an effect of stress and cycles. In the present paper we first examine how the evolution of damage (drop in modulus per cycle) is associated with the stress level or the "normalized stress" level (stress divided by specimen modulus), and results show the rate of modulus loss fits better as a function of normalized stress. However, we find here that even better correlations can be established between either the cycles to failure or creep rates versus rates of damage than any of these three measures versus normalized stress. The data indicate that damage rates can be excellent predictors of fatigue life and creep strain rates in tensile fatigue of human cortical bone for use in practical problems and computer simulations.  相似文献   

8.
The cement–bone interface provides fixation for the cement mantle within the bone. The cement–bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect the mechanical response of the cement–bone interface at various load levels in terms of plastic displacement and crack formation. Two FEA models were created, which were based on micro-computed tomography data of two physical cement–bone interface specimens. These models were subjected to tensile fatigue loads with four different magnitudes. Three deformation modes of the cement were considered: ‘only creep’, ‘only damage’ or ‘creep and damage’. The interfacial plastic deformation, the crack reduction as a result of creep and the interfacial stresses in the bone were monitored. The results demonstrate that, although some models failed early, the majority of plastic displacement was caused by fatigue damage, rather than cement creep. However, cement creep does decrease the crack formation in the cement up to 20%. Finally, while cement creep hardly influences the stress levels in the bone, fatigue damage of the cement considerably increases the stress levels in the bone. We conclude that at low load levels the plastic displacement is mainly caused by creep. At moderate to high load levels, however, the plastic displacement is dominated by fatigue damage and is hardly affected by creep, although creep reduced the number of cracks in moderate to high load region.  相似文献   

9.
The goal of this study was to quantify the micromechanics of the cement–bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement–bone specimens were subjected to a tensile fatigue load, while local displacements and crack growth on the specimen's surface were monitored. FEA models were created from these specimens based upon micro-computed tomography data. To accurately model interfacial gaps at the interface between the bone and cement, a custom-written erosion algorithm was applied to the bone model. A fatigue load was simulated in the FEA models while monitoring the local displacements and crack propagation. The results showed the FEA models were able to capture the general experimental creep damage behavior and creep stages of the interface. Consistent with the experiments, the majority of the deformation took place at the contact interface. Additionally, the FEA models predicted fatigue crack patterns similar to experimental findings. Experimental surface cracks correlated moderately with FEA surface cracks (r2=0.43), but did not correlate with the simulated crack volume fraction (r2=0.06). Although there was no relationship between experimental surface cracks and experimental creep damage displacement (r2=0.07), there was a strong relationship between the FEA crack volume fraction and the FEA creep damage displacement (r2=0.76). This study shows the additional value of FEA of the cement–bone interface relative to experimental studies and can therefore be used to optimize its mechanical properties.  相似文献   

10.
Fatigue fractures of cortical bone involve combined axial-torsional loading yet it is unknown how the relationship between axial and torsional loadings affects the fatigue behavior of bone. In this study the effect of superimposing in-phase and out-of-phase torsional on axial loading on the fatigue behavior of bone was investigated by conducting in vitro tests involving 0 degrees and 90 degrees phase shift between cyclic torsional and axial loadings. Results obtained indicate that fatigue life, patterns of moduli loss, microcracking and modes of fractures are dependent on the phase angle between axial and torsional loadings. Specimens subjected to in-phase torsional on axial loading demonstrated greater mixed mode interaction, underwent proportionate stiffness losses in tension, compression, and torsion, and consequently had a shorter fatigue life. In contrast, specimens subjected to out-of-phase loading regime displayed a smaller contribution of mixed mode failure, underwent a disproportionately large stiffness loss in torsion, and had a longer fatigue life. Furthermore, increase in phase angle provided additional planes on which damage was diffused delaying the final failure. Change in phase angle, seen in vivo during a number of physiological activities including walking, running and sprinting, will therefore affect fatigue behavior and contribute to pathogenesis of fatigue fractures.  相似文献   

11.
Non-collagenous proteins are a vital component of bone matrix. Amongst them, osteocalcin (OC) and osteopontin (OPN) hold special significance due to their intimate interaction with the mineral and collagenous matrix in bone. Both proteins have been associated with microdamage and fracture, but their structural role in energy dissipation is unclear. This study used bone tissue from genetic deficient mice lacking OC and/or OPN and subjected them to a series of creep-fatigue-creep tests. To this end, whole tibiae were loaded in four-point bending to 70% stiffness loss which captured the three characteristic phases of fatigue associated with initiation, propagation, and coalescence of microdamage. Fatigue loading preceded and followed creep tests to determine creep and dampening parameters. Microdamage in the form of linear microcracks and diffuse damage were analyzed by histology. It was shown that OC and OPN were ‘activated’ following stiffness loss associated with fatigue damage where they facilitated creep and dampening parameters (i.e. increased energy dissipation). More specifically, post-fatigue creep rate and dampening were significantly greater in wild-types (WTs) than genetic deficient mice (p < 0.05). These results were supported by microdamage analysis which showed significant increase in creep-associated diffuse damage formation in WTs compared to genetic deficient groups (p < 0.05). Based on these findings, we propose that during local yield events, OC and OPN rely on ionic interactions of their charged side chains and on hydrogen bonding to dissipate energy in bone.  相似文献   

12.
Knowledge of kinetics of fatigue crack growth of microcracks is important so as to understand the dynamics of bone adaptation, remodeling, and the etiology of fatigue-based failures of cortical bone tissue. In this respect, theoretical models (Taylor, J. Biomech., 31 (1998) 587-592; Taylor and Prendergast, Proc. Instn. Mech. Engrs. Part H 211 (1997) 369-375) of microcrack growth in cortical bone have predicted a decreasing microcrack growth rate with increasing microcrack length. However, these predictions have not been observed directly. This study investigated microcrack growth and arrest through observations of surface microcracks during cyclic loading (R=0.1, 50-80MPa) of human femoral cortical bone (male, n=4, age range: 37-40yr) utilizing a video microscopy system. The change in crack length and orientation of eight surface microcracks were measured with the number of fatigue cycles from four specimens. At the applied cyclic stresses, the microcracks propagated and arrested in generally less than 10,000 cycles. The fatigue crack growth rate of all microcracks decreased with increasing crack length following initial identification, consistent with theoretical predictions. The growth rate of the microcracks was observed to be in the range of 5x10(-5) to 5x10(-7)mmcycle(-1). In addition, many of the microcracks were observed not to grow beyond 150 microm and a cyclic stress intensity factor of 0.5MNm(-3/2). The results of this study suggest that cortical bone tissue may resist fracture at the microscale by deceleration of fatigue crack growth and arrest of microcracks.  相似文献   

13.
Materials, including bone, often fail due to loading in the presence of critical flaws. The relative amount, location, and interaction of these flaws within a stressed volume of material play a role in determining the failure properties of the structure. As materials are generally imperfect, larger volumes of material have higher probabilities of containing a flaw of critical size than do smaller volumes. Thus, larger volumes tend to fail at fewer cycles compared with smaller volumes when fatigue loaded to similar stress levels. A material is said to exhibit a volume effect if its failure properties are dependent on the specimen volume. Volume effects are well documented in brittle ceramics and composites and have been proposed for bone. We hypothesized that (1) smaller volumes of cortical bone have longer fatigue lives than similarly loaded larger volumes and (2) that compared with microstructural features, specimen volume was able to explain comparable amounts of variability in fatigue life. In this investigation, waisted rectangular specimens (n=18) with nominal cross-sections of 3×4 mm and gage lengths of 10.5, 21, or 42 mm, were isolated from the mid-diaphysis of the dorsal region of equine third metacarpal bones. These specimens were subjected to uniaxial load controlled fatigue tests, with an initial strain range of 4000 microstrain. The group having the smallest volume exhibited a trend of greater log fatigue life than the larger volume groups. Each volume group exhibited a significant positive correlation between the logarithm of fatigue life and the cumulative failure probability, indicating that the data follow the two-parameter Weibull distribution. Additionally, log fatigue life was negatively correlated with log volume, supporting the hypothesis that smaller stressed volumes of cortical bone possess longer fatigue lives than similarly tested larger stressed volumes.  相似文献   

14.
A new method using fluorescent light microscopy has been developed to visualize and evaluate bone microdamage. We report the findings of two different experiments with a common aim of comparing the fluorescent light technique to the brightfield method for quantifying microdamage in bone. In Experiment 1, 36 canine femurs were tested in four-point cyclic bending until they had lost between 5 and 43% of their stiffness. The loaded portion of the bone was stained en bloc with basic fuchsin for the presence of damage. Standard point counting techniques were used to calculate fractional damaged area (Dm.Ar = Cr.Ar/B.Ar, mm2/mm2) under brightfield and fluorescent microscopy. In Experiment 2, bone microdamage adjacent to endosseous implants, subjected to fatigue loading (150,000 cycles, 2 Hz and 37 degrees C) ex vivo was examined. The bone around the implant was either allowed to heal (adapted specimen) for 12 weeks after placement in dog mid-femoral diaphyses prior to testing or was loaded immediately to simulate non-healed bone surrounding endosseous implants (non-adapted). Crack numerical density (Cr.Dn = Cr.N/B.Ar, #/mm2), crack surface density (Cr.S.Dn = Tt.Cr.Le/B.Ar, mm/mm2) and fractional damaged area were calculated separately by both techniques in the adapted and non-adapted specimens. In both Experiments 1 and 2, significantly more microdamage was detected by the fluorescent technique than by the brightfield method. Also, there was a trend towards higher intraobserver repeatability when using the fluorescent method. These results suggest that the brightfield technique underestimates microdamage accumulation and that the fluorescent technique better represents the actual amounts of microdamage present. The results demonstrate that the fluorescent method provides an accurate and precise approach for bone microdamage evaluation, and that it improves the prediction of stiffness loss from damage accumulation.  相似文献   

15.
In vivo microcracks in cortical bone are typically observed within more highly mineralized interstitial tissue, but postmortem investigations are inherently limited to cracks that did not lead to fracture which may be misleading with respect to understanding fracture mechanisms. We hypothesized that the one fatigue microcrack which initiates fracture is located spatially adjacent to elevated intracortical porosity but not elevated mineralization. Therefore, the spatial correlation between intracortical porosity, elevated mineralization, and fatigue microdamage was investigated by combining, for the first time, sequential, nondestructive, three-dimensional micro-computed tomography (micro-CT) measurements of each in cortical bone specimens subjected to compressive fatigue loading followed by a tensile overload to fracture. Fatigue loading resulted in significant microdamage accumulation and compromised mechanical properties upon tensile overload compared to control specimens. The microdamage that initiated fracture upon tensile overload was able to be identified in all fatigue-loaded specimens using contrast-enhanced micro-CT and registered images. Two-point (or pair) correlation functions revealed a spatial correlation between microdamage at the fracture initiation site and intracortical porosity, but not highly mineralized tissue, confirming the hypothesis. This difference was unique to the fracture initiation site. Intracortical porosity and highly mineralized tissue exhibited a significantly lower and higher probability, respectively, of being located spatially adjacent to all sites of microdamage compared to the fracture initiation site. Therefore, the results of this study suggest that human cortical bone is tolerant of most microcracks, which are generally compartmentalized within the more highly mineralized interstitial tissue, but a single microcrack of sufficient size located in spatial proximity to intracortical porosity can compromise fracture resistance.  相似文献   

16.
The objective of the study was to evaluate the ability of a nonlinear ultrasound technique, the so-called nonlinear resonant ultrasound spectroscopy (NRUS) technique, for detecting early microdamage accumulation in cortical bone induced by four-point bending fatigue. Small parallelepiped beam-shaped human cortical bone specimens were subjected to cyclic four-point bending fatigue in several steps. The specimens were prepared to control damage localization during four-point bending fatigue cycling and to unambiguously identify resonant modes for NRUS measurements. NRUS measurements were achieved to follow the evolution of the nonlinear hysteretic elastic behavior during fatigue-induced damage. After each fatigue step, a small number of specimens was removed from the protocol and set apart to quantitatively assess the microcrack number density and length using synchrotron radiation micro-computed tomography (SR-µCT). The results showed a significant effect of damage steps on the nonlinear hysteretic elastic behavior. No significant change in the overall length of microcracks was observed in damaged regions compared to the load-free control regions. Only an increased number of shortest microcracks, those in the lowest quartile, was noticed. This was suggestive of newly formed microcracks during the early phases of damage accumulation. The variation of nonlinear hysteretic elastic behavior was significantly correlated to the variation of the density of short microcracks. Our results suggest that the nonlinear hysteretic elastic behavior is sensitive to early bone microdamage. Therefore NRUS technique can be used to monitor fatigue microdamage progression in in vitro experiments.  相似文献   

17.
Fatigue of cortical bone produces microcracks; it has been hypothesized that these cracks are analogous to those occurring in engineered composite materials and constitute a similar mechanism for fatigue resistance. However, the numbers of these linear microcracks increase substantially with age, suggesting that they contribute to increased fracture incidence among the elderly. To test these opposing hypotheses, we fatigued 20 beams of femoral cortical bone from elderly men and women in load-controlled four point bending having initial strain ranges of 3000 or 5000 microstrain. Loading was stopped at fracture or 10(6) cycles, whichever occurred first, and microcrack density and length were measured in the loaded region and in a control region that was not loaded. We studied the dependence of fatigue life and induced microdamage on initial microdamage, cortical region, subject gender and age, and several other variables. When the effect of modulus variability was controlled, longer fatigue life was associated with higher rather than lower initial crack density, particularly in the medial cortex. The increase in crack density following fatigue loading was greater in specimens from older individuals and those initially having longer microcracks. Crack density increased as much in specimens fatigued short of the failure point as in those that fractured, and microcracks were, on average, shorter in specimens with greater numbers of resorption spaces, a measure of remodeling rate.  相似文献   

18.
Cortical and trabecular bone have similar creep behaviors that have been described by power-law relationships, with increases in temperature resulting in faster creep damage accumulation according to the usual Arrhenius (damage rate approximately exp (-Temp.-1)) relationship. In an attempt to determine the phase (collagen or hydroxyapatite) responsible for these similar creep behaviors, we investigated the creep behavior of demineralized cortical bone, recognizing that the organic (i.e., demineralized) matrix of both cortical and trabecular bone is composed primarily of type I collagen. We prepared waisted specimens of bovine cortical bone and demineralized them according to an established protocol. Creep tests were conducted on 18 specimens at various normalized stresses sigma/E0 and temperatures using a noninvasive optical technique to measure strain. Denaturation tests were also conducted to investigate the effect of temperature on the structure of demineralized bone. The creep behavior was characterized by the three classical stages of decreasing, constant, and increasing creep rates at all applied normalized stresses and temperatures. Strong (r2 > 0.79) and significant (p < 0.01) power-law relationships were found between the damage accumulation parameters (steady-state creep rate d epsilon/dt and time-to-failure tf) and the applied normalized stress sigma/E0. The creep behavior was also a function of temperature, following an Arrhenius creep relationship with an activation energy Q = 113 kJ/mole, within the range of activation energies for cortical (44 kJ/mole) and trabecular (136 kJ/mole) bone. The denaturation behavior was characterized by axial shrinkage at temperatures greater than approximately 56 degrees C. Lastly an analysis of covariance (ANCOVA) of our demineralized cortical bone regressions with those found in the literature for cortical and trabecular bone indicates than all three tissues creep with the same power-law exponents. These similar creep activation energies and exponents suggest that collagen is the phase responsible for creep in bone.  相似文献   

19.
Detection of trabecular bone microdamage by micro-computed tomography   总被引:3,自引:0,他引:3  
Microdamage is an important component of bone quality and affects bone remodeling. Improved techniques to assess microdamage without the need for histological sectioning would provide insight into the role of microdamage in trabecular bone strength by allowing the spatial distribution of damage within the trabecular microstructure to be measured. Nineteen cylindrical trabecular bone specimens were prepared and assigned to two groups. The specimens in group I were damaged to 3% compressive strain and labeled with BaSO(4). Group II was not loaded, but was labeled with BaSO(4). Micro-computed tomography (Micro-CT) images of the specimens were obtained at 10 microm resolution. The median intensity of the treated bone tissue was compared between groups. Thresholding was also used to measure the damaged area fraction in the micro-CT scans. The histologically measured damaged area fraction, the median CT intensity, and the micro-CT measured damaged area fraction were all higher in the loaded group than in the unloaded group, indicating that the micro-CT images could differentiate the damaged specimen group from the unloaded specimens. The histologically measured damaged area fraction was positively correlated with the micro-CT measured damaged area fraction and with the median CT intensity of the bone, indicating that the micro-CT images can detect microdamage in trabecular bone with sufficient accuracy to differentiate damage levels between samples. This technique provides a means to non-invasively assess the three-dimensional distribution of microdamage within trabecular bone test specimens and could be used to gain insight into the role of trabecular architecture in microdamage formation.  相似文献   

20.
Loss of fixation at the cement-bone interface can contribute to clinical loosening of cemented total hip replacements. In this study, the fatigue damage response was determined for cement-bone constructs subjected to shear fatigue loading. A typical three-phase fatigue response was observed with substantial early damage, followed by a long constant damage rate region and a final abrupt increase in damage to fracture. All of the damage resulted from creep (permanent) deformation during fatigue loading and there was no loss in cyclic stiffness. Using a Von Mises equivalent stress/strain concept, a general damage model was developed to describe the fatigue creep response of the cement-bone interface under either shear or tensile fatigue loading. Time to failure was highly correlated (r2=0.971) with equivalent creep strain rate and moderately related (r2=0.428) with equivalent initial strain for the two loading regimes. The equivalent creep strain at failure (0.052+/-0.018) was found to be independent of the applied equivalent stress. A combination of the creep damage model (to describe the damage process) with a constant final equivalent strain (as a failure criteria) could be used to assess the cement-bone failure response of cemented implant systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号