首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure and lytic activity of a Bacillus anthracis prophage endolysin   总被引:1,自引:0,他引:1  
We report a structural and functional analysis of the lambda prophage Ba02 endolysin (PlyL) encoded by the Bacillus anthracis genome. We show that PlyL comprises two autonomously folded domains, an N-terminal catalytic domain and a C-terminal cell wall-binding domain. We determined the crystal structure of the catalytic domain; its three-dimensional fold is related to that of the cell wall amidase, T7 lysozyme, and contains a conserved zinc coordination site and other components of the catalytic machinery. We demonstrate that PlyL is an N-acetylmuramoyl-L-alanine amidase that cleaves the cell wall of several Bacillus species when applied exogenously. We show, unexpectedly, that the catalytic domain of PlyL cleaves more efficiently than the full-length protein, except in the case of Bacillus cereus, and using GFP-tagged cell wall-binding domain, we detected strong binding of the cell wall-binding domain to B. cereus but not to other species tested. We further show that a related endolysin (Ply21) from the B. cereus phage, TP21, shows a similar pattern of behavior. To explain these data, and the species specificity of PlyL, we propose that the C-terminal domain inhibits the activity of the catalytic domain through intramolecular interactions that are relieved upon binding of the C-terminal domain to the cell wall. Furthermore, our data show that (when applied exogenously) targeting of the enzyme to the cell wall is not a prerequisite of its lytic activity, which is inherently high. These results may have broad implications for the design of endolysins as therapeutic agents.  相似文献   

2.
Phage lytic enzymes (enzybiotics) have gained attention as prospective tools to eradicate Gram-positive pathogens resistant to antibiotics. Attempts to purify the P16 endolysin of Staphylococcus aureus phage P68 were unsuccessful owing to the poor solubility of the protein. To overcome this limitation, we constructed a chimeric endolysin (P16-17) comprised of the inferred N-terminal d-alanyl-glycyl endopeptidase domain and the C-terminal cell wall targeting domain of the S. aureus phage P16 endolysin and the P17 minor coat protein, respectively. The domain swapping approach and the applied purification procedure resulted in soluble P16-17 protein, which exhibited antimicrobial activity towards S. aureus. In addition, P16-17 augmented the antimicrobial efficacy of the antibiotic gentamicin. This synergistic effect could be useful to reduce the effective dose of aminoglycoside antibiotics.  相似文献   

3.
Staphylococcus aureus is a notorious pathogen highly successful at developing resistance to virtually all antibiotics to which it is exposed. Staphylococcal phage 2638A endolysin is a peptidoglycan hydrolase that is lytic for S. aureus when exposed externally, making it a new candidate antimicrobial. It shares a common protein organization with more than 40 other reported staphylococcal peptidoglycan hydrolases. There is an N-terminal M23 peptidase domain, a mid-protein amidase 2 domain (N-acetylmuramoyl-L-alanine amidase), and a C-terminal SH3b cell wall-binding domain. It is the first phage endolysin reported with a secondary translational start site in the inter-lytic-domain region between the peptidase and amidase domains. Deletion analysis indicates that the amidase domain confers most of the lytic activity and requires the full SH3b domain for maximal activity. Although it is common for one domain to demonstrate a dominant activity over the other, the 2638A endolysin is the first in this class of proteins to have a high-activity amidase domain (dominant over the N-terminal peptidase domain). The high activity amidase domain is an important finding in the quest for high-activity staphylolytic domains targeting novel peptidoglycan bonds.  相似文献   

4.
The ply genes encoding the endolysin proteins from Bacillus cereus phages Bastille, TP21, and 12826 were identified, cloned, and sequenced. The endolysins could be overproduced in Escherichia coli (up to 20% of total cellular protein), and the recombinant proteins were purified by a two-step chromatographical procedure. All three enzymes induced rapid and specific lysis of viable cells of several Bacillus species, with highest activity on B. cereus and B. thuringiensis. Ply12 and Ply21 were experimentally shown to be N-acetylmuramoyl-L-alanine amidases (EC 3.5.1.28). No apparent holin genes were found adjacent to the ply genes. However, Ply21 may be endowed with a signal peptide which could play a role in timing of cell lysis by the cytoplasmic phage endolysin. The individual lytic enzymes (PlyBa, 41.1 kDa; Ply21, 29.5 kDa, Ply12, 27.7 kDa) show remarkable heterogeneity, i.e., their amino acid sequences reveal only little homology. The N-terminal part of Ply21 was found to be almost identical to the catalytic domains of a Bacillus sp. cell wall hydrolase (CwlSP) and an autolysin of B. subtilis (CwlA). The C terminus of PlyBa contains a 77-amino-acid sequence repeat which is also homologous to the binding domain of CwlSP. Ply12 shows homology to the major autolysins from B. subtilis and E. coli. Comparison with database sequences indicated a modular organization of the phage lysis proteins where the enzymatic activity is located in the N-terminal region and the C-termini are responsible for specific recognition and binding of Bacillus peptidoglycan. We speculate that the close relationship of the phage enzymes and cell wall autolysins is based upon horizontal gene transfer among different Bacillus phages and their hosts.  相似文献   

5.
The packaging of double-stranded genomic DNA into some viral and all bacteriophage capsids is driven by powerful molecular motors. In bacteriophage T4, the motor consists of the portal protein assembly composed of twelve copies of gene product 20 (gp20, 61 kDa) and an oligomeric terminase complex composed of gp16 (18 kDa) and gp17 (70 kDa). The packaging motor drives the 171-kbp T4 DNA into the capsid utilizing the free energy of ATP hydrolysis. Evidence suggests that gp17 is the key component of the motor; it exhibits ATPase, nuclease, and in vitro DNA-packaging activities. The N- and C-terminal halves of gp17 were expressed and purified to homogeneity and found to have ATPase and nuclease activities, respectively. The N-terminal domain exhibited 2-3-fold higher Kcat values for gp16-stimulated ATPase than the full-length gp17. Neither of the domains, individually or together, exhibited in vitro DNA-packaging activity, suggesting that communication between the domains is essential for DNA packaging. The domains, in particular the C-terminal domain or a mixture of both the N- and C-terminal domains, inhibited in vitro DNA packaging that is catalyzed by full-length gp17. In conjunction with genetic evidence, these data suggest that the domains compete with the full-length gp17 for binding sites on the portal protein. A model for the assembly of the T4 DNA-packaging machine is presented.  相似文献   

6.
Bacteriophage endolysins are bacterial cell wall degrading enzymes whose potential to fight bacterial infections has been intensively studied. Endolysins from Gram‐positive systems are typically described as monomeric and as having a modular structure consisting of one or two N‐terminal catalytic domains (CDs) linked to a C‐terminal region responsible for cell wall binding (CWB). We show here that expression of the endolysin gene lys170 of the enterococcal phage F170/08 results in two products, the expected full length endolysin (Lys170FL) and a C‐terminal fragment corresponding to the CWB domain (CWB170). The latter is produced from an in‐frame, alternative translation start site. Both polypeptides interact to form the fully active endolysin. Biochemical data strongly support a model where Lys170 is made of one monomer of Lys170FL associated with up to three CWB170 subunits, which are responsible for efficient endolysin binding to its substrate. Bioinformatics analysis indicates that similar secondary translation start signals may be used to produce and add independent CWB170‐like subunits to different enzymatic specificities. The particular configuration of endolysin Lys170 uncovers a new mode of increasing the number of CWB motifs associated to CD modules, as an alternative to the tandem repetition typically found in monomeric cell wall hydrolases.  相似文献   

7.
Translocation of double-stranded DNA into a preformed capsid by tailed bacteriophages is driven by powerful motors assembled at the special portal vertex. The motor is thought to drive processive cycles of DNA binding, movement, and release to package the viral genome. In phage T4, there is evidence that the large terminase protein, gene product 17 (gp17), assembles into a multisubunit motor and translocates DNA by an inchworm mechanism. gp17 consists of two domains; an N-terminal ATPase domain (amino acids 1-360) that powers translocation of DNA, and a C-terminal nuclease domain (amino acids 361-610) that cuts concatemeric DNA to generate a headful-size viral genome. While the functional motifs of ATPase and nuclease have been well defined and the ATPase atomic structure has been solved, the DNA binding motif(s) responsible for viral DNA recognition, cutting, and translocation are unknown. Here we report the first evidence for the presence of a double-stranded DNA binding activity in the gp17 ATPase domain. Binding to DNA is sensitive to Mg2+ and salt, but not the type of DNA used. DNA fragments as short as 20 bp can bind to the ATPase but preferential binding was observed to DNA greater than 1 kb. A high molecular weight ATPase-DNA complex was isolated by gel filtration, suggesting oligomerization of ATPase following DNA interaction. DNA binding was not observed with the full-length gp17, or the C-terminal nuclease domain. The small terminase protein, gp16, inhibited DNA binding, which was further accentuated by ATP. The presence of a DNA binding site in the ATPase domain and its binding properties implicate a role in the DNA packaging mechanism.  相似文献   

8.
Use of bacteriophages as biocontrol agents is a promising tool for controlling pathogenic bacteria including antibiotic-resistant bacteria. Not only bacteriophages but also endolysins, the peptidoglycan hydrolyzing enzymes encoded by bacteriophages, have high potential for applications as biocontrol agents against food-borne pathogens. In this study, a putative endolysin gene was identified in the genome of the bacteriophage BPS13, which infects Bacillus cereus. In silico analysis of this endolysin, designated LysBPS13, showed that it consists of an N-terminal catalytic domain (PGRP domain) and a C-terminal cell wall binding domain (SH3_5 domain). Further characterization of the purified LysBPS13 revealed that this endolysin is an N-acetylmuramyl-l-alanine amidase, the activity of which was not influenced by addition of EDTA. In addition, LysBPS13 demonstrated remarkable thermostability in the presence of glycerol, and it retained its lytic activity even after incubation at 100 °C for 30 min. Taken together, these results indicate that LysBPS13 can be considered a favorable candidate for a new antimicrobial agent to control B. cereus.  相似文献   

9.
Endolysins as a class of antibacterial enzymes are expected to become a very useful tool for many purposes to control spreading of, e.g., multiresistant bacteria in different environments. Their antimicrobial properties could be broadened or altered by mutagenesis, domain swapping or gene shuffling. Therefore, the specific designing of endolysins to achieve their desired properties is challenging. This work is focused on the in silico analysis of protein domains presence in sequences of phage and prophage endolysins, followed by the study of variety of domain combinations in the individual endolysin types. The multiple sequence alignment of endolysin sequences revealed the recognition of sequence types with typical domain arrangement and conserved amino acids, divided according to the target substrate in bacterial cell walls. The five protein families of catalytic domains are specifically occurring in dependence of bacterial Gram-type. The presence, types and numbers of binding domains within endolysin sequences were also studied. The obtained results enable a more targeted design of endolysins with required antimicrobial properties.  相似文献   

10.
Gu J  Lu R  Liu X  Han W  Lei L  Gao Y  Zhao H  Li Y  Diao Y 《Current microbiology》2011,63(6):538-542
LysGH15, a phage endolysin, exhibits a particularly broad lytic spectrum against Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA). Sequence analysis reveals that this endolysin contains a C-terminal cell wall binding domain (SH3b), which causes the endolysin to bind to host strains. In this study, the substrate binding affinity of the SH3b domain (LysGH15B) was evaluated. A fusion protein of LysGH15B and green fluorescent protein (LysGH15B–GFP) were cloned and expressed in Escherichia coli. Laser scanning confocal microscopy was used to detect the fluorescence of the treated cells irradiated at different excitation wavelengths and to determine the binding activity of LysGH15B–GFP and GFP. We found that LysGH15B–GFP not only generated green fluorescence, but, more importantly, also displayed specific affinity to staphylococcal isolates, especially MRSA. In contrast, the single GFP did not display any binding activity. The high affinity was attributed to the portion of LysGH15B and the binding activity of the fusion protein was specific to staphylococci. This study provides an insight into the SH3b domain of LysGH15. The specific binding activity may cause LysGH15B to serve as an anchoring device, and offer an alternative approach for cell surface attachment onto staphylococci.  相似文献   

11.
The mycobacteriophage Ms6 is a temperate double-stranded DNA (dsDNA) bacteriophage which, in addition to the predicted endolysin (LysA)-holin (Gp4) lysis system, encodes three additional proteins within its lysis module: Gp1, LysB, and Gp5. Ms6 Gp4 was previously described as a class II holin-like protein. By analysis of the amino acid sequence of Gp4, an N-terminal signal-arrest-release (SAR) domain was identified, followed by a typical transmembrane domain (TMD), features which have previously been observed for pinholins. A second putative holin gene (gp5) encoding a protein with a predicted single TMD at the N-terminal region was identified at the end of the Ms6 lytic operon. Neither the putative class II holin nor the single TMD polypeptide could trigger lysis in pairwise combinations with the endolysin LysA in Escherichia coli. One-step growth curves and single-burst-size experiments of different Ms6 derivatives with deletions in different regions of the lysis operon demonstrated that the gene products of gp4 and gp5, although nonessential for phage viability, appear to play a role in controlling the timing of lysis: an Ms6 mutant with a deletion of gp4 (Ms6(Δgp4)) caused slightly accelerated lysis, whereas an Ms6(Δgp5) deletion mutant delayed lysis, which is consistent with holin function. Additionally, cross-linking experiments showed that Ms6 Gp4 and Gp5 oligomerize and that both proteins interact. Our results suggest that in Ms6 infection, the correct and programmed timing of lysis is achieved by the combined action of Gp4 and Gp5.  相似文献   

12.
Clostridium perfringens commonly occurs in food and feed, can produce an enterotoxin frequently implicated in food-borne disease, and has a substantial negative impact on the poultry industry. As a step towards new approaches for control of this organism, we investigated the cell wall lysis system of C. perfringens bacteriophage phi3626, whose dual lysis gene cassette consists of a holin gene and an endolysin gene. Hol3626 has two membrane-spanning domains (MSDs) and is a group II holin. A positively charged beta turn between the two MSDs suggests that both the amino terminus and the carboxy terminus of Hol3626 might be located outside the cell membrane, a very unusual holin topology. Holin function was experimentally demonstrated by using the ability of the holin to complement a deletion of the heterologous phage lambda S holin in lambdadeltaSthf. The endolysin gene ply3626 was cloned in Escherichia coli. However, protein synthesis occurred only when bacteria were supplemented with rare tRNA(Arg) and tRNA(Ile) genes. Formation of inclusion bodies could be avoided by drastically lowering the expression level. Amino-terminal modification by a six-histidine tag did not affect enzyme activity and enabled purification by metal chelate affinity chromatography. Ply3626 has an N-terminal amidase domain and a unique C-terminal portion, which might be responsible for the specific lytic range of the enzyme. All 48 tested strains of C. perfringens were sensitive to the murein hydrolase, whereas other clostridia and bacteria belonging to other genera were generally not affected. This highly specific activity towards C. perfringens might be useful for novel biocontrol measures in food, feed, and complex microbial communities.  相似文献   

13.
Lytic transglycosylases are enzymes that act on the peptidoglycan of bacterial cell walls. They cleave the glycosidic linkage between N-acetylmuramoyl and N-acetylglucosaminyl residues with the concomitant formation of a 1,6-anhydromuramoyl product. The x-ray structure of the lytic transglycosylase gp144 from the Pseudomonas bacteriophage phi KZ has been determined to 2.5-A resolution. This protein is probably employed by the bacteriophage in the late stage of the virus reproduction cycle to destroy the bacterial cell wall to release the phage progeny. phi KZ gp144 is a 260-residue alpha-helical protein composed of a 70-residue N-terminal cell wall-binding domain and a C-terminal catalytic domain. The fold of the N-terminal domain is similar to the peptidoglycan-binding domain from Streptomyces albus G D-Ala-D-Ala carboxypeptidase and to the N-terminal prodomain of human metalloproteinases that act on extracellular matrices. The C-terminal catalytic domain of gp144 has a structural similarity to the catalytic domain of the transglycosylase Slt70 from Escherichia coli and to lysozymes. The gp144 catalytic domain has an elongated groove that can bind at least five sugar residues at sites A-E. As in other lysozymes, the peptidoglycan cleavage (catalyzed by Glu 115 in gp144) occurs between sugar-binding subsites D and E. The x-ray structure of the phi KZ transglycosylase complexed with the chitotetraose (N-acetylglucosamine)(4) has been determined to 2.6-A resolution. The N-acetylglucosamine residues of the chitotetraose bind in sites A-D.  相似文献   

14.
Two novel chimeric pneumococcal cell wall lytic enzymes, named LC7 and CL7, have been constructed by in vitro recombination of the lytA gene encoding the major autolysin (LYTA amidase) of Streptococcus pneumoniae, a choline-dependent enzyme, and the cpl7 gene encoding the CPL7 lysozyme of phage Cp-7, a choline-independent enzyme. In remarkable contrast with previous chimeric constructions, we fused here two genes that lack nucleotide homology. The CL7 enzyme, which contains the N-terminal domain of CPL7 and C-terminal domain of LYTA, exhibited a choline-dependent lysozyme activity. This experimental rearrangement of domains might mimic the process that have generated the choline-dependent CPL1 lysozyme of phage Cp-1 during evolution, providing additional support to the modular theory of protein evolution. The LC7 enzyme, built up by fusion of the N-terminal domain of LYTA and the C-terminal domain of CPL7, exhibited an amidase activity capable of degrading ethanolamine-containing cell walls. The chimeric amidase behaved as an autolytic enzyme when it was cloned and expressed in S. pneumoniae. The chimeric enzymes provided new insights on the mechanisms involved in regulation of the host pneumococcal autolysins and on the participation of these enzymes in the process of cell separation. Furthermore, our experimental approach confirmed the basic role of the C-terminal domains in substrate recognition and revealed the influence of these domains on the optimal pH for catalytic activity.  相似文献   

15.
The early events in filamentous bacteriophage infection of gram-negative bacteria are mediated by the gene 3 protein (g3p) of the virus. This protein has a sophisticated domain organization consisting of two N-terminal domains and one C-terminal domain, separated by flexible linkers. The molecular interactions between these domains and the known bacterial coreceptor protein (TolA) were studied using a biosensor technique, and we report here on interactions of the viral coat protein with TolA, as well as on interactions between the TolA molecules. We detected an interaction between the pilus binding second domain (N2) of protein 3 and the bacterial TolA. This novel interaction was found to depend on the periplasmatic domain of TolA (TolAII). Furthermore, extensive interaction was detected between TolA molecules, demonstrating that bacterial TolA has the ability to interact functionally with itself during phage infection. The kinetics of g3p binding to TolA is also different from that of bacteriocins, since both N-terminal domains of g3p were found to interact with TolA. The multiple roles for each of the separate g3p and TolA domains imply a delicate interaction network during the phage infection process and a model for the infection mechanism is hypothesized.  相似文献   

16.
The Escherichia coli dnaQ gene encodes the 3'-->5' exonucleolytic proofreading (epsilon) subunit of DNA polymerase III (Pol III). Genetic analysis of dnaQ mutants has suggested that epsilon might consist of two domains, an N-terminal domain containing the exonuclease and a C-terminal domain essential for binding the polymerase (alpha) subunit. We have created truncated forms of dnaQ resulting in epsilon subunits that contain either the N-terminal or the C-terminal domain. Using the yeast two-hybrid system, we analyzed the interactions of the single-domain epsilon subunits with the alpha and theta subunits of the Pol III core. The DnaQ991 protein, consisting of the N-terminal 186 amino acids, was defective in binding to the alpha subunit while retaining normal binding to the theta subunit. In contrast, the NDelta186 protein, consisting of the C-terminal 57 amino acids, exhibited normal binding to the alpha subunit but was defective in binding to the theta subunit. A strain carrying the dnaQ991 allele exhibited a strong, recessive mutator phenotype, as expected from a defective alpha binding mutant. The data are consistent with the existence of two functional domains in epsilon, with the C-terminal domain responsible for polymerase binding.  相似文献   

17.
18.
Architecturally conserved viral portal dodecamers are central to capsid assembly and DNA packaging. To examine bacteriophage T4 portal functions, we constructed, expressed and assembled portal gene 20 fusion proteins. C-terminally fused (gp20-GFP, gp20-HOC) and N-terminally fused (GFP-gp20 and HOC-gp20) portal fusion proteins assembled in vivo into active phage. Phage assembled C-terminal fusion proteins were inaccessible to trypsin whereas assembled N-terminal fusions were accessible to trypsin, consistent with locations inside and outside the capsid respectively. Both N- and C-terminal fusions required coassembly into portals with approximately 50% wild-type (WT) or near WT-sized 20am truncated portal proteins to yield active phage. Trypsin digestion of HOC-gp20 portal fusion phage showed comparable protection of the HOC and gp20 portions of the proteolysed HOC-gp20 fusion, suggesting both proteins occupy protected capsid positions, at both the portal and the proximal HOC capsid-binding sites. The external portal location of the HOC portion of the HOC-gp20 fusion phage was confirmed by anti-HOC immuno-gold labelling studies that showed a gold 'necklace' around the phage capsid portal. Analysis of HOC-gp20-containing proheads showed increased HOC protein protection from trypsin degradation only after prohead expansion, indicating incorporation of HOC-gp20 portal fusion protein to protective proximal HOC-binding sites following this maturation. These proheads also showed no DNA packaging defect in vitro as compared with WT. Retention of function of phage and prohead portals with bulky internal (C-terminal) and external (N-terminal) fusion protein extensions, particularly of apparently capsid tethered portals, challenges the portal rotation requirement of some hypothetical DNA packaging mechanisms.  相似文献   

19.
Irreversible binding of T-even bacteriophages to Escherichia coli is mediated by the short tail fibres, which serve as inextensible stays during DNA injection. Short tail fibres are exceptionally stable elongated trimers of gene product 12 (gp12), a 56 kDa protein. The N-terminal region of gp12 is important for phage attachment, the central region forms a long shaft, while a C-terminal globular region is implicated in binding to the bacterial lipopolysaccharide core. When gp12 was treated with stoichiometric amounts of trypsin or chymotrypsin at 37 degrees C, an N-terminally shortened fragment of 52 kDa resulted. If the protein was incubated at 56 degrees C before trypsin treatment at 37 degrees C, we obtained a stable trimeric fragment of 3 x 33 kDa lacking residues from both the N- and C-termini. Apparently, the protein unfolds partially at 56 degrees C, thereby exposing protease-sensitive sites in the C-terminal region and extra sites in the N-terminal region. Well-diffracting crystals of this fragment could be grown. Our results indicate that gp12 carries a stable central region, consisting of the C-terminal part of the shaft and the attached N-terminal half of the globular region. Implications for structure determination of the gp12 protein and its folding are discussed.  相似文献   

20.
To analyze the antibacterial activity of Bacillus amyloliquefaciens phage endolysin, nine deletion derivatives of the endolysin were constructed. Each deletion mutant was overexpressed, purified and characterized. The catalytic domain was located on the N-terminal region and the C-terminus had an affinity with the bacterial envelope. The enzymatic activity remained in spite of the deletion of the C-terminal 116-amino acid region; however, the antibacterial activity was lost. These results indicate that antibacterial action requires both the C-terminal cell-binding and the N-terminal enzymatic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号