首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biclustering method can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse in gene expression measurement. This is because the biclustering approach, in contrast to the conventional clustering techniques, focuses on finding a subset of the genes and a subset of the experimental conditions that together exhibit coherent behavior. However, the biclustering problem is inherently intractable, and it is often computationally costly to find biclusters with high levels of coherence. In this work, we propose a novel biclustering algorithm that exploits the zero-suppressed binary decision diagrams (ZBDDs) data structure to cope with the computational challenges. Our method can find all biclusters that satisfy specific input conditions, and it is scalable to practical gene expression data. We also present experimental results confirming the effectiveness of our approach.  相似文献   

2.
Biclustering is an important tool in microarray analysis when only a subset of genes co-regulates in a subset of conditions. Different from standard clustering analyses, biclustering performs simultaneous classification in both gene and condition directions in a microarray data matrix. However, the biclustering problem is inherently intractable and computationally complex. In this paper, we present a new biclustering algorithm based on the geometrical viewpoint of coherent gene expression profiles. In this method, we perform pattern identification based on the Hough transform in a column-pair space. The algorithm is especially suitable for the biclustering analysis of large-scale microarray data. Our studies show that the approach can discover significant biclusters with respect to the increased noise level and regulatory complexity. Furthermore, we also test the ability of our method to locate biologically verifiable biclusters within an annotated set of genes.  相似文献   

3.
MOTIVATION: In recent years, there have been various efforts to overcome the limitations of standard clustering approaches for the analysis of gene expression data by grouping genes and samples simultaneously. The underlying concept, which is often referred to as biclustering, allows to identify sets of genes sharing compatible expression patterns across subsets of samples, and its usefulness has been demonstrated for different organisms and datasets. Several biclustering methods have been proposed in the literature; however, it is not clear how the different techniques compare with each other with respect to the biological relevance of the clusters as well as with other characteristics such as robustness and sensitivity to noise. Accordingly, no guidelines concerning the choice of the biclustering method are currently available. RESULTS: First, this paper provides a methodology for comparing and validating biclustering methods that includes a simple binary reference model. Although this model captures the essential features of most biclustering approaches, it is still simple enough to exactly determine all optimal groupings; to this end, we propose a fast divide-and-conquer algorithm (Bimax). Second, we evaluate the performance of five salient biclustering algorithms together with the reference model and a hierarchical clustering method on various synthetic and real datasets for Saccharomyces cerevisiae and Arabidopsis thaliana. The comparison reveals that (1) biclustering in general has advantages over a conventional hierarchical clustering approach, (2) there are considerable performance differences between the tested methods and (3) already the simple reference model delivers relevant patterns within all considered settings.  相似文献   

4.
5.
Machine learning techniques offer a viable approach to cluster discovery from microarray data, which involves identifying and classifying biologically relevant groups in genes and conditions. It has been recognized that genes (whether or not they belong to the same gene group) may be co-expressed via a variety of pathways. Therefore, they can be adequately described by a diversity of coherence models. In fact, it is known that a gene may participate in multiple pathways that may or may not be co-active under all conditions. It is therefore biologically meaningful to simultaneously divide genes into functional groups and conditions into co-active categories--leading to the so-called biclustering analysis. For this, we have proposed a comprehensive set of coherence models to cope with various plausible regulation processes. Furthermore, a multivariate biclustering analysis based on fusion of different coherence models appears to be promising because the expression level of genes from the same group may follow more than one coherence models. The simulation studies further confirm that the proposed framework enjoys the advantage of high prediction performance.  相似文献   

6.
Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.  相似文献   

7.
SUMMARY: Besides classical clustering methods such as hierarchical clustering, in recent years biclustering has become a popular approach to analyze biological data sets, e.g. gene expression data. The Biclustering Analysis Toolbox (BicAT) is a software platform for clustering-based data analysis that integrates various biclustering and clustering techniques in terms of a common graphical user interface. Furthermore, BicAT provides different facilities for data preparation, inspection and postprocessing such as discretization, filtering of biclusters according to specific criteria or gene pair analysis for constructing gene interconnection graphs. The possibility to use different biclustering algorithms inside a single graphical tool allows the user to compare clustering results and choose the algorithm that best fits a specific biological scenario. The toolbox is described in the context of gene expression analysis, but is also applicable to other types of data, e.g. data from proteomics or synthetic lethal experiments. AVAILABILITY: The BicAT toolbox is freely available at http://www.tik.ee.ethz.ch/sop/bicat and runs on all operating systems. The Java source code of the program and a developer's guide is provided on the website as well. Therefore, users may modify the program and add further algorithms or extensions.  相似文献   

8.
An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters.  相似文献   

9.
Phylogenetic trees from multiple genes can be obtained in two fundamentally different ways. In one, gene sequences are concatenated into a super-gene alignment, which is then analyzed to generate the species tree. In the other, phylogenies are inferred separately from each gene, and a consensus of these gene phylogenies is used to represent the species tree. Here, we have compared these two approaches by means of computer simulation, using 448 parameter sets, including evolutionary rate, sequence length, base composition, and transition/transversion rate bias. In these simulations, we emphasized a worst-case scenario analysis in which 100 replicate datasets for each evolutionary parameter set (gene) were generated, and the replicate dataset that produced a tree topology showing the largest number of phylogenetic errors was selected to represent that parameter set. Both randomly selected and worst-case replicates were utilized to compare the consensus and concatenation approaches primarily using the neighbor-joining (NJ) method. We find that the concatenation approach yields more accurate trees, even when the sequences concatenated have evolved with very different substitution patterns and no attempts are made to accommodate these differences while inferring phylogenies. These results appear to hold true for parsimony and likelihood methods as well. The concatenation approach shows >95% accuracy with only 10 genes. However, this gain in accuracy is sometimes accompanied by reinforcement of certain systematic biases, resulting in spuriously high bootstrap support for incorrect partitions, whether we employ site, gene, or a combined bootstrap resampling approach. Therefore, it will be prudent to report the number of individual genes supporting an inferred clade in the concatenated sequence tree, in addition to the bootstrap support.  相似文献   

10.
11.
Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called ‘scaling patterns’, a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/∼maqin/bicluster. A server version of QUBIC is also available upon request.  相似文献   

12.
13.
14.
DNA微阵列技术的发展为基因表达研究提供更有效的工具。分析这些大规模基因数据主要应用聚类方法。最近,提出双聚类技术来发现子矩阵以揭示各种生物模式。多目标优化算法可以同时优化多个相互冲突的目标,因而是求解基因表达矩阵的双聚类的一种很好的方法。本文基于克隆选择原理提出了一个新奇的多目标免疫优化双聚类算法,来挖掘微阵列数据的双聚类。在两个真实数据集上的实验结果表明该方法比其他多目标进化双聚娄算法表现出更优越的性能。  相似文献   

15.
Since hub nodes have been found to play important roles in many networks, highly connected hub genes are expected to play an important role in biology as well. However, the empirical evidence remains ambiguous. An open question is whether (or when) hub gene selection leads to more meaningful gene lists than a standard statistical analysis based on significance testing when analyzing genomic data sets (e.g., gene expression or DNA methylation data). Here we address this question for the special case when multiple genomic data sets are available. This is of great practical importance since for many research questions multiple data sets are publicly available. In this case, the data analyst can decide between a standard statistical approach (e.g., based on meta-analysis) and a co-expression network analysis approach that selects intramodular hubs in consensus modules. We assess the performance of these two types of approaches according to two criteria. The first criterion evaluates the biological insights gained and is relevant in basic research. The second criterion evaluates the validation success (reproducibility) in independent data sets and often applies in clinical diagnostic or prognostic applications. We compare meta-analysis with consensus network analysis based on weighted correlation network analysis (WGCNA) in three comprehensive and unbiased empirical studies: (1) Finding genes predictive of lung cancer survival, (2) finding methylation markers related to age, and (3) finding mouse genes related to total cholesterol. The results demonstrate that intramodular hub gene status with respect to consensus modules is more useful than a meta-analysis p-value when identifying biologically meaningful gene lists (reflecting criterion 1). However, standard meta-analysis methods perform as good as (if not better than) a consensus network approach in terms of validation success (criterion 2). The article also reports a comparison of meta-analysis techniques applied to gene expression data and presents novel R functions for carrying out consensus network analysis, network based screening, and meta analysis.  相似文献   

16.
Expression QTL mapping by integrating genome-wide gene expression and genotype data is a promising approach to identifying functional genetic variation, but is hampered by the large number of multiple comparisons inherent in such studies. A novel approach to addressing multiple testing problems in genome-wide family-based association studies is screening candidate markers using heritability or conditional power. We apply these methods in settings in which microarray gene expression data are used as phenotypes, screening for SNPs near the expressed genes. We perform association analyses for phenotypes using a univariate approach. We also perform simulations on trios with large numbers of causal SNPs to determine the optimal number of markers to use in a screen. We demonstrate that our family-based screening approach performs well in the analysis of integrative genomic datasets and that screening using either heritability or conditional power produces similar, though not identical, results.  相似文献   

17.
Background: Developing appropriate computational tools to distill biological insights from large-scale gene expression data has been an important part of systems biology. Considering that gene relationships may change or only exist in a subset of collected samples, biclustering that involves clustering both genes and samples has become in-creasingly important, especially when the samples are pooled from a wide range of experimental conditions. Methods: In this paper, we introduce a new biclustering algorithm to find subsets of genomic expression features (EFs) (e.g., genes, isoforms, exon inclusion) that show strong “group interactions” under certain subsets of samples. Group interactions are defined by strong partial correlations, or equivalently, conditional dependencies between EFs after removing the influences of a set of other functionally related EFs. Our new biclustering method, named SCCA-BC, extends an existing method for group interaction inference, which is based on sparse canonical correlation analysis (SCCA) coupled with repeated random partitioning of the gene expression data set. Results: SCCA-BC gives sensible results on real data sets and outperforms most existing methods in simulations. Software is available at https://github.com/pimentel/scca-bc. Conclusions: SCCA-BC seems to work in numerous conditions and the results seem promising for future extensions. SCCA-BC has the ability to find different types of bicluster patterns, and it is especially advantageous in identifying a bicluster whose elements share the same progressive and multivariate normal distribution with a dense covariance matrix.  相似文献   

18.
张凡  林爱华  林美华  丁元林  饶绍奇 《遗传》2013,35(3):333-342
基因多效性是癌症遗传机制中的普遍现象, 但罕见系统性的分析。文章提出采用双聚类挖掘基因功能模块的新思路探索癌症的共享分子机制和不同癌症间的关系。获取20种癌症的基因表达数据, 应用改良t检验和倍数法筛选出至少在两种癌症中差异表达的基因, 得到10417×20的数据矩阵; 采用双聚类方法获得22个癌症共享的基因簇; 进一步富集分析得到17个基因功能模块(Bonferroni校正后P<0.05), 主要参与有丝分裂染色单体分离的调控、细胞分化、免疫和炎症反应、胶原纤维组织等生物过程; 主要执行ATP结合和微管活动、MHCⅡ类受体活性、肽链内切酶抑制活性等分子功能; 活动区域主要在细胞骨架、染色体、MHCⅡ蛋白质复合体、中间丝蛋白、胶原纤维等。基于模块构建癌症相关网络, 显示胃癌、卵巢腺癌、宫颈鳞癌和间皮瘤等之间相关程度较高, 而两种血液系统癌症(急性髓细胞性白血病与多发性骨髓瘤)分子机制与其他癌症存在较大差异。可见癌症共享的基因功能模块与多种生物机制有关, 癌症之间相似性可能与组织起源、共同的致癌机制等有关。文章提出的基因多效性分析方法有助于解释人类复杂性疾病的共享分子机制。  相似文献   

19.
BiVisu is an open-source software tool for detecting and visualizing biclusters embedded in a gene expression matrix. Through the use of appropriate coherence relations, BiVisu can detect constant, constant-row, constant-column, additive-related as well as multiplicative-related biclusters. The biclustering results are then visualized under a 2D setting for easy inspection. In particular, parallel coordinate (PC) plots for each bicluster are displayed, from which objective and subjective cluster quality evaluation can be performed. Availability: BiVisu has been developed in Matlab and is available at http://www.eie.polyu.edu.hk/~nflaw/Biclustering/.  相似文献   

20.
In this paper, we describe an approach for identifying 'pathways' from gene expression and protein interaction data. Our approach is based on the assumption that many pathways exhibit two properties: their genes exhibit a similar gene expression profile, and the protein products of the genes often interact. Our approach is based on a unified probabilistic model, which is learned from the data using the EM algorithm. We present results on two Saccharomyces cerevisiae gene expression data sets, combined with a binary protein interaction data set. Our results show that our approach is much more successful than other approaches at discovering both coherent functional groups and entire protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号