首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of canine parvovirus (CPV) isolates with a panel of monoclonal antibodies showed that after 1986, most viruses isolated from dogs in many parts of the United States differed antigenically from the viruses isolated prior to that date. The new antigenic type (designated CPV type 2b) has largely replaced the previous antigenic type (CPV type 2a) among virus isolates from the United States. This represents the second occurrence of a new antigenic type of this DNA virus since its emergence in 1978, as the original CPV type (CPV type 2) had previously been replaced between 1979 and 1981 by the CPV type 2a strain. DNA sequence comparisons showed that CPV types 2b and 2a differed by as few as two nonsynonymous (amino acid-changing) nucleotide substitutions in the VP-1 and VP-2 capsid protein genes. One mutation, resulting in an Asn-Asp difference at residue 426 in the VP-2 sequence, was shown by comparison with a neutralization-escape mutant selected with a non-CPV type 2b-reactive monoclonal antibody to determine the antigenic change. The mutation selected by that monoclonal antibody, a His-Tyr difference in VP-2 amino acid 222, was immediately adjacent to residue 426 in the three-dimensional structure of the CPV capsid. The CPV type 2b isolates are phylogenetically closely related to the CPV type 2a isolates and are probably derived from a common ancestor. Phylogenetic analysis showed a progressive evolution away from the original CPV type. This pattern of viral evolution appears most similar to that seen in some influenza A viruses.  相似文献   

2.
Understanding the mechanisms of cross-species virus transmission is critical to anticipating emerging infectious diseases. Canine parvovirus type 2 (CPV-2) emerged as a variant of a feline parvovirus when it acquired mutations that allowed binding to the canine transferrin receptor type 1 (TfR). However, CPV-2 was soon replaced by a variant virus (CPV-2a) that differed in antigenicity and receptor binding. Here we show that the emergence of CPV involved an additional host range variant virus that has circulated undetected in raccoons for at least 24 years, with transfers to and from dogs. Raccoon virus capsids showed little binding to the canine TfR, showed little infection of canine cells, and had altered antigenic structures. Remarkably, in capsid protein (VP2) phylogenies, most raccoon viruses fell as evolutionary intermediates between the CPV-2 and CPV-2a strains, suggesting that passage through raccoons assisted in the evolution of CPV-2a. This highlights the potential role of alternative hosts in viral emergence.  相似文献   

3.
Canine parvovirus (CPV), a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c) with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population) and a major recombinant strain (86.7%). The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity.  相似文献   

4.
An outbreak of canine parvovirus type 2c (CPV-2c) infection in vaccinated adult dogs is reported. The disease occurred in a breeding kennel in Italy and affected 11 dogs aged between 6 months and 2.5 years, that had been repeatedly administered vaccines containing a type 2 (old type) CPV strain. CPV infection was demonstrated in all diseased dogs by an immunochromatographic test. A CPV strain was isolated from the intestinal content of a 20-month-old pregnant Bernese mountain bitch that underwent a fatal outcome. The strain was characterised as CPV-2c by means of real-time PCR assays using minor groove binder probes. The present report provides further concerns about the real efficacy of type 2-based vaccines against the antigenic variants of CPV and stresses the need for developing new vaccines prepared with the variants currently circulating in the dog population.  相似文献   

5.
Aquatic birnaviruses, such as infectious pancreatic necrosis virus (IPNV), cause serious diseases in a variety of fish species used worldwide in aquaculture and have also been isolated from a variety of healthy fish and shellfish species. These viruses exhibit a high degree of antigenic heterogeneity and variation in biological properties such as pathogenicity, host range, and temperature of replication. To better understand genetic and biological diversity among these viruses, the nucleotide and deduced amino acid sequences were determined from cDNA of the large open reading frame (ORF) of genome segment A of the 9 type strains of Serogroup A and 4 other representative strains of Serotype A1, the predominant serotype in the United States. In addition, nucleotide and deduced amino acid sequences were determined for the VP2 coding region of a variety of isolates representing 5 of the 9 serotypes. VP2 is the major outer capsid protein of aquatic birnaviruses. RT-PCR was used to amplify a 2904 bp cDNA fragment including all but a few bp of the large ORF of genome segment A or a 1611 bp fragment representing the entire VP2 coding region. Nucleotide and deduced amino acid sequences were determined from the PCR products. Pairwise comparisons were made among our data and 2 other aquatic birnavirus sequences previously published. Several hypervariable regions were identified within the large ORF. The most divergent pair of viruses exhibited a similarity of 80.1% in the deduced amino acid sequence encoded by the large ORF. Genomic relationships revealed in a phylogenetic tree constructed from comparison of the deduced amino acid sequences of the large ORF demonstrated that these viruses were clustered into several genogroups. Phylogenetic comparison of the deduced amino acid sequences of the VP2 coding region of 28 aquatic birnavirus isolates, including the type strains of all 9 serotypes, demonstrated 6 genogroups, some of which were comprised of several genotypes. The most divergent pair of viruses exhibited a similarity of 81.2% in the deduced amino acid sequence from the VP2 coding region. In contrast to previous studies of much shorter genomic sequences within the C-terminus-pVP2/NS junction coding region, these genogroups based on the entire large ORF or the VP2 coding region generally correlated with geographical origin and serological classification. Isolates from the major Canadian serotypes were more closely related to the European isolates than to isolates from the United States.  相似文献   

6.
To trace evolution of canine parvovirus-2 (CPV-2), a total of 201 stool samples were collected from dogs with diarrhea in Heilongjiang province of northeast China from May 2014 to April 2015. The presence of CPV-2 in the samples was determined by PCR amplification of the VP2 gene (568 bp) of CPV-2. The results revealed that 95 samples (47.26%) were positive for CPV-2, and they showed 98.8%–100% nucleotide identity and 97.6%–100% amino acid identity. Of 95 CPV-2-positive samples, types new2a (Ser297Ala), new2b (Ser297Ala), and 2c accounted for 64.21%, 21.05%, and 14.74%, respectively. The positive rate of CPV-2 and the distribution of the new2a, new2b and 2c types exhibited differences among regions, seasons, and ages. Immunized dogs accounted for 48.42% of 95 CPV-2-positive samples. Coinfections with canine coronavirus, canine kobuvirus, and canine bocavirus were identified. Phylogenetic analysis revealed that the identified new2a, new2b, and CPV-2c strains in our study exhibited a close relationship with most of the CPV-2 strains from China; type new2a strains exhibited high variability, forming three subgroups; type new2b and CPV-2c strains formed one group with reference strains from China. Of 95 CPV-2 strains, Tyr324Ile and Thr440Ala substitutions accounted for 100% and 64.21%, respectively; all type new2b strains exhibited the Thr440Ala substitution, while the unique Gln370Arg substitution was found in all type 2c strains. Recombination analysis using entire VP2 gene indicated possible recombination events between the identified CPV-2 strains and reference strains from China. Our data revealed the co-circulation of new CPV-2a, new CPV-2b, and rare CPV-2c, as well as potential recombination events among Chinese CPV-2 strains.  相似文献   

7.
从我国内蒙古地区流行的犬细小病毒病病犬的肠溶物中分离提纯犬细小病毒(CPV)。提取病毒基因组DNA,并以此DNA为模板,采用人工合成的引物进行PCR扩增,PCR产物经BamHI、SacI双酶切后,克隆于pUC19质粒的BamHI/SacI位点。重组质粒pUCVP2经PCR鉴定、限制酶切分析和序列分析,结果表明:获得了犬细小病毒内蒙株(CPV-IM)VP2基因的全长克隆,VP2基因全长1755nt,  相似文献   

8.
The adaptation of viruses to new hosts is a poorly understood process likely involving a variety of viral structures and functions that allow efficient replication and spread. Canine parvovirus (CPV) emerged in the late 1970s as a host-range variant of a virus related to feline panleukopenia virus (FPV). Within a few years of its emergence in dogs, there was a worldwide replacement of the initial virus strain (CPV type 2) by a variant (CPV type 2a) characterized by four amino acid differences in the capsid protein. However, the evolutionary processes that underlie the acquisition of these four mutations, as well as their effects on viral fitness, both singly and in combination, are still uncertain. Using a comprehensive experimental analysis of multiple intermediate mutational combinations, we show that these four capsid mutations act in concert to alter antigenicity, cell receptor binding, and relative in vitro growth in feline cells. Hence, host adaptation involved complex interactions among both surface-exposed and buried capsid mutations that together altered cell infection and immune escape properties of the viruses. Notably, most intermediate viral genotypes containing different combinations of the four key amino acids possessed markedly lower fitness than the wild-type viruses.  相似文献   

9.
A total of 128 faecal samples/rectal swabs were collected from dogs showing signs of diarrhea/enteritis in and around Puducherry, South India. Eighteen clinical samples, showing high HA titre of 1:512 and above and positivity by polymerase chain reaction (PCR) with CPV-2ab primers, were subjected to virus isolation in CRFK cell line. Of the 18 samples processed, 3 samples (16.6%) were positive for CPV and were confirmed by haemagglutination, dot-ELISA, and IFAT. The three cell culture isolates were characterized as CPV-2b types by multiplex PCR as well as by monoclonal antibody typing.  相似文献   

10.
The cell infection processes and host ranges of canine parvovirus (CPV) and feline panleukopenia virus (FPV) are controlled by their capsid interactions with the transferrin receptors (TfR) on their host cells. Here, we expressed the ectodomains of wild-type and mutant TfR and tested those for binding to purified viral capsids and showed that different naturally variant strains of the viruses were associated with variant interactions with the receptors which likely reflect the optimization of the viral infection processes in the different hosts. While all viruses bound the feline TfR, reflecting their tissue culture host ranges, a naturally variant mutant of CPV (represented by the CPV type-2b strain) that became the dominant virus worldwide in 1979 showed significantly lower levels of binding to the feline TfR. The canine TfR ectodomain did not bind to a detectable level in the in vitro assays, but this appears to reflect the naturally low affinity of that interaction, as only low levels of binding were seen when the receptor was expressed on mammalian cells; however, that was sufficient to allow endocytosis and infection. The apical domain of the canine TfR controls the specific interaction with CPV capsids, as a canine TfR mutant altering a glycosylation site in that domain bound FPV, CPV-2, and CPV-2b capsids efficiently. Enzymatic removal of the N-linked glycans did not allow FPV binding to the canine TfR, suggesting that the protein sequence difference is itself important. The purified feline TfR inhibited FPV and CPV-2 binding and infection of feline cells but not CPV-2b, indicating that the receptor binding may be able to prevent the attachment to the same receptor on cells.  相似文献   

11.
Eighty-two canine parvovirus type 2 strains isolated in Italy from pups with severe enteritis were characterizated using four monoclonal antibodies. Sixty-eight isolates resulted CPV-2a, whereas the other fourteen were a CPV-2b variant. The diffusion of CPV-2 variants in the Italian dog population is quite similar to that reported in the United Kingdom and Australia (CPV-2a more prevalent) and different from the epidemiological conditions of the USA and other countries where CPV-2b is more widespread.  相似文献   

12.
Canine parvovirus type 2 (CPV-2) emerged in 1978 and spread worldwide within 2 years. Subsequently, CPV-2 was completely replaced by the variant CPV-2a, which is characterized by four specific capsid (VP2) mutations. The X-ray crystal structure of the CPV-2a capsid shows that each mutation confers small local changes. The loss of a hydrogen bond and introduction of a glycine residue likely introduce flexibility to sites that control interactions with the host receptor, antibodies, and sialic acids.  相似文献   

13.
《Seminars in Virology》1994,5(2):121-132
Canine parvovirus (CPV) emerged in 1978 an a new pathogen of dogs, which spread around the world and now appears endemic in the domesticated and wild dog populations in all countries. CPV is over 98% identical in DNA sequence to viruses which had been known for many years in cats, mink and raccoons, and genetic analysis has revealed that the differences in canine host range are determined by a small number of changes in the capsid protein gene. Comparison of the atomic structures of the CPV and FPV capsids shows that the changes affecting host range and virus-specific antigenic sites are exposed on the capsid surface in three different positions within a raised region at the threefold axis of symmetry, which is also the site of major antigenic determinants on the capsid. Three types of CPV have been defined by antigenic analysis with monoclonal antibodies. The original CPV strain (called CPV type-2) was only present in nature for a few years, and by 1981 it had been largely replaced in nature by a variant of CPV (CPV type 2a), which in turn replaced between 1984 and 1990 by a further variant (CPV type-2b). Those viruses differed by less than 0.2% of their genome sequences, but in each case the replacement apparently occurred on a global scale. The true ancestry of CPV is not clear, but the apparent emergence of the new types of CPV and its subsequent evolution suggest that this is a useful model for the emergence of new viruses with extended host ranges and their continuing adaptation.  相似文献   

14.
《Seminars in Virology》1995,6(5):299-309
Capsids of autonomous parvoviruses are assembled from two proteins, VP1 and VP2, which overlap in sequence, with VP1 having additional amino-terminal residues. Empty capsids can be assembled from VP2 alone. Post-translational cleavage of assembled particles can modify some of the proteins by truncation of a few of the amino-terminal residues of VP2 to generate VP3 in full virions. The structures of canine parvovirus (CPV) and feline panleukopenia virus (FPV) have been solved to better than 3·5 Å resolution, while the structure of human parvovirus, B19, has been determined to 8 Å resolution only. In each case the T=1 icosahedron is made up of 60 copies of a mixture of VP1, VP2 and VP3, where each subunit has a structural motif common to many other RNA and DNA viruses, consisting of an eight-stranded anti-parallel β-barrel. The surface of the capsid is made up primarily of large elaborate loops which connect the β-strands that make up the barrel. Variation in the amino acid sequence and topology of these loops account for differing biological properties.  相似文献   

15.
Viruses were isolated in cell culture from tissue homogenates of flounder Pseudopleuronectes americanus and mummichog Fundulus heteroclitus in the Chesapeake Bay, Virginia, USA. Neutralization and immunofluorescence tests with aquabirnavirus (West Buxton strain)-specific polyclonal antisera indicated that both viruses were aquabirnaviruses belonging to Serogroup A, the most common aquabirnavirus serogroup in the United States. This was confirmed by RT-PCR, with primers targeting the VP3 and VP2 gene of aquabirnaviruses. The VP2-specific RT-PCR cDNA amplification product was sequenced and deduced amino-acid sequences were compared with known sequences of the type strains of the 9 serotypes of aquabirnavirus Serogroup A. This demonstrated that the viruses from both flounder and mummichog belong to aquabirnavirus Genogroup 1. The flounder isolate exhibited deduced amino acid sequence similarities of 98.1% with the Jasper strain of serotype A9, and 97.7% with the West Buxton strain of serotype A1. The isolate from mummichog exhibited deduced amino acid sequence similarities of 99.1% with the West Buxton strain of Serotype A1 and 94.8% with the Jasper isolate of Serotype A9. Similarities of deduced amino acid sequences ranged from 79.9 to 86.9%, with representatives of the other 7 serotypes. This is the first report of an aquabirnavirus from mummichog F. heteroclitus and only the fifth report of an aquabirnavirus from a flounder species.  相似文献   

16.
从泰安地区送检的疑是细小病毒感染的蓝狐粪便中分离到一株病毒。经理化特性鉴定、血凝谱鉴定、人
工感染蓝狐等鉴定,表明所分离病毒为细小病毒。并且根据GenBank 上发表的犬细小病毒(Canine parvovirus,
CPV)、猫细小病毒(Feline parvovirus,FPV)核酸序列,设计扩增VP1 基因的引物,采用PCR 技术扩增所分离
细小病毒的VP1 全基因,将PCR 产物克隆入pMD18 - T 载体,进行测序分析。结果,所分离细小病毒的VP1 基
因全长2 256 bp,编码727 个氨基酸,与CPV 和FPV 参照株的VP1 基因同源性在98. 7% ~ 99. 5% 。VP1 基因的
系统发生分析表明所分离病毒与FPV 的亲源关系最为密切。所分离病毒VP1 蛋白375 位氨基酸残基与CPV 的
VP1 蛋白氨基酸残基一致,但其223 位、236 位、246 位、466 位、707 位、711 位氨基酸残基与FPV VP1 蛋白的
氨基酸残基一致,该病毒VP1 蛋白序列表现出了过渡型序列特征,介于FPV 与CPV 间的过渡类型,这说明所分离病毒为蓝狐细小病毒(Blue fox parvovirus,BFPV),命名为BFPV - TA,蓝狐可能在CPV 的起源过程起到重要
的作用。  相似文献   

17.
Intracerebral inoculation of mice with poliovirus type 2 Lansing induces a fatal paralysis, while most other poliovirus strains are unable to cause disease in the mouse. To determine the molecular basis for Lansing virus neurovirulence, we determined the complete nucleotide sequence of the Lansing viral genome from cloned cDNA. The deduced amino acid sequence was compared with that of two mouse-avirulent strains. There are 83 amino acid differences between the Lansing and Sabin type 2 strain and 179 differences between the Lansing and Mahoney type 1 strain scattered throughout the genome. To further localize Lansing sequences important for mouse neurovirulence, four intertypic recombinants were isolated by exchanging DNA restriction fragments between the Lansing 2 and Mahoney 1 infectious poliovirus cDNA clones. Plasmids were transfected into HeLa cells, and infectious recombinant viruses were recovered. All four recombinant viruses, which contained the Lansing capsid region and different amounts of the Mahoney genome, were neurovirulent for 18- to 21-day-old Swiss-Webster mice by the intracerebral route. The genome of neurovirulent recombinant PRV5.1 contained only nucleotides 631 to 3413 from Lansing, encoding primarily the viral capsid proteins. Therefore, the ability of Lansing virus to cause paralysis in mice is due to the viral capsid. The Lansing capsid sequence differs from that of the mouse avirulent Sabin 2 strain at 32 of 879 amino acid positions: 1 in VP4, 5 in VP2, 4 in VP3, and 22 in VP1.  相似文献   

18.
Canine parvovirus (CPV) is a host range variant of a feline virus that acquired the ability to infect dogs through changes in its capsid protein. Canine and feline viruses both use the feline transferrin receptor (TfR) to infect feline cells, and here we show that CPV infects canine cells through its ability to specifically bind the canine TfR. Receptor binding on host cells at 37 degrees C only partially correlated with the host ranges of the viruses, and an intermediate virus strain (CPV type 2) bound to higher levels on cells than did either the feline panleukopenia virus or a later strain of CPV. During the process of adaptation to dogs the later variant strain of CPV gained the ability to more efficiently use the canine TfR for infection and also showed reduced binding to feline and canine cells compared to CPV type 2. Differences on the top and the side of the threefold spike of the capsid surface controlled specific TfR binding and the efficiency of binding to feline and canine cells, and these differences also determined the cell infection properties of the viruses.  相似文献   

19.
Recombinant vaccine for canine parvovirus in dogs.   总被引:9,自引:2,他引:7       下载免费PDF全文
VP2 is the major component of canine parvovirus (CPV) capsids. The VP2-coding gene was engineered to be expressed by a recombinant baculovirus under the control of the polyhedrin promoter. A transfer vector that contains the lacZ gene under the control of the p10 promoter was used in order to facilitate the selection of recombinants. The expressed VP2 was found to be structurally and immunologically indistinguishable from authentic VP2. The recombinant VP2 shows also the capability to self-assemble, forming viruslike particles similar in size and appearance to CPV virions. These viruslike particles have been used to immunize dogs in different doses and combinations of adjuvants, and the anti-CPV responses have been measured by enzyme-linked immunosorbent assay, monolayer protection assays, and an assay for the inhibition of hemagglutination. A dose of ca. 10 micrograms of VP2 was able to elicit a good protective response, higher than that obtained with a commercially available, inactivated vaccine. The results indicate that these viruslike particles can be used to protect dogs from CPV infection.  相似文献   

20.
A strain of canine parvovirus (CPV) was isolated from feces of an ill puppy in an animal hospital in Wuhan, China. It was designated as CPV/WH02/06. This isolate was identified as serotype CPV-2a by the hemagglutination test, CPV Ag detection strip, electron microscopy, and PCR. The vp2 gene was cloned and sequenced and assigned GenBank accession number EU377537. A 1242 bp segment of the 5' region of the vp2 gene was cloned and inserted into the binary vector pBI121 and used for Agrobacterium-mediated tobacco transformation. Transgenic tobacco plants were selected on MS medium supplemented with 100 μg/mL kanamycin and 100 μg/mL timentin. Integration of the vp2 gene into the tobacco genome was confirmed by PCR using T1 progeny plants, and the expression of the VP2 protein was confirmed by Western blotting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号