首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Speciation in peripheral populations has long been considered one of the most plausible scenarios for speciation with gene flow. In this study, however we identify two additional problems of peripatric speciation, as compared to the parapatric case, that may impede the completion of the speciation process for most parameter regions. First, with (predominantly) unidirectional gene flow, there is no selection pressure to evolve assortative mating on the continent. We discuss the implications of this for different mating schemes. Second, genetic load can build up in small populations. This can lead to extinction of the peripheral species, or generate selection pressure for lower assortative mating to avoid inbreeding. In this case, either a stable equilibrium with intermediate assortment evolves or there is cycling between phases of hybridization and phases of complete isolation.  相似文献   

2.
Speciation is the process that generates biodiversity, but recent empirical findings show that it can also fail, leading to the collapse of two incipient species into one. Here, we elucidate the mechanisms behind speciation collapse using a stochastic individual‐based model with explicit genetics. We investigate the impact of two types of environmental disturbance: deteriorated visual conditions, which reduce foraging ability and impede mate choice, and environmental homogenization, which restructures ecological niches. We find that: (1) Species pairs can collapse into a variety of forms including new species pairs, monomorphic or polymorphic generalists, or single specialists. Notably, polymorphic generalist forms may be a transient stage to a monomorphic population; (2) Environmental restoration enables species pairs to reemerge from single generalist forms, but not from single specialist forms; (3) Speciation collapse is up to four orders of magnitude faster than speciation, while the reemergence of species pairs can be as slow as de novo speciation; (4) Although speciation collapse can be predicted from either demographic, phenotypic, or genetic signals, observations of phenotypic changes allow the most general and robust warning signal of speciation collapse. We conclude that factors altering ecological niches can reduce biodiversity by reshaping the ecosystem's evolutionary attractors.  相似文献   

3.
肖钰  王茜  何梓晗  李玲玲  胡新生 《生物多样性》2022,30(5):21480-3007
物种形成是进化生物学研究的一个永恒主题, 由于生物群体进化是连续和动态的, 物种界限变得难于界定。本文首先讨论了3种地理物种形成模式(同域、邻域及异域), 并分析了近期报道的研究证据。其次, 评述了合子后生殖隔离机制的分子遗传基础和应用群体基因组数据分析的证据, 包括BDMI模型(Bateson-Dobzhansky-Muller incompatibility)、QTLs (quantitative trait loci)、霍尔丹法则及大X染色体效应。最后, 探讨了交配系统作为合子前隔离机制之一与物种形成的关系, 认为近交或自交通过扩大种群遗传结构分化, 增强不同交配系统的种群间不对称基因渐渗, 或种群间无基因渐渗等途径, 促进新物种形成。已知植物交配系统的演化更倾向于从异交(或自交不亲和)向自交(或近交亲和)方式, 花性状和基因组的分化推动形成所谓的自交综合征, 研究交配系统驱动或强化物种形成模式对认识植物物种形成机制有重要意义。  相似文献   

4.
物种形成过程是生物多样性形成的基础, 长期以来一直是进化生物学的中心议题之一。传统的异域物种形成理论认为, 地理隔离是物种分化的主要决定因子, 物种形成只有在种群之间存在地理隔离的情况下才能发生。近年来, 随着种群基因组学的发展和溯祖理论分析方法的完善, 种群间存在基因流情况下的物种形成成为进化生物学领域新的研究焦点。物种形成过程中是否有基因流的发生?基因流如何影响物种的形成与分化?基因流存在条件下物种形成的生殖隔离机制是什么?根据已发表的相关文献资料, 作者综述了当前物种形成研究中基因流的时间和空间分布模式、基因流对物种分化的影响以及生殖隔离机制形成等问题, 指出基因流存在条件下的物种形成可能是自然界普遍发生的一种模式。  相似文献   

5.
Speciation has been a major focus of evolutionary biology research in recent years, with many important advances. However, some of the traditional organising principles of the subject area no longer provide a satisfactory framework, such as the classification of speciation mechanisms by geographical context into allopatric, parapatric and sympatry classes. Therefore, we have asked where speciation research should be directed in the coming years. Here, we present a distillation of questions about the mechanisms of speciation, the genetic basis of speciation and the relationship between speciation and diversity. Our list of topics is not exhaustive; rather we aim to promote discussion on research priorities and on the common themes that underlie disparate speciation processes.  相似文献   

6.
Variation in diversification rates is often studied by investigating traits related to species' ecology and life history. Often, however, it is unknown whether these traits evolve gradually or in punctuated bursts during speciation. Using phylogenetic data and species' present-day trait information, we present a novel approach to assessing the mode of character change while accounting for trait-dependent speciation and extinction. Our model, "Binary-State Speciation and Extinction-node enhanced state shift" (BiSSE-ness), estimates both the rate of change occurring along lineages and the probability of change occurring during speciation, as well as independent speciation and extinction rates for each character state. Using simulations, we found that BiSSE-ness is able to distinguish along-lineage and speciational change and accurately estimate the parameters associated with character change and diversification rates. We applied BiSSE-ness to an empirical primate data set and found evidence for along-lineage changes in primate mating systems and social behaviors, whereas shifts in habitat were associated with speciation. In cases where trait changes may be linked to the speciation process itself (e.g., niche-related traits), BiSSE-ness provides a suitable framework with which to simultaneously address questions regarding species diversification and character change.  相似文献   

7.
物种形成是基本的进化过程, 也是生物多样性形成的基础。自然选择可以导致新物种的产生。生态物种形成是指以生态为基础的歧化选择使不同群体分化产生生殖隔离的物种形成过程。本文首先回顾了生态物种形成的研究历史, 并详细介绍了生态物种形成的3个要素, 即歧化选择的来源、生殖隔离的形式以及关联歧化选择与生殖隔离的遗传机制。歧化选择的来源主要包括不同的环境或生态位、不同形式的性选择, 以及群体间的相互作用。生殖隔离的形式多种多样, 我们总结了合子前和合子后隔离的遗传学机制以及在生态物种形成中起到的作用。控制适应性性状的基因与导致生殖隔离的基因可以通过基因多效性或连锁不平衡相互关联起来。借助于第二代测序技术, 研究者可以对生态物种形成的遗传学与基因组学基础进行研究。此外, 本文还总结了生态物种形成领域最新的研究进展, 包括平行进化的全基因组基础, 以及基因流影响群体分化的理论基础。通过归纳比较由下至上和由上至下这两种不同的研究思路, 作者认为这两种思路的结合可以为生态物种形成基因的筛选提供更有力也更精确的方法。同时, 作者还提出生态物种形成的研究应该基于更好的表型描述以及更完整的基因组信息, 研究的物种也应该具有更广泛的代表性。  相似文献   

8.
Abstract. Speciation in four monophyletic species groups of the mirid genus Lopidea is examined. An analysis of twelve speciation events suggests that vicariance can account for at least 50% of speciation in Lopidea , and the frequency of sympatric host plant speciation may be as high as 25%.
In examples attributable to peripheral isolate speciation, the daughter taxa typically occur in recognized areas of endemism, suggesting a common cause (vicariance) for their origins. In addition, seven zones of disjunction between subspecies and allopatric sister species were identified for Lopidea , which correspond with similar disjunctions between sister taxa in other groups of organisms.  相似文献   

9.
The phylogcny and mode of speciation of Mediterranean Phlebotomus of the subgenus Larroussius were inferred by comparative sequence analyses of a fragment of mitochondrial DNA (Cytochrome b) and of a nuclear gene (Elongation factor alpha). The molecular phytogenies were congruent basally, where their clades matched the species complexes defined by a few genitalic characters of each sex. Reticulate evolution was suggested for the most derived species complex [Phlebotomus perniciosus): the molecular phytogenies were incongruent, and mitochondrial-marker distribution was consistent with introgressive hybridizations not between sister species but between species whose ranges now overlap or abut. By considering the molecular phytogenies, the mitochondrial molecular clock and the ecological niches of the species, as well as the historical biogeography and palaeoecology of the Mediterranean subregion, we propose that the derived lineages arose from a sequential series of speciation events associated with habitat shifts promoted by progressive aridification. This 'taxon pulse'-like speciation occurred in the Pliocene, later than previously proposed in a vicariance hypothesis that invoked only tectonic events, but too early for Pleistocene Ice-age refugia to have played any role other than the isolation of geographical races. Speciation occurred before the proposed divergence of members of the Leishmania donovani complex and this helped to rule out any vector-parasite co-speciation or co-cladogenesis.  相似文献   

10.
Speciation on islands, and particularly the divergence of species in situ, has long been debated. Here, we present one of the first, complete assessments of the geographic modes of speciation for the flora of a small oceanic island. Cocos Island (Costa Rica) is pristine; it is located 550 km off the Pacific coast of Central America. It harbors 189 native plant species, 33 of which are endemic. Using phylogenetic data from insular and mainland congeneric species, we show that all of the endemic species are derived from independent colonization events rather than in situ speciation. This is in sharp contrast to the results of a study carried out in a comparable system, Lord Howe Island (Australia), where as much as 8.2% of the plant species were the product of sympatric speciation. Differences in physiography and age between the islands may be responsible for the contrasting patterns of speciation observed. Importantly, comparing phylogenetic assessments of the modes of speciation with taxonomy‐based measures shows that widely used island biogeography approaches overestimate rates of in situ speciation.  相似文献   

11.
Speciation is currently an intensely debated topic, much more so than 20–30 years ago when most biologists held the view that new species (at least of animals) were formed through the split of evolutionary lineages by the appearance of physical barriers to gene flow. Recent advances have, however, lent both theoretical and empirical support to speciation in the presence of gene flow. Nevertheless, the allopatric hypothesis of speciation is still the default model. The consequence of this is that to support sympatric and parapatric modes of speciation all allopatric alternatives must be rejected, while an allopatric explanation is usually accepted without rejecting possible non-allopatric alternatives. However, classical cases of allopatric speciation can be challenged by alternative non-allopatric explanations, and this begs for a more respectful view of how to deal with all models of speciation. An appealing approach is studying parallel evolution of reproductive barriers, which allows for comparative approaches to distinguish between allopatric and non-allopatric events, and explicit tests of a suitable null-hypothesis. Parallel evolution of reproductive isolation in a strongly polymorphic marine snail species serves as an illustrative example of such an approach. In conclusion, a more balanced debate on allopatric and non-allopatric speciation is needed and an urgent issue is to treat both allopatric and nonallopatric hypotheses critically, rather than using allopatry as the default model of speciation.  相似文献   

12.
Speciation analysis of essential trace elements in human serum provides important information on nutritional status and homeostatic mechanisms regulating transport processes, acute phase reactions, and protection against oxidative damage. Anion exchange high-performance liquid chromatography (HPLC) combined with inductively coupled plasma mass spectrometry (ICP-MS) has proved to be a useful tool in speciation. Here we describe a fast method that can be applied to carry out the speciation of Fe, Cu, Zn, and Se in as little as 1 microl [corrected] of serum. The method employs monolithic anion exchange micro columns installed on a tandem HPLC system coupled on-line with an ICP-MS detector. The chromatographic separation is similar to those reported previously but with considerable gain in terms of time and sample requirement. Reproducibility is acceptable for most species. Using our method, we were able to find species-specific differences between different commercially available trace element reference materials. Because the method chosen to collect blood might interfere with speciation, the proposed methodology was used to compare heparinized plasma, ethylenediaminetetraacetic acid (EDTA) plasma, and serum from adult healthy volunteers. As expected, EDTA strongly affects speciation analysis (especially for Fe and Zn), whereas changes due to the use of lithium-heparin (Li-He) as anticoagulant appear to be minimized.  相似文献   

13.
Models of adaptive speciation are typically concerned with demonstrating that it is possible for ecologically driven disruptive selection to lead to the evolution of assortative mating and hence speciation. However, disruptive selection could also lead to other forms of evolutionary diversification, including ecological sexual dimorphisms. Using a model of frequency-dependent intraspecific competition, we show analytically that adaptive speciation and dimorphism require identical ecological conditions. Numerical simulations of individual-based models show that a single ecological model can produce either evolutionary outcome, depending on the genetic independence of male and female traits and the potential strength of assortative mating. Speciation is inhibited when the genetic basis of male and female ecological traits allows the sexes to diverge substantially. This is because sexual dimorphism, which can evolve quickly, can eliminate the frequency-dependent disruptive selection that would have provided the impetus for speciation. Conversely, populations with strong assortative mating based on ecological traits are less likely to evolve a sexual dimorphism because females cannot simultaneously prefer males more similar to themselves while still allowing the males to diverge. This conflict between speciation and dimorphism can be circumvented in two ways. First, we find a novel form of speciation via negative assortative mating, leading to two dimorphic daughter species. Second, if assortative mating is based on a neutral marker trait, trophic dimorphism and speciation by positive assortative mating can occur simultaneously. We conclude that while adaptive speciation and ecological sexual dimorphism may occur simultaneously, allowing for sexual dimorphism restricts the likelihood of adaptive speciation. Thus, it is important to recognize that disruptive selection due to frequency-dependent interactions can lead to more than one form of adaptive splitting.  相似文献   

14.
Several empirical studies put forward sexual selection as an important driving force of sympatric speciation. This idea agrees with recent models suggesting that speciation may proceed by means of divergent Fisherian runaway processes within a single population. Notwithstanding this, the models so far have not been able to demonstrate that sympatric speciation can unfold as a fully adaptive process driven by sexual selection alone. Implicitly or explicitly, most models rely on nonselective factors to initiate speciation. In fact, they do not provide a selective explanation for the considerable variation in female preferences required to trigger divergent runaway processes. We argue that such variation can arise by disruptive selection but only when selection on female preferences is frequency dependent. Adaptive speciation is therefore unattainable in traditional female choice models, which assume selection on female preferences to be frequency independent. However, when frequency-dependent sexual selection processes act alongside mate choice, truly adaptive sympatric speciation becomes feasible. Speciation is then initiated independently of nonadaptive processes and does not suffer from the theoretical weaknesses associated with the current Fisherian runaway model of speciation. However, adaptive speciation requires the simultaneous action of multiple mechanisms, and therefore it occurs under conditions far more restrictive than earlier models of sympatric speciation by sexual selection appear to suggest.  相似文献   

15.
Speciation is not instantaneous but takes time. The protracted birth–death diversification model incorporates this fact and predicts the often observed slowdown of lineage accumulation toward the present. The mathematical complexity of the protracted speciation model has barred estimation of its parameters until recently a method to compute the likelihood of phylogenetic branching times under this model was outlined (Lambert et al. 2014 ). Here, we implement this method and study using simulated phylogenies of extant species how well we can estimate the model parameters (rate of initiation of speciation, rate of extinction of incipient and good species, and rate of completion of speciation) as well as the duration of speciation, which is a combination of the aforementioned parameters. We illustrate our approach by applying it to a primate phylogeny. The simulations show that phylogenies often do not contain enough information to provide unbiased estimates of the speciation‐initiation rate and the extinction rate, but the duration of speciation can be estimated without much bias. The estimate of the duration of speciation for the primate clade is consistent with literature estimates. We conclude that phylogenies combined with the protracted speciation model provide a promising way to estimate the duration of speciation.  相似文献   

16.
Stigall AL 《PloS one》2010,5(12):e15584
During the Late Devonian Biodiversity Crisis, the primary driver of biodiversity decline was the dramatic reduction in speciation rates, not elevated extinction rates; however, the causes of speciation decline have been previously unstudied. Speciation, the formation of new species from ancestral populations, occurs by two primary allopatric mechanisms: vicariance, where the ancestral population is passively divided into two large subpopulations that later diverge and form two daughter species, and dispersal, in which a small subset of the ancestral population actively migrates then diverges to form a new species. Studies of modern and fossil clades typically document speciation by vicariance in much higher frequencies than speciation by dispersal. To assess the mechanism behind Late Devonian speciation reduction, speciation rates were calculated within stratigraphically constrained species-level phylogenetic hypotheses for three representative clades and mode of speciation at cladogenetic events was assessed across four clades in three phyla: Arthropoda, Brachiopoda, and Mollusca. In all cases, Devonian taxa exhibited a congruent reduction in speciation rate between the Middle Devonian pre-crisis interval and the Late Devonian crisis interval. Furthermore, speciation via vicariance is almost entirely absent during the crisis interval; most episodes of speciation during this time were due to dispersal. The shutdown of speciation by vicariance during this interval was related to widespread interbasinal species invasions. The lack of Late Devonian vicariance is diametrically opposed to the pattern observed in other geologic intervals, which suggests the loss of vicariant speciation attributable to species invasions during the Late Devonian was a causal factor in the biodiversity crisis. Similarly, modern ecosystems, in which invasive species are rampant, may be expected to exhibit similar shutdown of speciation by vicariance as an outcome of the modern biodiversity crisis.  相似文献   

17.
PERSPECTIVE: MODELS OF SPECIATION: WHAT HAVE WE LEARNED IN 40 YEARS?   总被引:11,自引:0,他引:11  
Theoretical studies of speciation have been dominated by numerical simulations aiming to demonstrate that speciation in a certain scenario may occur. What is needed now is a shift in focus to identifying more general rules and patterns in the dynamics of speciation. The crucial step in achieving this goal is the development of simple and general dynamical models that can be studied not only numerically but analytically as well. I review some of the existing analytical results on speciation. I first show why the classical theories of speciation by peak shifts across adaptive valleys driven by random genetic drift run into trouble (and into what kind of trouble). Then I describe the Bateson-Dobzhansky-Muller (BDM) model of speciation that does not require overcoming selection. I describe exactly how the probability of speciation, the average waiting time to speciation, and the average duration of speciation depend on the mutation and migration rates, population size, and selection for local adaptation. The BDM model postulates a rather specific genetic architecture of reproductive isolation. I then show exactly why the genetic architecture required by the BDM model should be common in general. Next I consider the multilocus generalizations of the BDM model again concentrating on the qualitative characteristics of speciation such as the average waiting time to speciation and the average duration of speciation. Finally, I consider two models of sympatric speciation in which the conditions for sympatric speciation were found analytically. A number of important conclusions have emerged from analytical studies. Unless the population size is small and the adaptive valley is shallow, the waiting time to a stochastic transition between the adaptive peaks is extremely long. However, if transition does happen, it is very quick. Speciation can occur by mutation and random drift alone with no contribution from selection as different populations accumulate incompatible genes. The importance of mutations and drift in speciation is augmented by the general structure of adaptive landscapes. Speciation can be understood as the divergence along nearly neutral networks and holey adaptive landscapes (driven by mutation, drift, and selection for adaptation to a local biotic and/or abiotic environment) accompanied by the accumulation of reproductive isolation as a by-product. The waiting time to speciation driven by mutation and drift is typically very long. Selection for local adaptation (either acting directly on the loci underlying reproductive isolation via their pleiotropic effects or acting indirectly via establishing a genetic barrier to gene flow) can significantly decrease the waiting time to speciation. In the parapatric case the average actual duration of speciation is much shorter than the average waiting time to speciation. Speciation is expected to be triggered by changes in the environment. Once genetic changes underlying speciation start, they go to completion very rapidly. Sympatric speciation is possible if disruptive selection and/or assortativeness in mating are strong enough. Sympatric speciation is promoted if costs of being choosy are small (or absent) and if linkage between the loci experiencing disruptive selection and those controlling assortative mating is strong.  相似文献   

18.
Speciation is the "elephant in the room" of community ecology. As the ultimate source of biodiversity, its integration in ecology's theoretical corpus is necessary to understand community assembly. Yet, speciation is often completely ignored or stripped of its spatial dimension. Recent approaches based on network theory have allowed ecologists to effectively model complex landscapes. In this study, we use this framework to model allopatric and parapatric speciation in networks of communities. We focus on the relationship between speciation, richness, and the spatial structure of communities. We find a strong opposition between speciation and local richness, with speciation being more common in isolated communities and local richness being higher in more connected communities. Unlike previous models, we also find a transition to a positive relationship between speciation and local richness when dispersal is low and the number of communities is small. We use several measures of centrality to characterize the effect of network structure on diversity. The degree, the simplest measure of centrality, is the best predictor of local richness and speciation, although it loses some of its predictive power as connectivity grows. Our framework shows how a simple neutral model can be combined with network theory to reveal complex relationships between speciation, richness, and the spatial organization of populations.  相似文献   

19.
Scale and species numbers   总被引:1,自引:0,他引:1  
One of the main tasks confronting community ecologists is to explain why a particular site harbours a certain number of species. The site might range from a drop of water to the whole Earth, and the species might be drawn from a very restricted taxon or include all living organisms. The common problem, however, is to understand the relative importance of speciation and extinction and, more locally, of immigration and loss. Speciation is the ultimate motor driving biodiversity and ecologists need to know the factors influencing rates of speciation, and whether there is a feedback, positive or negative, between species numbers and the generation of new taxa. However, the relative importance of speciation and other factors determining species numbers varies crucially across different scales of enquiry. Here, we explore some of these issues as we move from a macro- to microscale perspective, focusing on a limited number of studies that we believe make important advances in the field.  相似文献   

20.
Speciation remains a central enigma in biology, and nowhere is this more apparent than in shallow tropical seas where biodiversity rivals that of tropical rainforests. Obvious barriers to gene flow are few and most marine species have a highly dispersive larval stage, which should greatly decrease opportunities for speciation via geographic isolation. The disparity in the level of geographic isolation for terrestrial and marine species is exemplified in Hawai'i where opportunities for allopatric speciation abound in the terrestrial realm. In contrast, marine colonizers of Hawai'i are believed to produce only a single endemic species or population, due to the lack of isolating barriers. To test the assertion that marine species do not diversify within Hawai'i, we examine the evolutionary origin of three endemic limpets (Cellana exarata, C. sandwicensis and C. talcosa) that are vertically segregated across a steep ecocline on rocky shores. Analyses of three mtDNA loci (12S, 16S, COI; 1565bp) and two nDNA loci (ATPSβ, H3; 709bp) in 26 Indo-Pacific Cellana species (N=414) indicates that Hawai'i was colonized once ~3.4-7.2Ma from the vicinity of Japan. Trait mapping demonstrates that high-shore residence is the ancestral character state, such that mid- and low-shore species are the product of subsequent diversification. The Hawaiian Cellana are the first broadcast-spawners demonstrated to have speciated within any archipelago. The habitat stratification, extensive sympatry, and evolutionary history of these limpets collectively indicate a strong ecological component to speciation and support the growing body of evidence for non-allopatric speciation in the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号