共查询到20条相似文献,搜索用时 31 毫秒
1.
Disruption of Kaposi's sarcoma-associated herpesvirus latent nuclear antigen leads to abortive episome persistence 总被引:1,自引:0,他引:1
Latent nuclear antigen (LNA) is implicated in Kaposi's sarcoma-associated herpesvirus (KSHV) episome persistence. LNA colocalizes with KSHV episomes on chromosomes in metaphase, and it maintains the stability and replication of KSHV terminal repeat-containing plasmids. In this study, we examined the function of LNA in episome persistence in the context of full-length KSHV genome by mutagenesis analysis. We generated a KSHV mutant, BAC36-DeltaLNA, with LNA disrupted by transposon-based mutagenesis with a KSHV BAC clone, BAC36, as a template. Immunofluorescence antibody staining revealed that the insertion of a transposon cassette into LNA disrupted its expression but had no effect on the expression of two adjacent genes, the vCyclin and vFLIP genes. Using a green fluorescent protein (GFP) cassette as a tracking marker for the KSHV episome, we found 8.7-fold-fewer GFP-positive cells in BAC36-DeltaLNA cultures than in wild-type BAC36 cultures at the early stage following episome delivery into 293 cells by transfection, which could be partially rescued by cotransfection with a LNA expression plasmid but not a control plasmid. Cells harboring BAC36-DeltaLNA with or without transient complementation rapidly lost episomes and became virus-free after 2 weeks of culture based on GFP expression and Gardella gel analysis and quantitative PCR assays for detecting KSHV genomes. In contrast, BAC36 episomes were stably maintained during the same period. Stable cultures with close to 100% of cells harboring KSHV episomes were readily established by hygromycin selection for BAC36 but not for BAC36-DeltaLNA. These results conclusively indicate that LNA is essential for the establishment and persistence of KSHV episomes in mammalian cells. 相似文献
2.
3.
4.
Analysis of viral cis elements conferring Kaposi's sarcoma-associated herpesvirus episome partitioning and maintenance 下载免费PDF全文
Maintenance of Kaposi's sarcoma-associated herpesvirus (KSHV) episomes in latently infected cells is dependent on the latency-associated nuclear antigen (LANA). LANA binds to the viral terminal repeats (TR), leading to recruitment of cellular origin recognition complex proteins. Additionally, LANA tethers episomes to chromosomes via interactions with histones H2A and H2B (A. J. Barbera et al., Science 311:856-861, 2006). Despite these molecular details, less is known about how episomes are established after de novo infection. To address this, we measured short-term retention rates of green fluorescent protein-expressing replicons in proliferating lymphoid cells. In the absence of antibiotic selection, LANA significantly reduced the loss rate of TR-containing replicons. Additionally, we found that LANA can support long-term stability of KSHV replicons for more than 2 months under nonselective conditions. Analysis of cis elements within TR that confer episome replication and partitioning revealed that these activities can occur independently, and furthermore, both events contribute to episome stability. We found that replication-deficient plasmids containing LANA binding sites (LBS1/2) exhibited measurable retention rates in the presence of LANA. To confirm these observations, we uncoupled KSHV replication and partitioning by constructing hybrid origins containing the Epstein-Barr virus (EBV) dyad symmetry for plasmid replication and KSHV LBS1/2. We demonstrate that multiple LBS1/2 function in a manner analogous to that of the EBV family of repeats by forming an array of LANA binding sites for partitioning of KSHV genomes. Our data suggest that the efficiency with which KSHV establishes latency is dependent on multiple LANA activities, which stabilize viral genomes early after de novo infection. 相似文献
5.
6.
7.
The Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 N terminus is essential for chromosome association, DNA replication, and episome persistence 总被引:1,自引:0,他引:1 下载免费PDF全文
To persist in latently infected, proliferating cells, Kaposi's sarcoma-associated herpesvirus (KSHV) episomes must replicate and efficiently segregate to progeny nuclei. Episome persistence in uninfected cells requires latency-associated nuclear antigen 1 (LANA1) in trans and cis-acting KSHV terminal repeat (TR) DNA. The LANA1 C terminus binds TR DNA, and LANA1 mediates TR-associated DNA replication in transient assays. LANA1 also concentrates at sites of KSHV TR DNA episomes along mitotic chromosomes, consistent with a tethering role to efficiently segregate episomes to progeny nuclei. LANA1 amino acids 5 to 22 constitute a chromosome association region (Piolot et al., J. Virol. 75:3948-3959, 2001). We now investigate LANA1 residues 5 to 22 with scanning alanine substitutions. Mutations targeting LANA1 5GMR7, 8LRS10, and 11GRS13 eliminated chromosome association, DNA replication, and episome persistence. LANA1 mutated at 14TG15 retained the ability to associate with chromosomes but was partially deficient in DNA replication and episome persistence. These results provide genetic support for a key role of the LANA1 N terminus in chromosome association, LANA1-mediated DNA replication, and episome persistence. 相似文献
8.
9.
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the eighth and most recently identified human herpesvirus (HHV-8). KSHV was discovered in 1994 by Chang et al. who used representational difference analysis to search for DNA sequences present in AIDS-associated KS but not in adjacent normal skin [1]. The virus has since been shown to be specifically associated with all forms of this disease and has fulfilled all of Hill's criteria for causation (reviewed in ). KSHV is also found in all cases of primary effusion lymphoma and in a plasmablastic variant of multicentric Castleman's disease. Over the last few years a wealth of data has been gained on the role of KSHV genes during infection. This review is an attempt to assemble this information into a more complete picture of how KSHV may cause disease. 相似文献
10.
11.
12.
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) (also known as human herpesvirus 8) latently infects KS tumors, primary effusion lymphomas (PELs), and PEL cell lines. In latently infected cells, KSHV DNA is maintained as circularized, extrachromosomal episomes. To persist in proliferating cells, KSHV episomes must replicate and efficiently segregate to progeny nuclei. In uninfected B-lymphoblastoid cells, KSHV latency-associated nuclear antigen (LANA1) is necessary and sufficient for persistence of artificial episomes containing specific KSHV DNA. In previous work, the cis-acting sequence required for episome persistence contained KSHV terminal-repeat (TR) DNA and unique KSHV sequence. We now show that cis-acting KSHV TR DNA is necessary and sufficient for LANA1-mediated episome persistence. Furthermore, LANA1 binds TR DNA in mobility shift assays and a 20-nucleotide LANA1 binding sequence has been identified. Since LANA1 colocalizes with KSHV episomes along metaphase chromosomes, these results are consistent with a model in which LANA1 may bridge TR DNA to chromosomes during mitosis to efficiently segregate KSHV episomes to progeny nuclei. 相似文献
13.
The latent nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is required for the replication and partitioning of latent viral genomes. It contains an extended internal repeat (IR) region whose function is only incompletely understood. We constructed KSHV genomes lacking either LANA (KSHV-ΔLANA) or the IR region of LANA (KSHV-LANAΔ329-931). Although still capable of replicating a plasmid containing a latent origin of replication, LANAΔ329-931 does not support the establishment of stable cell lines containing a KSHV genome. These findings suggest a role for the LANA IR in KSHV episomal maintenance without its being required for replication. 相似文献
14.
M Li H Lee D W Yoon J C Albrecht B Fleckenstein F Neipel J U Jung 《Journal of virology》1997,71(3):1984-1991
Kaposi's sarcoma-associated herpesvirus (KSHV) (also called human herpesvirus 8) is consistently found in Kaposi's sarcoma lesions and in body-cavity-based lymphomas. A 17-kb KSHV lambda clone was obtained directly from a Kaposi's sarcoma lesion. DNA sequence analysis of this clone identified an open reading frame which has 32% amino acid identity and 53% similarity to the virus-encoded cyclin (v-cyclin) of herpesvirus saimiri (HVS) and 31% identity and 53% similarity to human cellular cyclin D2. This KSHV open reading frame was shown to encode a 29- to 30-kDa protein with the properties of a v-cyclin. KSHV v-cyclin protein was found to associate predominantly with cdk6, a cellular cyclin-dependent kinase known to interact with cellular type D cyclins and HVS v-cyclin. The KSHV v-cyclin was also found to associate weakly with cdk4. KSHV v-cyclin-cdk6 complexes strongly phosphorylated glutathione S-transferase-Rb fusion protein and histone H1 as substrates in vitro. Thus, KSHV v-cyclin resembles the v-cyclin of the T-lymphocyte-transforming HVS in its specificity for association with cdk6 and in its ability to strongly activate cdk6 protein kinase activity. 相似文献
15.
16.
Suzuki T Isobe T Kitagawa M Ueda K 《Biochemical and biophysical research communications》2010,403(2):194-197
We established a series of stable transfectants expressing wild-type and three mutant LANA; amino terminus, carboxyl terminus and amino terminus plus DNA binding domain, as a new strategy to assess systematically the interactions and binding domains with cellular proteins. Using the system, we reported that LANA specifically bound to p53 via DNA binding domain. As for LANA function in the regulation of p53 through the interaction, we showed that polyubiquitylation of p53 in the presence of LANA was obviously increased. LANA also associated with Cullin 5 and Rbx1, active subunit of E3 ubiquitin ligase complex. Taken together, the present study suggests that LANA induce enhancement of p53 ubiquitylation and degradation into proteasome, consequently contributing to latent persistence. 相似文献
17.
18.
Latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus interacts with origin recognition complexes at the LANA binding sequence within the terminal repeats 下载免费PDF全文
Kaposi's sarcoma-associated herpesvirus (KSHV) DNA persists in latently infected cells as an episome via tethering to the host chromosomes. The latency-associated nuclear antigen (LANA) of KSHV binds to the cis-acting elements in the terminal repeat (TR) region of the genome through its carboxy terminus. Previous studies have demonstrated that LANA is important for episome maintenance and replication of the TR-containing plasmids. Here we report that LANA associates with origin recognition complexes (ORCs) when bound to its 17-bp LANA binding cognate sequence (LBS). Chromatin immunoprecipitation of multiple regions across the entire genome from two KSHV-infected cell lines, BC-3 and BCBL-1, revealed that the ORCs predominantly associated with the chromatin structure at the TR as well as two regions within the long unique region of the genome. Coimmunoprecipitation of ORCs with LANA-specific antibodies shows that ORCs can bind and form complexes with LANA in cells. This association was further supported by in vitro binding studies which showed that ORCs associate with LANA predominantly through the carboxy-terminal DNA binding region. KSHV-positive BC-3 and BCBL-1 cells arrested in G(1)/S phase showed colocalization of LANA with ORCs. Furthermore, replication of The TR-containing plasmid required both the N- and C termini of LANA in 293 and DG75 cells. Interestingly, our studies did not detect cellular ORCs associated with packaged viral DNA as an analysis of purified virions did not reveal the presence of ORCs, minichromosome maintenance proteins, or LANA. 相似文献
19.
Shamay M Liu J Li R Liao G Shen L Greenway M Hu S Zhu J Xie Z Ambinder RF Qian J Zhu H Hayward SD 《Journal of virology》2012,86(9):5179-5191
The Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein functions in latently infected cells as an essential participant in KSHV genome replication and as a driver of dysregulated cell growth. To identify novel LANA protein-cell protein interactions that could contribute to these activities, we performed a proteomic screen in which purified, adenovirus-expressed Flag-LANA protein was incubated with an array displaying 4,192 nonredundant human proteins. Sixty-one interacting cell proteins were consistently detected. LANA interactions with high-mobility group AT-hook 1 (HMGA1), HMGB1, telomeric repeat binding factor 1 (TRF1), xeroderma pigmentosum complementation group A (XPA), pygopus homolog 2 (PYGO2), protein phosphatase 2A (PP2A)B subunit, Tat-interactive protein 60 (TIP60), replication protein A1 (RPA1), and RPA2 proteins were confirmed in coimmunoprecipitation assays. LANA-associated TIP60 retained acetyltransferase activity and, unlike human papillomavirus E6 and HIV-1 TAT proteins, LANA did not reduce TIP60 stability. The LANA-bound PP2A B subunit was associated with the PP2A A subunit but not the catalytic C subunit, suggesting a disruption of PP2A phosphatase activity. This is reminiscent of the role of simian virus 40 (SV40) small t antigen. Chromatin immunoprecipitation (ChIP) assays showed binding of RPA1 and RPA2 to the KSHV terminal repeats. Interestingly, LANA expression ablated RPA1 and RPA2 binding to the cell telomeric repeats. In U2OS cells that rely on the alternative mechanism for telomere maintenance, LANA expression had minimal effect on telomere length. However, LANA expression in telomerase immortalized endothelial cells resulted in telomere shortening. In KSHV-infected cells, telomere shortening may be one more mechanism by which LANA contributes to the development of malignancy. 相似文献