首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Molecular biology of microbial hydrogenases   总被引:7,自引:0,他引:7  
Hydrogenases (H2ases) are metalloproteins. The great majority of them contain iron-sulfur clusters and two metal atoms at their active center, either a Ni and an Fe atom, the [NiFe]-H2ases, or two Fe atoms, the [FeFe]-H2ases. Enzymes of these two classes catalyze the reversible oxidation of hydrogen gas (H2 <--> 2 H+ + 2 e-) and play a central role in microbial energy metabolism; in addition to their role in fermentation and H2 respiration, H2ases may interact with membrane-bound electron transport systems in order to maintain redox poise, particularly in some photosynthetic microorganisms such as cyanobacteria. Recent work has revealed that some H2ases, by acting as H2-sensors, participate in the regulation of gene expression and that H2-evolving H2ases, thought to be involved in purely fermentative processes, play a role in membrane-linked energy conservation through the generation of a protonmotive force. The Hmd hydrogenases of some methanogenic archaea constitute a third class of H2ases, characterized by the absence of Fe-S cluster and the presence of an iron-containing cofactor with catalytic properties different from those of [NiFe]- and [FeFe]-H2ases. In this review, we emphasise recent advances that have greatly increased our knowledge of microbial H2ases, their diversity, the structure of their active site, how the metallocenters are synthesized and assembled, how they function, how the synthesis of these enzymes is controlled by external signals, and their potential use in biological H2 production.  相似文献   

4.
Molecular biology of microbial ureases.   总被引:25,自引:0,他引:25       下载免费PDF全文
Urease (urea amidohydrolase; EC 3.5.1.5) catalyzes the hydrolysis of urea to yield ammonia and carbamate. The latter compound spontaneously decomposes to yield another molecule of ammonia and carbonic acid. The urease phenotype is widely distributed across the bacterial kingdom, and the gene clusters encoding this enzyme have been cloned from numerous bacterial species. The complete nucleotide sequence, ranging from 5.15 to 6.45 kb, has been determined for five species including Bacillus sp. strain TB-90, Klebsiella aerogenes, Proteus mirabilis, Helicobacter pylori, and Yersinia enterocolitica. Sequences for selected genes have been determined for at least 10 other bacterial species and the jack bean enzyme. Urease synthesis can be nitrogen regulated, urea inducible, or constitutive. The crystal structure of the K. aerogenes enzyme has been determined. When combined with chemical modification studies, biophysical and spectroscopic analyses, site-directed mutagenesis results, and kinetic inhibition experiments, the structure provides important insight into the mechanism of catalysis. Synthesis of active enzyme requires incorporation of both carbon dioxide and nickel ions into the protein. Accessory genes have been shown to be required for activation of urease apoprotein, and roles for the accessory proteins in metallocenter assembly have been proposed. Urease is central to the virulence of P. mirabilis and H. pylori. Urea hydrolysis by P. mirabilis in the urinary tract leads directly to urolithiasis (stone formation) and contributes to the development of acute pyelonephritis. The urease of H. pylori is necessary for colonization of the gastric mucosa in experimental animal models of gastritis and serves as the major antigen and diagnostic marker for gastritis and peptic ulcer disease in humans. In addition, the urease of Y. enterocolitica has been implicated as an arthritogenic factor in the development of infection-induced reactive arthritis. The significant progress in our understanding of the molecular biology of microbial ureases is reviewed.  相似文献   

5.
Quantitation is a characteristic property of natural sciences and technologies and is the background for all kinetic and dynamic studies of microbial life. This presentation concentrates therefore on materials and methods as tools necessary to accomplish a sound, quantitative and mechanistic understanding of metabolism. Mathematical models are the software, bioreactors, actuators and analytical equipment are the hardware used. Experiments must be designed and performed in accordance with the relaxation times of the biosystem investigated; some of the respective consequences are discussed and commented in detail. Special emphasis is given to the required density, accuracy and reproducibility of data as well as their validation.  相似文献   

6.
Mathematical models in microbial systems biology   总被引:4,自引:0,他引:4  
  相似文献   

7.
We have characterized the expression of potential acetyl-CoA-generating genes (acetyl-CoA synthetase, pyruvate decarboxylase, acetaldehyde dehydrogenase, plastidic pyruvate dehydrogenase complex and ATP-citrate lyase), and compared these with the expression of acetyl-CoA-metabolizing genes (heteromeric and homomeric acetyl-CoA carboxylase). These comparisons have led to the development of testable hypotheses as to how distinct pools of acetyl-CoA are generated and metabolized. These hypotheses are being tested by combined biochemical, genetic and molecular biological experiments, which is providing insights into how acetyl-CoA metabolism is regulated.  相似文献   

8.
9.
10.
角蛋白酶具有分解角蛋白的活性,在饲料,食品加工,环境废物处理等方面,具有广泛的应用前景。本文综述了微生物角蛋白酶的来源,角蛋白酶的理化性质,作用机理,基因分离和表达等分子生物学和基因工程研究进展,并对其应用前景进行了展望,对其今后的发展趋势进行了讨论。  相似文献   

11.
Harnessing the immense natural diversity of biological functions for economical production of fuel has enormous potential benefits. Inevitably, however, the native capabilities for any given organism must be modified to increase the productivity or efficiency of a biofuel bioprocess. From a broad perspective, the challenge is to sufficiently understand the details of cellular functionality to be able to prospectively predict and modify the cellular function of a microorganism. Recent advances in experimental and computational systems biology approaches can be used to better understand cellular level function and guide future experiments. With pressure to quickly develop viable, renewable biofuel processes a balance must be maintained between obtaining depth of biological knowledge and applying that knowledge.  相似文献   

12.
通过微生物发酵的方法生产大宗化学品和天然产物能够部分替代石油化工炼制和植物提取。合成生物学技术的发展极大地提高了构建微生物细胞工厂生产大宗化学品和天然产物的能力。一方面综述了合成生物学在构建细胞工厂时的关键技术,包括最优合成途径的设计、合成途径的创建与优化、细胞性能的优化;另一方面,介绍了应用这些技术构建细胞工厂生产燃料化学品、大宗化学品和天然产物的典型案例。  相似文献   

13.
合成生物学与微生物遗传物质的重构   总被引:1,自引:0,他引:1  
Liang QF  Wang Q  Qi QS 《遗传》2011,33(10):1102-1112
作为一门新兴学科的合成生物学已经展现出巨大的科学价值和应用前景。近年来已经发表了多篇综述文章,从不同角度对合成生物学进行了总结和论述。文章首次对合成生物学和微生物遗传学之间的关系进行了阐述,同时介绍了合成生物学在微生物遗传物质的重构方面最近的研究进展,包括微生物遗传物质的合成、设计和精简,遗传元件的标准化和遗传线路的模块化。也探讨了合成生物学与微生物遗传工程的关系。  相似文献   

14.
Yip RG  Wolfe MM 《Life sciences》2000,66(2):91-103
The gastrointestinal hormone, gastric inhibitory polypeptide (GIP), is synthesized and released from the duodenum and proximal jejunum postprandially. Its release depends upon several factors including meal content and pre-existing health status (ie. obesity, diabetes, age, etc.). It was initially discovered and named for its gastric acid inhibitory properties. However, its more physiologically relevant role appears to be as an insulinotropic agent with a stimulatory effect on insulin release and synthesis. Accordingly, it was later renamed glucose-dependent insulinotropic polypeptide because its action on insulin release depends upon an increase in circulating levels of glucose. GIP is considered to be one of the principle incretin factors of the enteroinsular axis. The GIP receptor is a G-protein-coupled receptor belonging to the family of secretin/VIP receptors. GIP receptor mRNA is widely distributed in peripheral organs, including the pancreas, gut, adipose tissue, heart, adrenal cortex, and brain, suggesting it may have other functions in addition to the ones mentioned above. An overactive enteroinsular axis has been suggested to play a role in the pathogenesis of diabetes and obesity. In addition to stimulating insulin release, GIP has been shown to amplify the effect of insulin on target tissues. In adipose tissue, GIP has been reported to (1) stimulate fatty acid synthesis, (2) enhance insulin-stimulated incorporation of fatty acids into triglycerides, (3) increase insulin receptor affinity, and (4) increase sensitivity of insulin-stimulated glucose transport. In addition, although controversial, lipolytic properties of GIP have been proposed. The mechanism of action of GIP-induced effects on adipocytes is unknown, and it is unclear whether these effects of GIP on adipocytes are direct or indirect. However, there is now evidence that GIP receptors are expressed on adipocytes and that these receptors respond to GIP stimulation. Given the location of its release and the timing of its release, GIP is an ideal anabolic agent and expanding our understanding of its physiology will be needed to determine its exact role in the etiology of diabetes mellitus and obesity.  相似文献   

15.
16.
17.
Induction of microbial secondary metabolism.   总被引:4,自引:0,他引:4  
Precursors often stimulate production of secondary metabolites either by increasing the amount of a limiting precursor, by inducing a biosynthetic enzyme (synthase) or both. These are usually amino acids but other small molecules also function as inducers. The most well-known are the auto-inducers which include gamma-butyrolactones (butanolides) of the actinomycetes, N-acylhomoserine lactones of Gram-negative bacteria, oligopeptides of Gram-positive bacteria, and B-factor (3'-[1-butylphosphoryl] adenosine) of Amycolatopsis mediterranei. The actinomycete butanolides exert their effects via receptor proteins which normally repress chemical and morphological differentiation (secondary metabolism and differentiation into aerial mycelia and spores respectively) but, when complexed with the butanolide, can no longer function. Homoserine lactones of Gram-negative bacteria function at high cell density and are structurally related to the butanolides. They turn on plant and animal virulence, light emission, plasmid transfer, and production of pigments, cyanide and beta-lactam antibiotics. They are made by enzymes homologous to Lux1, excreted by the cell, enter other cells at high density, bind to a LuxR homologue, the complex then binding to DNA upstream of genes controlled by "quorum sensing" and turning on their expression. Quorum sensing also operates in the case of the peptide pheromones of the Gram-positive bacteria. Here, secretion is accomplished by an ATP binding casette (ABC transporter), the secreted pheromone being recognized by a sensor component of a two-component signal transduction system. The pheromone often induces its own synthesis as well as those proteins involved in protein/peptide antibiotic (including bacteriocins and lantibiotics) production, virulence and genetic competence. The B-factor of A. mediterranei is an inducer of ansamycin (rifamycin) formation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号