首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maternal undernutrition leads to intrauterine growth retardation and predisposes to the development of pathologies in adulthood. The hypothalamo-pituitary-adrenal axis is a major target of early-life programming. We showed previously that perinatal maternal 50% food restriction leads to hypothalamo-pituitary-adrenal axis hyperactivity and disturbs glucocorticoid feedback in adult male rats. To try to better understand these alterations, we studied several factors involved in corticosterone sensitivity. We showed that unlike the restricted expression of 11 beta-HSD2 mRNA, the 11 beta-HSD1, glucocorticoid, and mineralocorticoid receptor genes are widely distributed in rat. In contrast to the hypothalamus, we confirmed that maternal undernutrition modulates hippocampal corticosterone receptor balance and leads to increased 11 beta-HSD1 gene expression. In the pituitary, rats exhibited a huge increase in both mRNA and mineralocorticoid receptor binding capacities as well as decreased 11 beta-HSD1/11 beta-HSD2 gene expression. Using IN SITU hybridization, we showed that the mineralocorticoid receptor gene was expressed in rat corticotroph cells and by other adenopituitary cells. In the adrenal gland, maternal food restriction decreased 11beta-HSD2 mRNA. This study demonstrated that maternal food restriction has both long-term and tissue-specific effects on gene expression of factors involved in glucocorticoid sensitivity and that it could contribute, via glucocorticoid excess, to the development of adult diseases.  相似文献   

2.
3.
Clinical and animal studies indicate that intrauterine growth restriction (IUGR) following uteroplacental insufficiency (UPI) reduces nephron number and predisposes toward renal insufficiency early in life and increased risk of adult-onset hypertension. In this study, we hypothesized that the inducible enzyme cyclooxygenase-2 (COX-2), a pivotal protein in nephrogenesis, constitutes a mechanism through which UPI and subsequent glucocorticoid overexposure can decrease nephron number. We further hypothesized that UPI downregulates the key enzyme 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), which converts corticosterone to inert 11-dehydrocorticosterone, thereby protecting both the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) from the actions of corticosterone. Following bilateral uterine ligation on the pregnant rat, UPI significantly decreased renal COX-2, 11beta-HSD2, and GR mRNA and protein levels, but upregulated expression of MR at birth. At day 21 of life, 11beta-HSD2, GR, and also MR mRNA and protein levels were downregulated. UPI did not affect blood pressures (BP) at day 21 of life but significantly increased systolic BP in both genders at day 140. We conclude that in our animal model, UPI decreases fetal COX-2 expression during a period of active nephrogenesis in the IUGR rat, which is also characterized by decreased nephron number and adult-onset hypertension.  相似文献   

4.
Early-life stress caused by the deprivation of maternal care has been shown to have long-lasting effects on the hypothalamic-pituitary-adrenal (HPA) axis in offspring of uniparental mammalian species. We asked if deprivation of maternal care in biparental species alters stress responsiveness of offspring, using a biparental avian species--the zebra finch, Taeniopygia guttata. In our experiment, one group of birds was raised by both male and female parents (control), and another was raised by males alone (maternally deprived). During adulthood, offspring of both groups were subjected to two stressors (restraint and isolation), and corticosterone concentrations were measured. Additionally, we measured baseline levels of the two corticosteroid receptors--glucocorticoid receptor (GR) and mineralocorticoid receptor (MR)--in the hippocampus, hypothalamus and cerebellum. Our results suggest that maternally deprived offspring are hyper-responsive to isolation in comparison with controls. Furthermore, mRNA levels of both GR and MR receptors are altered in maternally deprived offspring in comparison with controls. Thus, absence of maternal care has lasting consequences for HPA function in a biparental species where paternal care is available.  相似文献   

5.
6.
Epinephrine, norepinephrine, and corticosterone responses to hypoglycemia are impaired in diabetic rats. Recurrent hypoglycemia further diminishes epinephrine responses. This study examined the sympathoadrenal system and hypothalamo-pituitary-adrenal axis for molecular adaptations underlying these defects. Groups were normal (N) and diabetic (D) rats and diabetic rats exposed to 4 days of 2 episodes/day of hyperinsulinemic hypoglycemia (D-hypo) or hyperinsulinemic hyperglycemia (D-hyper). D-hypo and D-hyper rats differentiated effects of hypoglycemia and hyperinsulinemia. Adrenal tyrosine hydroxylase (TH) mRNA was reduced (P < 0.05 vs. N) 25% in all diabetic groups. Remarkably, mRNA for phenylethanolamine N-methyltransferase (PNMT), which converts norepinephrine to epinephrine, was reduced (P < 0.05 vs. all) 40% only in D-hypo rats. Paradoxically, dopamine beta-hydroxylase mRNA was elevated (P < 0.05 vs. D, D-hyper) in D-hypo rats. Hippocampal mineralocorticoid receptor (MR) mRNA was increased (P < 0.05 vs. N) in all diabetic groups. Hippocampal glucocorticoid receptor (GR), hypothalamic paraventricular nucleus (PVN) GR and corticotropin-releasing hormone (CRH), and pituitary GR and proopiomelanocortin (POMC) mRNA levels did not differ. We conclude that blunted corticosterone responses to hypoglycemia in diabetic rats are not due to altered basal expression of GR, CRH, and POMC in the hippocampus, PVN, and pituitary. The corticosterone defect also does not appear to be due to increased hippocampal MR, since we have reported normalized corticosterone responses in D-hypo and D-hyper rats. Furthermore, impaired epinephrine counterregulation in diabetes is associated with reduced adrenal TH mRNA, whereas the additional epinephrine defect after recurrent hypoglycemia is associated with decreases in both TH and PNMT mRNA.  相似文献   

7.
Altricial nestlings typically do not show an adrenocortical response during the early post‐hatch period. This may be a result of an immature hypothalamic‐pituitary‐adrenal axis, or an enhanced control of the axis by negative feedback. To examine whether the dampened adrenocortical response is due to higher receptor densities in hypothalamus and hippocampus, the major sites for negative feedback and tonic inhibition, we explored the ontogenetic changes in glucocorticoid (GR) and mineralocorticoid receptor (MR) binding capacities in the brain of white‐crowned sparrow nestlings. During the 10‐day nestling period, MR binding capacity decreased with age, whereas GR capacity was not affected. In addition, this overall decline in MR levels was driven entirely by a decline in cerebellar MR. No age‐related changes were observed in hippocampal or hypothalamic areas. Our findings suggest that enhanced negative feedback does not play a major role in the attenuated adrenocortical responses seen in white‐crowned sparrow nestlings. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 853–861, 2010  相似文献   

8.
Stress-induced changes of glucocorticoid receptor in rat liver.   总被引:4,自引:0,他引:4  
The effect of corticosterone injection and of acute and repeated stress on rat liver cytosol glucocorticoid receptor was studied to ascertain whether corticosterone-induced glucocorticoid receptor (GR) regulation also takes place in intact animals as it does in adrenalectomized ones. Adult male rats were exposed to six different stressors (swimming, 10 mg/kg histamine i.p., 500 mU/kg vasopressin s.c., heat, immobilization and cold) acutely or three times daily for 18 days (repeated stress). Each of the stressors applied acutely provoked a pronounced increase of plasma corticosterone with subsequent induction of hepatic tyrosine aminotransferase activity. Depletion of cytosol receptor was however only noticed after swimming and histamine injection. On the other hand, sustained hypersecretion of corticosterone evoked by repeated stress significantly reduced the number of GR in rat liver cytosol without any change in Kd. It is concluded that in the presence of intact adrenal glands cytosol receptors are more resistant to corticosterone-induced depletion than in their absence. Further, repeated stress causes down-regulation of GR in the liver, most probably by sustained corticosterone secretion, yet the effect of other stress factors cannot be excluded.  相似文献   

9.
Early-life stress produces an anxiogenic profile in adulthood, presumably by activating the otherwise quiescent hypothalamic-pituitary-adrenal (HPA) axis during the vulnerable ‘stress hyporesponsive period’. While the long-term effects of such early-life manipulations have been extensively characterized, little is known of the short-term effects. Here, we compared the short-term effects of two durations of maternal separation stress and one unseparated group (US) on behavioral and physiological indices of the stress response in rat pups. Separations included 3 h on each of 12 days, from postnatal day (PND) 2 to 13 (MS2-13) and 3 days of daily, 6-h separation from PND11-13 (MS11-13). On PND14 (Experiment 1), both MS2-13 and MS11-13 produced marked reductions in freezing toward an adult male conspecific along with reduced levels of glucocorticoid type 2 (GR) and CRF type-1 (CRF1) receptor mRNA in the hippocampus. Group MS2-13 but not MS11-13 produced deficits in stressor-induced corticosterone secretion, accompanied by reductions in body weight. Our results suggest that GR and/or CRF1 levels, not solely the magnitude of corticosterone secretion, may be involved in the modulation of freezing. In a second experiment, we aimed to extend these findings by testing male and female separated and unseparated pups' unconditioned defensive behaviors to cat odor on PND26, and subsequent cue + context conditioning and extinction throughout postnatal days 27-32. Our results show that maternal separation produced reductions in unconditioned freezing on PND26, with MS2-13 showing stronger deficits than MS11-13. However, separation did not affect any other defensive behaviors. Furthermore, separated rats failed to show conditioned freezing, although they did avoid the no-odor block conditioned cue. There were no sex differences other than weight. We suggest that maternal separation may have produced these changes by disrupting normal development of hippocampal regions involved in olfactory-mediated freezing, not in mechanisms of learning and memory per se. These findings may have direct relevance for understanding the mechanisms by which early-life adverse experiences produce short-term and lasting psychopathologies.  相似文献   

10.
Social isolation of rodents during development is thought to be a relevant model of early-life chronic stress. We investigated the effects of early-life social isolation on later adult fear and anxiety behavior, and on corticosterone stress responses, in male rats. On postnatal day 21, male rats were either housed in isolation or in groups of 3 for a 3 week period, after which, all rats were group-reared for an additional 2 weeks. After the 5-week treatment, adult rats were examined for conditioned fear, open field anxiety-like behavior, social interaction behavior and corticosterone responses to restraint stress. Isolates exhibited increased anxiety-like behaviors in a brightly-lit open field during the first 10 min of the test period compared to group-reared rats. Isolation-reared rats also showed increased fear behavior and reduced social contact in a social interaction test, and a transient increase in fear behavior to a conditioned stimulus that predicted foot-shock. Isolation-reared rats showed similar restraint-induced increases in plasma corticosterone as group-reared controls, but plasma corticosterone levels 2 h after restraint were significantly lower than pre-stress levels in isolates. Overall, this study shows that isolation restricted to an early part of development increases anxiety-like and fear behaviors in adulthood, and also results in depressed levels of plasma corticosterone following restraint stress.  相似文献   

11.
To dissect the effects of corticosteroids mediated by the mineralocorticoid (MR) and the glucocorticoid receptor (GR) in the central nervous system, we compared MR–/– mice, whose salt loss syndrome was corrected by exogenous NaCl administration, with GR–/– mice having a brain-specific disruption of the GR gene generated by the Cre/loxP-recombination system. Neuropathological analyses revealed a decreased density of granule cells in the hippocampus of adult MR–/– mice but not in mice with disruption of GR. Furthermore, adult MR–/– mice exhibited a significant reduction of granule cell neurogenesis to 65% of control levels, possibly mediated by GR due to elevated corticosterone plasma levels. Neurogenesis was unaltered in adult mice with disruption of GR. Thus, we could attribute long-term trophic effects of adrenal steroids on dentate granule cells to MR. These MR-related alterations may participate in the pathogenesis of hippocampal changes observed in ageing, chronic stress and affective disorders.  相似文献   

12.
Corticosteroids and the brain   总被引:5,自引:0,他引:5  
Mineralocorticoid (MR) and glucocorticoid receptors (GR) are expressed in the central nervous system. Radioligand binding studies, autoradiography, immunocytochemistry and in situ hybridization have shown that MR and GR are found in abundance in neurons of the limbic system (hippocampus), a structure involved in mood, affect and subtle control of the hypothalamic-pituitary-adrenal (HPA) axis. In the hippocampus MR binds corticosterone (CORT) as well as aldosterone (ALDO) with high affinity. MR seems mainly occupied by CORT in the face of its 2-3 order higher circulating concentration. GR binds CORT with a 6-10-fold lower affinity. MR and GR gene expression, as well as the native receptor proteins, seem to be controlled in a coordinative manner. When GR is down-regulated by excess homologous steroid, MR appears to be increased. Down regulation of MR reduces GR as well. MR and GR display a differential ontogenetic pattern. Ontogeny, particularly that of GR, can be permanently influenced when animals are exposed during the first post-natal week of maternal deprivation, handling, CORT or ACTH1-24 injections. These MR and GR changes persist into senescence and have been proposed to result in altered CORT responsiveness, stress regulation, behavioural adaptation and brain aging.  相似文献   

13.
When vertebrates face acute stressors, their bodies rapidly undergo a repertoire of physiological and behavioral adaptations, which is termed the stress response. Rapid changes in heart rate and blood glucose levels occur via the interaction of glucocorticoids and their cognate receptors following hypothalamic‐pituitary‐adrenal axis activation. These physiological changes are observed within minutes of encountering a stressor and the rapid time domain rules out genomic responses that require gene expression changes. Although behavioral changes corresponding to physiological changes are commonly observed, it is not clearly understood to what extent hypothalamic‐pituitary‐adrenal axis activation dictates adaptive behavior. We hypothesized that rapid locomotor response to acute stressors in zebrafish requires hypothalamic‐pituitary‐interrenal (HPI) axis activation. In teleost fish, interrenal cells are functionally homologous to the adrenocortical layer. We derived eight frameshift mutants in genes involved in HPI axis function: two mutants in exon 2 of mc2r (adrenocorticotropic hormone receptor), five in exon 2 or 5 of nr3c1 (glucocorticoid receptor [GR]) and two in exon 2 of nr3c2 (mineralocorticoid receptor [MR]). Exposing larval zebrafish to mild environmental stressors, acute changes in salinity or light illumination, results in a rapid locomotor response. We show that this locomotor response requires a functioning HPI axis via the action of mc2r and the canonical GR encoded by nr3c1 gene, but not MR (nr3c2). Our rapid behavioral assay paradigm based on HPI axis biology can be used to screen for genetic and environmental modifiers of the hypothalamic‐pituitary‐adrenal axis and to investigate the effects of corticosteroids and their cognate receptor interactions on behavior.  相似文献   

14.
Honokiol (HNK), the main active component of Magnolia officinalis, has shown a variety of pharmacological activities. In the present study, we measured the antidepressant-like effects of HNK in a rat model of chronic unpredictable mild stress (CUMS) and explored its possible mechanisms. The antidepressant-like effects of HNK were assessed in rats by an open field test (OFT), sucrose preference test (SPT) and forced swimming test (FST). Then, serum levels of corticotrophin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) and hippocampal brain-derived neurotrophic factor (BDNF) and glucocorticoid receptor α (GRα) levels were assessed to explore the possible mechanisms. We identified that HNK treatment (2, 4, and 8 mg/kg) alleviated the CUMS-induced behavioural deficits. Treatment with HNK also normalized the CUMS-induced hyperactivity of the limbic hypothalamic–pituitary–adrenal (HPA) axis, as indicated by reduced CRH, ACTH and CORT serum levels. In addition, HNK increased the expression of GRα (mRNA and protein) and BDNF (mRNA and protein) in the hippocampus. These data confirmed the antidepressant-like effects of HNK, which may be related to its normalizing the function of the HPA axis and increasing the BDNF level in the hippocampus.  相似文献   

15.
The period of adolescence is characterized by a high vulnerability to stress and trauma, which might result in long-lasting consequences and an increased risk to develop psychiatric disorders. Using a recently developed mouse model for chronic social stress during adolescence, we studied persistent neuroendocrine and behavioral effects of chronic social stress obtained 12 months after cessation of the stressor. As a reference, we investigated immediate effects of chronic stress exposure obtained at the end of the chronic stress period. Immediately after the 7 week chronic stress period stressed animals show significantly increased adrenal weights, decreased thymus weight, increased basal corticosterone secretion and a flattened circadian rhythm. Furthermore, stressed animals display an increased anxiety-like behavior in the elevated plus maze and the novelty-induced suppression of feeding test. Hippocampal mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) mRNA levels were significantly decreased. To investigate persistent consequences of this early stressful experience, the same parameters were assessed in aged mice 12 months after the cessation of the stressor. Interestingly, we still found differences between formerly stressed and control mice in important stress-related parameters. MR expression levels were significantly lower in stressed animals, suggesting lasting, possibly epigenetic alterations in gene expression regulation. Furthermore, we observed long-term behavioral alterations in animals stressed during adolescence. Thus, we could demonstrate that chronic stress exposure during a crucial developmental time period results in long-term, persistent effects on physiological and behavioral parameters throughout life, which may contribute to an enhanced vulnerability to stress-induced diseases.  相似文献   

16.
11 beta-Hydroxysteroid dehydrogenase (11 beta-HSD) dictates specificity for the mineralocorticoid receptor (MR) by converting the active steroid cortisol to cortisone in man (corticosterone to 11-dehydrocorticosterone in rodents), leaving aldosterone to occupy the MR. However cortisol is the principal circulating glucocorticoid in man and 11 beta-HSD, distributed in a tissue specific fashion, may represent a powerful mechanism in regulating exposure of active steroid to the glucocorticoid receptor (GR). A detailed localization study of 11 beta-HSD gene expression and activity in numerous rat tissues has been performed and compared with the presence of GR mRNA. 11 beta-HSD mRNA (1.4 kB) measured by hybridization to a cDNA derived from hepatic 11 beta-HSD, and enzyme activity, measured by percentage conversion of [3H]corticosterone to [3H]11-dehydrocorticosterone by tissue homogenate, was widespread, present in all tissues studied except spleen, brain cortex and heart. There was a close correlation between tissue 11 beta-HSD mRNA levels and activity (r = 0.91, P less than 0.001) suggesting pretranslational regulation of the enzyme at a tissue level. There was also close co-localization of GR mRNA (7 kB), measured by hybridization to a rat GR cRNA probe, and enzyme mRNA/activity in every tissue studied except heart and brain cortex in which GR mRNA was found. In the mineralocorticoid target tissues kidney and colon, additional 11 beta-HSD mRNA bands were seen (kidney 1.8 kB, colon 3.4 kB), suggesting the presence of multiple dehydrogenase species. 11 beta-HSD is widely distributed and suitably placed to modulate ligand occupancy of the GR. The possibility of multiple dehydrogenase species in mineralocorticoid target tissues is consistent with the hypothesis that the ubiquitous 'native' 1.4 kB hepatic enzyme regulates the GR, and these separate dehydrogenases regulate the MR.  相似文献   

17.
Abstract

Mineralocorticoid (MR) and glucocorticoid (GR) receptors in the rat hippocampus are linked to several cognitive functions of the animal and seem to play an important role in the response to various stressors. Their assessment by binding experiments brings about problems associated with their intracellular compartmentalization, and in particular with the separation of the bound and free ligands. Adrenalectomy 24 h before sacrificing is commonly used to clear the circulating adrenal steroids, and to facilitate their dissociation from hippocampal MR and GR. We have successful attempted to use dialysis to these purposes and thus, to avoid a potential surgical stress. Without dialysis, only GR can be measured in the cytosol from intact rats, while the corresponding pellet contains MR as a component of the cell nuclei. The bound ligand fraction was separated by filtration on polyethyleneimine pretreated glass fiber filters as suggested earlier. The method has clear-cut preferences compared to any alternative used up to now. Discrimination between the two receptor types can be optimally achieved in a cross-displacement experiment in which two labeled ligands possessing various affinities to individual receptors (in our case: corticosterone and aldosterone, or their synthetic analogs) are displaced with the two corresponding nonlabelled ligands from their receptors. Computations can be carried out with LIGAND software which yield accurate values of binding parameters.  相似文献   

18.
Intrauterine growth restriction (IUGR) is one of the major causes of short stature in child- and adulthood. The cause of IUGR is unknown, however, an impaired uteroplacental function during the second half of human pregnancy might be an important factor, by affecting the programming of somatotropic axis and leading to postnatal growth failure into adulthood. Two rat models with perinatally induced growth retardation were used to examine the long-term effects of perinatal insults on growth. IUGR rats were prepared from pregnant dams, with a bilateral uterine artery ligation at day 17 of their pregnancy. Since the rat is relatively immature at birth, an early postnatal food restriction model was included as another model to broaden the time window of sensitive period of organogenesis. An individual growth curve was calculated of each animal (n = 813). From these individual growth curves the predicted growth curve for each experimental group was calculated by multilevel analysis. The proposed mathematical model allows us to estimate the growth potentials of these rat models with precision and could provide basic information to investigate the relationships among a number of other variables in future studies. Furthermore, we concluded that both pre- and early postnatal malnutrition leads to irreversible slowing down of postnatal growth.  相似文献   

19.
During development, the risk of developing mesial temporal lobe epilepsy (MTLE) increases when the developing brain is exposed to more than one insult in early life. Early life insults include abnormalities of cortical development, hypoxic-ischemic injury and prolonged febrile seizures. To study epileptogenesis, we have developed a two-hit model of MTLE characterized by two early-life insults: a freeze lesion-induced cortical malformation at post-natal day 1 (P1), and a prolonged hyperthermic seizure (HS) at P10. As early life stressors lead to sexual dimorphism in both acute response and long-term outcome, we hypothesized that our model could lead to gender-based differences in acute stress response and long-term risk of developing MTLE. Male and female pups underwent a freeze-lesion induced cortical microgyrus at P1 and were exposed to HS at P10. Animals were monitored by video-EEG from P90 to P120. Pre and post-procedure plasma corticosterone levels were used to measure stress response at P1 and P10. To confirm the role of sex steroids, androgenized female pups received daily testosterone injections to the mother pre-natally and post-natally for nine days while undergoing both insults. We demonstrated that after both insults females did not develop MTLE while all males did. This correlated with a rise in corticosterone levels at P1 following the lesion in males only. Interestingly, all androgenized females showed a similar rise in corticosterone at P1, and also developed MTLE. Moreover, we found that the cortical lesion significantly decreased the latency to generalized convulsion during hyperthermia at P10 in both genders. The cortical dysplasia volumes at adulthood were also similar between male and female individuals. Our data demonstrate sexual dimorphism in long-term vulnerability to develop epilepsy in the lesion + hyperthermia animal model of MTLE and suggest that the response to early-life stress at P1 contributes significantly to epileptogenesis in a gender-specific manner.  相似文献   

20.
Over the short-term and at physiological doses, acute increases in corticosterone (CORT) titres can enhance immune function. There are predictable seasonal patterns in both circulating CORT and immune function across many animal species, but whether CORT receptor density in immune tissues varies seasonally is currently unknown. Using radioligand binding assays, we examined changes in concentrations of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) in spleen and skin in wild-caught house sparrows in Massachusetts during six different life-history stages: moult, early winter, late winter, pre-egg-laying, breeding and late breeding. Splenic GR and MR binding were highest during the pre-laying period. This may help animals respond to immune threats through increased lymphocyte proliferation and/or an increase in delayed-type hypersensitivity reactions, both of which CORT can stimulate and in which spleen is involved. A decrease in splenic GR and MR during the late breeding period coincides with low baseline and stress-induced CORT, suggesting immune function in spleen may be relatively CORT-independent during this period. We saw no seasonal patterns in GR or MR in skin, suggesting skin''s response to CORT is modulated primarily via changes in circulating CORT titres and/or via local production of CORT in response to wounding and other noxious stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号