首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1) requires the incorporation of cyclophilin A (CypA) for replication. CypA is packaged by binding to the capsid (CA) region of Gag. This interaction is disrupted by cyclosporine (CsA). Preventing CypA incorporation, either by mutations in the binding region of CA or by the presence of CsA, abrogates virus infectivity. Given that CypA possesses an isomerase activity, it has been proposed that CypA acts as an uncoating factor by destabilizing the shell of CA that surrounds the viral genome. However, because the same domain of CypA is responsible for both its isomerase activity and its capacity to be packaged, it has been challenging to determine if isomerase activity is required for HIV-1 replication. To address this issue, we fused CypA to viral protein R (Vpr), creating a Vpr-CypA chimera. Because Vpr is packaged via the p6 region of Gag, this approach bypasses the interaction with CA and allows CypA incorporation even in the presence of CsA. Using this system, we found that Vpr-CypA rescues the infectivity of viruses lacking CypA, either produced in the presence of CsA or mutated in the CypA packaging signal of CA. Furthermore, a Vpr-CypA mutant which has no isomerase activity and no capacity to bind to CA also rescues HIV-1 replication. Thus, this study demonstrates that the isomerase activity of CypA is not required for HIV-1 replication and suggests that the interaction of the catalytic site of CypA with CA serves no other function than to incorporate CypA into viruses.  相似文献   

2.
Yang R  Aiken C 《Journal of virology》2007,81(8):3749-3756
The replication of many isolates of human immunodeficiency virus type 1 (HIV-1) is enhanced by binding of the host cell protein cyclophilin A (CypA) to the viral capsid protein (CA). The immunosuppressive drug cyclosporine A (CsA) and its nonimmunosuppressive analogs bind with high affinity to CypA and inhibit HIV-1 replication. Previous studies have identified two mutations, A92E and G94D, in the CypA-binding loop of CA that confer the ability of HIV-1 to replicate in the presence of CsA. Interestingly, CsA stimulates the replication of HIV-1 mutants containing either the A92E or G94D substitution in some human cell lines. Here, we show that substitution of alanine for threonine at position 54 of CA (T54A) also confers HIV-1 resistance to and dependence on CsA. Like the previously identified CsA-resistant/dependent mutants, infection by the T54A mutant was stimulated by CsA in a target cell-specific manner. RNA interference-mediated reduction of CypA expression enhanced the permissiveness of HeLa cells to infection by the T54A mutant. A suppressor mutation, encoding a substitution of threonine for alanine at position 105 of CA (A105T), was identified through adaptation of the T54A mutant virus for growth in CEM cells. A105T rescued the impaired single-cycle infectivity and replication defects of both T54A and A92E mutants. These results indicate that CA determinants outside the CypA-binding loop can modulate the dependence of HIV-1 infection on CypA.  相似文献   

3.
Viruses are obligate intracellular parasites and therefore their replication completely depends on host cell factors. In case of the hepatitis C virus (HCV), a positive-strand RNA virus that in the majority of infections establishes persistence, cyclophilins are considered to play an important role in RNA replication. Subsequent to the observation that cyclosporines, known to sequester cyclophilins by direct binding, profoundly block HCV replication in cultured human hepatoma cells, conflicting results were obtained as to the particular cyclophilin (Cyp) required for viral RNA replication and the underlying possible mode of action. By using a set of cell lines with stable knock-down of CypA or CypB, we demonstrate in the present work that replication of subgenomic HCV replicons of different genotypes is reduced by CypA depletion up to 1,000-fold whereas knock-down of CypB had no effect. Inhibition of replication was rescued by over-expression of wild type CypA, but not by a mutant lacking isomerase activity. Replication of JFH1-derived full length genomes was even more sensitive to CypA depletion as compared to subgenomic replicons and virus production was completely blocked. These results argue that CypA may target an additional viral factor outside of the minimal replicase contributing to RNA amplification and assembly, presumably nonstructural protein 2. By selecting for resistance against the cyclosporine analogue DEBIO-025 that targets CypA in a dose-dependent manner, we identified two mutations (V2440A and V2440L) close to the cleavage site between nonstructural protein 5A and the RNA-dependent RNA polymerase in nonstructural protein 5B that slow down cleavage kinetics at this site and reduce CypA dependence of viral replication. Further amino acid substitutions at the same cleavage site accelerating processing increase CypA dependence. Our results thus identify an unexpected correlation between HCV polyprotein processing and CypA dependence of HCV replication.  相似文献   

4.
DEB025/Debio 025 (Alisporivir) is a cyclophilin (Cyp)-binding molecule with potent anti-hepatitis C virus (HCV) activity both in vitro and in vivo. It is currently being evaluated in phase II clinical trials. DEB025 binds to CypA, a peptidyl-prolyl cis-trans isomerase which is a crucial cofactor for HCV replication. Here we report that it was very difficult to select resistant replicons (genotype 1b) to DEB025, requiring an average of 20 weeks (four independent experiments), compared to the typically <2 weeks with protease or polymerase inhibitors. This indicates a high genetic barrier to resistance for DEB025. Mutation D320E in NS5A was the only mutation consistently selected in the replicon genome. This mutation alone conferred a low-level (3.9-fold) resistance. Replacing the NS5A gene (but not the NS5B gene) from the wild type (WT) genome with the corresponding sequence from the DEB025(res) replicon resulted in transfer of resistance. Cross-resistance with cyclosporine A (CsA) was observed, whereas NS3 protease and NS5B polymerase inhibitors retained WT-activity against DEB025(res) replicons. Unlike WT, DEB025(res) replicon replicated efficiently in CypA knock down cells. However, DEB025 disrupted the interaction between CypA and NS5A regardless of whether the NS5A protein was derived from WT or DEB025(res) replicon. NMR titration experiments with peptides derived from the WT or the DEB025(res) domain II of NS5A corroborated this observation in a quantitative manner. Interestingly, comparative NMR studies on two 20-mer NS5A peptides that contain D320 or E320 revealed a shift in population between the major and minor conformers. These data suggest that D320E conferred low-level resistance to DEB025 probably by reducing the need for CypA-dependent isomerisation of NS5A. Prolonged DEB025 treatment and multiple genotypic changes may be necessary to generate significant resistance to DEB025, underlying the high barrier to resistance.  相似文献   

5.
Since the advent of genome-wide small interfering RNA screening, large numbers of cellular cofactors important for viral infection have been discovered at a rapid pace, but the viral targets and the mechanism of action for many of these cofactors remain undefined. One such cofactor is cyclophilin A (CyPA), upon which hepatitis C virus (HCV) replication critically depends. Here we report a new genetic selection scheme that identified a major viral determinant of HCV's dependence on CyPA and susceptibility to cyclosporine A. We selected mutant viruses that were able to infect CyPA-knockdown cells which were refractory to infection by wild-type HCV produced in cell culture. Five independent selections revealed related mutations in a single dipeptide motif (D316 and Y317) located in a proline-rich region of NS5A domain II, which has been implicated in CyPA binding. Engineering the mutations into wild-type HCV fully recapitulated the CyPA-independent and CsA-resistant phenotype and four putative proline substrates of CyPA were mapped to the vicinity of the DY motif. Circular dichroism analysis of wild-type and mutant NS5A peptides indicated that the D316E/Y317N mutations (DEYN) induced a conformational change at a major CyPA-binding site. Furthermore, nuclear magnetic resonance experiments suggested that NS5A with DEYN mutations adopts a more extended, functional conformation in the putative CyPA substrate site in domain II. Finally, the importance of this major CsA-sensitivity determinant was confirmed in additional genotypes (GT) other than GT 2a. This study describes a new genetic approach to identifying viral targets of cellular cofactors and identifies a major regulator of HCV's susceptibility to CsA and its derivatives that are currently in clinical trials.  相似文献   

6.
The peptidyl-prolyl isomerase cyclophilin A (CypA) increases the kinetics by which human immunodeficiency virus type 1 (HIV-1) spreads in tissue culture. This was conclusively demonstrated by gene targeting in human CD4(+) T cells, but the role of CypA in HIV-1 replication remains unknown. Though CypA binds to mature HIV-1 capsid protein (CA), it is also incorporated into nascent HIV-1 virions via interaction with the CA domain of the Gag polyprotein. These findings raised the possibility that CypA might act at multiple steps of the retroviral life cycle. Disruption of the CA-CypA interaction, either by the competitive inhibitor cyclosporine (CsA) or by mutation of CA residue G89 or P90, suggested that producer cell CypA was required for full virion infectivity. However, recent studies indicate that CypA within the target cell regulates HIV-1 infectivity by modulating Ref1- or Lv1-mediated restriction. To examine the relative contribution to HIV-1 replication of producer cell CypA and target cell CypA, we exploited multiple tools that disrupt the HIV-1 CA-CypA interaction. These tools included the drugs CsA, MeIle(4)-CsA, and Sanglifehrin; CA mutants exhibiting decreased affinity for CypA or altered CypA dependence; HeLa cells with CypA knockdown by RNA interference; and Jurkat T cells homozygous for a deletion of the gene encoding CypA. Our results clearly demonstrate that target cell CypA, and not producer cell CypA, is important for HIV-1 CA-mediated function. Inhibition of HIV-1 infectivity resulting from virion production in the presence of CsA occurs independently of the CA-CypA interaction or even of CypA.  相似文献   

7.
Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) is an indispensable component of the HCV replication and assembly machineries. Although its precise mechanism of action is not yet clear, current evidence indicates that its structure and function are regulated by the cellular peptidylprolyl isomerase cyclophilin A (CyPA). CyPA binds to proline residues in the C-terminal half of NS5A, in a distributed fashion, and modulates the structure of the disordered domains II and III. Cyclophilin inhibitors (CPIs), including cyclosporine (CsA) and its nonimmunosuppressive derivatives, inhibit HCV infection of diverse genotypes, both in vitro and in vivo. Here we report a mechanism by which CPIs inhibit HCV infection and demonstrate that CPIs can suppress HCV assembly in addition to their well-documented inhibitory effect on RNA replication. Although the interaction between NS5A and other viral proteins is not affected by CPIs, RNA binding by NS5A in cell culture-based HCV (HCVcc)-infected cells is significantly inhibited by CPI treatment, and sensitivity of RNA binding is correlated with previously characterized CyPA dependence or CsA sensitivity of HCV mutants. Furthermore, the difference in CyPA dependence between a subgenomic and a full-length replicon of JFH-1 was due, at least in part, to an additional role that CyPA plays in HCV assembly, a conclusion that is supported by experiments with the clinical CPI alisporivir. The host-directed nature and the ability to interfere with more than one step in the HCV life cycle may result in a higher genetic barrier to resistance for this class of HCV inhibitors.  相似文献   

8.
亲环素A (CypA)是一种在生物界中广泛分布,并具有高度保守性的蛋白质,具有肽基脯氨酰顺/反异构酶活性,是免疫抑制药物环孢素A (CsA)的细胞内受体。冠状病毒是具有包膜的、单股正链RNA病毒,目前已知有7种冠状病毒可以感染人类,其中包括致命的SARS-CoV、MERS-CoV以及新型冠状病毒(SARS-CoV-2)。已有研究表明,CypA在SARS-CoV、CoV-229E、CoV-NL63以及FCoV等多种冠状病毒的复制中是必不可少的,而且CypA的抑制剂CsA及其衍生物(ALV、NIM811等)对多种冠状病毒具有明显的抑制作用,暗示CypA是潜在的抗冠状病毒药物靶点,CsA这种老药有可能是一种抗冠状病毒的药物。2019年底,新型冠状病毒突然肆虐中国,严重威胁人民生命健康并造成巨大经济损失。鉴于此,文中介绍了CypA对冠状病毒复制的影响,并阐述了其抑制剂的抗病毒作用,旨在为抗新型冠状病毒药物的研发提供科学依据及思路。  相似文献   

9.
Cyclosporine A and nonimmunosuppressive cyclophilin (Cyp) inhibitors such as Debio 025, NIM811, and SCY-635 block hepatitis C virus (HCV) replication in vitro. This effect was recently confirmed in HCV-infected patients where Debio 025 treatment dramatically decreased HCV viral load, suggesting that Cyps inhibitors represent a novel class of anti-HCV agents. However, it remains unclear how these compounds control HCV replication. Recent studies suggest that Cyps are important for HCV replication. However, a profound disagreement currently exists as to the respective roles of Cyp members in HCV replication. In this study, we analyzed the respective contribution of Cyp members to HCV replication by specifically knocking down their expression by both transient and stable small RNA interference. Only the CypA knockdown drastically decreased HCV replication. The re-expression of an exogenous CypA escape protein, which contains escape mutations at the small RNA interference recognition site, restored HCV replication, demonstrating the specificity for the CypA requirement. We then mutated residues that reside in the hydrophobic pocket of CypA where proline-containing peptide substrates and cyclosporine A bind and that are vital for the enzymatic or the hydrophobic pocket binding activity of CypA. Remarkably, these CypA mutants fail to restore HCV replication, suggesting for the first time that HCV exploits either the isomerase or the chaperone activity of CypA to replicate in hepatocytes and that CypA is the principal mediator of the Cyp inhibitor anti-HCV activity. Moreover, we demonstrated that the HCV NS5B polymerase associates with CypA via its enzymatic pocket. The study of the roles of Cyps in HCV replication should lead to the identification of new targets for the development of alternate anti-HCV therapies.Hepatitis C virus (HCV)2 is the main contributing agent of acute and chronic liver diseases worldwide (1). Primary infection is often asymptomatic or associated with mild symptoms. However, persistently infected individuals develop high risks for chronic liver diseases such as hepatocellular carcinoma and liver cirrhosis (1). The combination of IFNα and ribavirin that serves as current therapy for chronically HCV-infected patients not only has a low success rate (about 50%) (2) but is often associated with serious side effects (2). There is thus an urgent need for the development of novel anti-HCV treatments (2).The immunosuppressive drug cyclosporine A (CsA) was reported to be clinically effective against HCV (3). Controlled trials showed that a combination of CsA with IFNα is more effective than IFNα alone, especially in patients with a high viral load (4, 5). Moreover, recent in vitro studies provided evidence that CsA prevents both HCV RNA replication and HCV protein production in an IFNα-independent manner (610). CsA exerts this anti-HCV activity independently of its immunosuppressive activity because the nonimmunosuppressive Cyp inhibitors such as Debio 025, NIM811, and SCY-635 also block HCV RNA and protein production (9, 1114). Unlike CsA, these molecules do not display calcineurin affinity and specifically inhibit the peptidyl-prolyl cis-trans-isomerase (PPIase) Cyps. Most importantly, recent clinical data demonstrated that Debio 025 dramatically decreased HCV viral load (3.6 log decrease) in patients coinfected with HCV and HIV (15). This 14-day Debio 025 treatment (1200 mg orally administered twice daily) was effective against the three genotypes (genotypes 1, 3, and 4) represented in the study. More recently, the anti HCV effect of Debio 025 in combination with peginterferon α 2a (peg-IFNα2a) was investigated in treatment-inexperienced patients with chronic hepatitis C. Debio 025 (600 mg administered once daily) in combination with peg-IFNα2a (180 μg/week) for 4 weeks induced a continuous decay in viral load that reached −4.61 ± 1.88 IU/ml in patients with genotypes 1 and 4 and −5.91 ± 1.11 IU/ml in patients with genotypes 2 and 3 at week 4 (16). The Debio 025 findings are critical because they suggest that Cyp inhibitors represent a novel class of anti-HCV agents. However, it remains unclear how these compounds control HCV replication. The fact that several recent studies using small RNA interference knockdown approaches suggest that Cyps are critical for the HCV life cycle (9, 17, 18) strongly implies that there is a direct or indirect link between the CsA- and CsA derivative-mediated inhibitory effect on HCV replication and host Cyps.The discovery 20 years ago of the first cellular protein showing PPIase activity (19) was entirely unrelated to the discovery of CypA as an intracellular protein possessing a high affinity for CsA (20). It is only a few years later that Fischer et al. (21) demonstrated that the 18-kDa protein with PPIase activity and CypA represent a single unique protein. All Cyps contain a common domain of 109 amino acids, called the Cyp-like domain, which is surrounded by domains specific to each Cyp members and which dictates their cellular compartmentalization and function (22). Bacteria, fungi, insects, plants, and mammals contain Cyps, which all have PPIase activity and are structurally conserved (22). To date, 16 Cyp members have been identified, and 7 of them are found in humans: CypA, CypB, CypC, CypD, CypE, Cyp40, and CypNK (22).Although there is a growing body of evidence that Cyps control HCV replication in human hepatocytes, a major disagreement currently exists on the respective roles of Cyp members in HCV replication. One study suggests that CypB, but not CypA, is critical for HCV replication (17), another suggests that CypA, but not CypB and CypC, is critical for HCV replication (18), and a third study suggests that three Cyps, CypA, B, and C, are all required for HCV replication (9). Thus, although it becomes evident that Cyps serve as HCV co-factors, their respective contributions and roles in the HCV life cycle remain to be determined. An understanding of the mechanisms that control the Cyp inhibitor-mediated anti-HCV effect is imperative because it will provide new alternate anti-HCV therapies and shed light on the still poorly understood early and late steps of the HCV life cycle.  相似文献   

10.
Cyclosporine A (CsA) is an immunosuppressive drug that targets cyclophilins, cellular cofactors that regulate the immune system. Replication of hepatitis C virus (HCV) is suppressed by CsA, but the molecular basis of this suppression is still not fully understood. To investigate this suppression, we cultured HCV replicon cells (Con1, HCV genotype 1b, FLR-N cell) in the presence of CsA and obtained nine CsA-resistant FLR-N cell lines. We determined full-length HCV sequences for all nine clones, and chose two (clones #6 and #7) of the nine clones that have high replication activity in the presence of CsA for further analysis. Both clones showed two consensus mutations, one in NS3 (T1280V) and the other in NS5A (D2292E). Characterization of various mutants indicated that the D2292E mutation conferred resistance to high concentrations of CsA (up to 2 μM). In addition, the missense mutation T1280V contributed to the recovery of colony formation activity. The effects of these mutations are also evident in two established HCV replicon cell lines—HCV-RMT ([1], genotype 1a) and JFH1 (genotype 2a). Moreover, three other missense mutations in NS5A—D2303H, S2362G, and E2414K—enhanced the resistance to CsA conferred by D2292E; these double or all quadruple mutants could resist approximately 8- to 25-fold higher concentrations of CsA than could wild-type Con1. These four mutations, either as single or combinations, also made Con1 strain resistant to two other cyclophilin inhibitors, N-methyl-4-isoleucine-cyclosporin (NIM811) or Debio-025. Interestingly, the changes in IC50 values that resulted from each of these mutations were the lowest in the Debio-025-treated cells, indicating its highest resistant activity against the adaptive mutation.  相似文献   

11.
Nonstructural protein 5B (NS5B) is essential for hepatitis C virus (HCV) replication as it carries the viral RNA-dependent RNA polymerase enzymatic activity. HCV replication occurs in a membrane-associated multiprotein complex in which HCV NS5A and host cyclophilin A (CypA) have been shown to be present together with the viral polymerase. We used NMR spectroscopy to perform a per residue level characterization of the molecular interactions between the unfolded domains 2 and 3 of NS5A (NS5A-D2 and NS5A-D3), CypA, and NS5BΔ21. We show that three regions of NS5A-D2 (residues 250–262 (region A), 274–287 (region B), and 306–333 (region C)) interact with NS5BΔ21, whereas NS5A-D3 does not. We show that both NS5BΔ21 and CypA share a common binding site on NS5A that contains residues Pro-306 to Glu-323. No direct molecular interaction has been detected by NMR spectroscopy between HCV NS5BΔ21 and host CypA. We show that cyclosporine A added to a sample containing NS5BΔ21, NS5A-D2, and CypA specifically inhibits the interaction between CypA and NS5A-D2 without altering the one between NS5A-D2 and NS5BΔ21. A high quality heteronuclear NMR spectrum of HCV NS5BΔ21 has been obtained and was used to characterize the binding site on the polymerase of NS5A-D2. Moreover these data highlight the potential of using NMR of NS5BΔ21 as a powerful tool to characterize in solution the interactions of the HCV polymerase with all kinds of molecules (proteins, inhibitors, RNA). This work brings new insights into the comprehension of the molecular interplay between NS5B, NS5A, and CypA, three essentials proteins for HCV replication.  相似文献   

12.
Cyclophilin A (CyPA) and its peptidyl-prolyl isomerase (PPIase) activity play an essential role in hepatitis C virus (HCV) replication, and mounting evidence indicates that nonstructural protein 5A (NS5A) is the major target of CyPA. However, neither a consensus CyPA-binding motif nor specific proline substrates that regulate CyPA dependence and sensitivity to cyclophilin inhibitors (CPIs) have been defined to date. We systematically characterized all proline residues in NS5A domain II, low-complexity sequence II (LCS-II), and domain III with both biochemical binding and functional replication assays. A tandem cyclophilin-binding site spanning domain II and LCS-II was identified. The first site contains a consensus sequence motif of AØPXW (where Ø is a hydrophobic residue) that is highly conserved in the majority of the genotypes of HCV (six of seven; the remaining genotype has VØPXW). The second tandem site contains a similar motif, and the ØP sequence is again conserved in six of the seven genotypes. Consistent with the similarity of their sequences, peptides representing the two binding motifs competed for CyPA binding in a spot-binding assay and induced similar chemical shifts when bound to the active site of CyPA. The two prolines (P310 and P341 of Japanese fulminant hepatitis 1 [JFH-1]) contained in these motifs, as well as a conserved tryptophan in the spacer region, were required for CyPA binding, HCV replication, and CPI resistance. Together, these data provide a high-resolution mapping of proline residues important for CyPA binding and identify critical amino acids modulating HCV susceptibility to the clinical CPI Alisporivir.  相似文献   

13.
Cyclophilins (CyPs) are a widespreading protein family in living organisms and possess the activity of peptidyl-prolyl cis-trans isomerase (PPIase), which is inhibited by cyclosporin A (CsA). The human nuclear cyclophilin (hCyP33) is the first protein which was found to contain two RNA binding domains at the amino-terminus and a PPIase domain at the carboxyl-terminus. We isolated the hCyP33 gene from the human hematopoietic stem/progenitor cells and expressed it in Escherichia coli, and determined the crystal structure of the C domain of hCyP33 at 1.88 A resolution. The core structure is a beta-barrel covered by two alpha-helices. Superposition of the structure of the C domain of hCyP33 with the structure of CypA suggests that the C domain contains PPIase active site which binds to CsA. Furthermore, C domain seems to be able to bind with the Gag-encoded capsid (CA) of HIV-1 and may affect the viral replication of HIV-1. A key residue of the active site is changed from Ala-103-CypA to Ser-239-hCyP33, which may affect the PPIase domain/substrates interactions.  相似文献   

14.
During antiviral drug discovery, it is critical to distinguish molecules that selectively interrupt viral replication from those that reduce virus replication by adversely affecting host cell viability. In this report we investigate the selectivity of inhibitors of the host chaperone proteins cyclophilin A (CypA) and heat-shock protein 90 (HSP90) which have each been reported to inhibit replication of hepatitis C virus (HCV). By comparing the toxicity of the HSP90 inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) to two known cytostatic compounds, colchicine and gemcitabine, we provide evidence that 17-AAG exerts its antiviral effects indirectly through slowing cell growth. In contrast, a cyclophilin inhibitor, cyclosporin A (CsA), exhibited selective antiviral activity without slowing cell proliferation. Furthermore, we observed that 17-AAG had little antiviral effect in a non-dividing cell-culture model of HCV replication, while CsA reduced HCV titer by more than two orders of magnitude in the same model. The assays we describe here are useful for discriminating selective antivirals from compounds that indirectly affect virus replication by reducing host cell viability or slowing cell growth.  相似文献   

15.
Influenza A virus matrix protein (M1) is the most abundant conservative protein that regulates the replication, assembly and budding of the viral particles upon infection. Several host cell factors have been determined to interact with M1 possibly in regulating influenza virus replication. By yeast two-hybrid screening, the isomerase cyclophilin A (CypA) was identified to interact with the M1 protein. CypA specifically interacted with M1 both in vitro and in vivo . The mutagenesis results showed CypA bound to the functional middle (M) domain of M1. The depletion of endogenous CypA by RNA interference resulted in the increase of influenza virus infectivity while overexpression of CypA caused decreasing the infectivity in affected cells. The immunofluorescence assays indicated that overexpressed CypA deduced the infectivity and inhibited the translocation of M1 protein into the nucleus while did not affect nucleoprotein entering the nucleus. Further studies indicated that overexpression of CypA significantly increased M1 self-association. Western blot with purified virions confirmed that CypA was encapsidated within the virus particle. These results together indicated that CypA interacted with the M1 protein and affected the early stage of the viral replication.  相似文献   

16.
17.
Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase   总被引:8,自引:0,他引:8  
Viruses depend on host-derived factors for their efficient genome replication. Here, we demonstrate that a cellular peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin B (CyPB), is critical for the efficient replication of the hepatitis C virus (HCV) genome. CyPB interacted with the HCV RNA polymerase NS5B to directly stimulate its RNA binding activity. Both the RNA interference (RNAi)-mediated reduction of endogenous CyPB expression and the induced loss of NS5B binding to CyPB decreased the levels of HCV replication. Thus, CyPB functions as a stimulatory regulator of NS5B in HCV replication machinery. This regulation mechanism for viral replication identifies CyPB as a target for antiviral therapeutic strategies.  相似文献   

18.
The NS5A protein of hepatitis C virus (HCV) plays an important but undefined role in viral RNA replication. NS5A has been proposed to be a three-domain protein, and the crystal structure of the well-conserved amino-terminal domain I has been determined. The remaining two domains of NS5A, designated domains II and III, and their corresponding interdomain regions are poorly understood. We have conducted a detailed mutagenesis analysis of NS5A domains II and III using the genotype 1b HCV replicon system. The majority of the mutants containing 15 small (8- to 15-amino-acid) deletions analyzed were capable of efficient RNA replication. Only five deletion mutations yielded lethal phenotypes, and these were colinear, spanning a 56-amino-acid region within domain II. This region was further analyzed by combining triple and single alanine scanning mutagenesis to identify individual residues required for RNA replication. Based upon this analysis, 23 amino acids were identified that were found to be essential. In addition, two residues were identified that yielded a small colony phenotype while possessing only a moderate defect in RNA replication. These results indicate that the entire domain III region and large portions of domain II of the NS5A protein are not required for the function of NS5A in HCV RNA replication.  相似文献   

19.
Hepatitis C virus (HCV) is a major causative agent of hepatocellular carcinoma. We recently discovered that the immunosuppressant cyclosporin A (CsA) and its analogue lacking immunosuppressive function, NIM811, strongly suppress the replication of HCV in cell culture. Inhibition of a cellular replication cofactor, cyclophilin (CyP) B, is critical for its anti-HCV effects. Here, we explored the potential use of CyP inhibitors for HCV treatment by analyzing the HCV replicon system. Treatment with CsA and NIM811 for 7 days reduced HCV RNA levels by 2-3 logs, and treatment for 3 weeks reduced HCV RNA to undetectable levels. NIM811 exerted higher anti-HCV activity than CsA at lower concentrations. Both CyP inhibitors rapidly reduced HCV RNA levels even further in combination with IFNalpha without modifying the IFNalpha signal transduction pathway. In conclusion, CyP inhibitors may provide a novel strategy for anti-HCV treatment.  相似文献   

20.
Peptidyl prolyl cis/trans isomerase cyclophilin A (CypA) serves as a cellular receptor for the important immunosuppressant drug, cyclosporin A. In addition, CypA and its enzyme family have been found to play critical roles in a variety of biological processes, including protein trafficking, HIV and HCV infection/replication, and Ca(2+)-mediated intracellular signaling. For these reasons, cyclophilins have emerged as potential drug targets for several diseases. Therefore, it is extremely important to screen for novel small molecule cyclophilin inhibitors. Unfortunately, the biochemical assays reported so far are not adaptable to a high-throughput screening format. Here, we report a fluorescence polarization-based assay for human CypA that can be adapted to high-throughput screening for drug discovery. The technique is based on competition and uses a fluorescein-labeled cyclosporin A analog and purified human CypA to quantitatively measure the binding capacity of unlabeled inhibitors. Detection by fluorescence polarization allows real-time measurement of binding ratios without separation steps. The results obtained demonstrated significant correlation among assay procedures, suggesting that the application of fluorescence polarization in combination with CypA is highly advantageous for the accurate assessment of inhibitor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号