共查询到20条相似文献,搜索用时 15 毫秒
1.
The Six1 homeobox gene plays critical roles in vertebrate organogenesis. Mice deficient for Six1 show severe defects in organs such as skeletal muscle, kidney, thymus, sensory organs and ganglia derived from cranial placodes, and mutations in human SIX1 cause branchio-oto-renal syndrome, an autosomal dominant developmental disorder characterized by hearing loss and branchial defects. The present study was designed to identify enhancers responsible for the dynamic expression pattern of Six1 during mouse embryogenesis. The results showed distinct enhancer activities of seven conserved non-coding sequences (CNSs) retained in tetrapod Six1 loci. The activities were detected in all cranial placodes (excluding the lens placode), dorsal root ganglia, somites, nephrogenic cord, notochord and cranial mesoderm. The major Six1-expression domains during development were covered by the sum of activities of these enhancers, together with the previously identified enhancer for the pre-placodal region and foregut endoderm. Thus, the eight CNSs identified in a series of our study represent major evolutionarily conserved enhancers responsible for the expression of Six1 in tetrapods. The results also confirmed that chick electroporation is a robust means to decipher regulatory information stored in vertebrate genomes. Mutational analysis of the most conserved placode-specific enhancer, Six1-21, indicated that the enhancer integrates a variety of inputs from Sox, Pax, Fox, Six, Wnt/Lef1 and basic helix-loop-helix proteins. Positive autoregulation of Six1 is achieved through the regulation of Six protein-binding sites. The identified Six1 enhancers provide valuable tools to understand the mechanism of Six1 regulation and to manipulate gene expression in the developing embryo, particularly in the sensory organs. 相似文献
2.
3.
Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases
Lonetti A Szijgyarto Z Bosch D Loss O Azevedo C Saiardi A 《The Journal of biological chemistry》2011,286(37):31966-31974
Inorganic polyphosphate (poly-P) consists of just a chain of phosphate groups linked by high energy bonds. It is found in every organism and is implicated in a wide variety of cellular processes (e.g. phosphate storage, blood coagulation, and pathogenicity). Its metabolism has been studied mainly in bacteria while remaining largely uncharacterized in eukaryotes. It has recently been suggested that poly-P metabolism is connected to that of highly phosphorylated inositol species (inositol pyrophosphates). Inositol pyrophosphates are molecules in which phosphate groups outnumber carbon atoms. Like poly-P they contain high energy bonds and play important roles in cell signaling. Here, we show that budding yeast mutants unable to produce inositol pyrophosphates have undetectable levels of poly-P. Our results suggest a prominent metabolic parallel between these two highly phosphorylated molecules. More importantly, we demonstrate that DDP1, encoding diadenosine and diphosphoinositol phosphohydrolase, possesses a robust poly-P endopolyphosphohydrolase activity. In addition, we prove that this is an evolutionarily conserved feature because mammalian Nudix hydrolase family members, the three Ddp1 homologues in human cells (DIPP1, DIPP2, and DIPP3), are also capable of degrading poly-P. 相似文献
4.
5.
6.
Background
An important goal of comparative genomics is the identification of functional elements through conservation analysis. Phylo-HMM was recently introduced to detect conserved elements based on multiple genome alignments, but the method has not been rigorously evaluated. 相似文献7.
8.
9.
Laschober GT Ruli D Hofer E Muck C Carmona-Gutierrez D Ring J Hutter E Ruckenstuhl C Micutkova L Brunauer R Jamnig A Trimmel D Herndler-Brandstetter D Brunner S Zenzmaier C Sampson N Breitenbach M Fröhlich KU Grubeck-Loebenstein B Berger P Wieser M Grillari-Voglauer R Thallinger GG Grillari J Trajanoski Z Madeo F Lepperdinger G Jansen-Dürr P 《Aging cell》2010,9(6):1084-1097
To identify new genetic regulators of cellular aging and senescence, we performed genome-wide comparative RNA profiling with selected human cellular model systems, reflecting replicative senescence, stress-induced premature senescence, and distinct other forms of cellular aging. Gene expression profiles were measured, analyzed, and entered into a newly generated database referred to as the GiSAO database. Bioinformatic analysis revealed a set of new candidate genes, conserved across the majority of the cellular aging models, which were so far not associated with cellular aging, and highlighted several new pathways that potentially play a role in cellular aging. Several candidate genes obtained through this analysis have been confirmed by functional experiments, thereby validating the experimental approach. The effect of genetic deletion on chronological lifespan in yeast was assessed for 93 genes where (i) functional homologues were found in the yeast genome and (ii) the deletion strain was viable. We identified several genes whose deletion led to significant changes of chronological lifespan in yeast, featuring both lifespan shortening and lifespan extension. In conclusion, an unbiased screen across species uncovered several so far unrecognized molecular pathways for cellular aging that are conserved in evolution. 相似文献
10.
Sex-specific expression of an evolutionarily conserved male regulatory gene, DMRT1, in birds 总被引:9,自引:0,他引:9
Shan Z Nanda I Wang Y Schmid M Vortkamp A Haaf T 《Cytogenetics and cell genetics》2000,89(3-4):252-257
Based on its Z-sex-chromosomal location and its structural homology to male sexual regulatory factors in humans (DMRT1 and DMRT2), Drosophila (Dsx), and Caenorhabditis elegans (Mab-3), chicken DMRT1 is an excellent candidate for a testis-determining factor in birds. The data we present provide further strong support for this hypothesis. By whole mount in situ hybridization chicken DMRT1 is expressed at higher levels in the male than in the female genital ridges during early stages of embryogenesis. Its expression becomes testis-specific after onset of sexual differentiation. Northern blot and RT PCR analysis showed that in adult birds DMRT1 is expressed exclusively in the testis. We propose that two gene dosages are required for testis formation in ZZ males, whereas expression from a single Z chromosome in ZW females leads to female sexual differentiation. 相似文献
11.
12.
13.
Nucleotide sequence of chicken myb proto-oncogene promoter region: detection of an evolutionarily conserved element.
下载免费PDF全文

P Urbánek M Dvorák P Bartun?k V Pecenka V Paces M Trávnícek 《Nucleic acids research》1988,16(24):11521-11530
The nucleotide sequence of the chicken myb proto-oncogene putative promoter region was determined and compared with the corresponding sequence of the mouse c-myb gene (1). 118 bp upstream from the initiation codon suggested by Gerondakis and Bishop (2) for the chicken c-myb protein, a 124-bp-long conserved element was found (92% identity in chicken and mouse sequences). Sequences homologous to this element were detected on Southern blots of restricted genomic DNAs from mouse, man, lizard, frog, and carp. No hybridization was observed with Drosophila, yeast, or Escherichia coli DNA. In human DNA, sequences homologous to this element were located at the 5' end of the c-myb gene, i.e. in the same position as in the chicken and mouse genes. Several lines of evidence suggest that the element is not a coding exon of a gene overlapping the c-myb gene. It may be of importance that one of the DNase I-sensitive sites and several c-myb mRNA cap sites localized recently in the mouse c-myb gene (3,4) lie within this region. It is suggested that this evolutionarily conserved element is involved in the regulation of myb proto-oncogene expression in vertebrates. 相似文献
14.
Schlickum S Moghekar A Simpson JC Steglich C O'Brien RJ Winterpacht A Endele SU 《Genomics》2004,83(2):254-261
The leucine zipper-, EF-hand-containing transmembrane protein 1 (LETM1) has recently been cloned in an attempt to identify genes deleted in Wolf-Hirschhorn syndrome (WHS), a microdeletion syndrome characterized by severe growth and mental retardation, hypotonia, seizures, and typical facial dysmorphic features. LETM1 is deleted in almost all patients with the full phenotype and has recently been suggested as an excellent candidate gene for the seizures in WHS patients. We have shown that LETM1 is evolutionarily conserved throughout the eukaryotic kingdom and exhibits homology to MDM38, a putative yeast protein involved in mitochondrial morphology. Using LETM1-EGFP fusion constructs and an anti-rat LetM1 polyclonal antibody we have demonstrated that LETM1 is located in the mitochondria. The present study presents information about a possible function for LETM1 and suggests that at least some (neuromuscular) features of WHS may be caused by mitochondrial dysfunction. 相似文献
15.
Functional analysis of the Arabidopsis PLDZ2 promoter reveals an evolutionarily conserved low-Pi-responsive transcriptional enhancer element 总被引:1,自引:0,他引:1
Oropeza-Aburto A Cruz-Ramírez A Acevedo-Hernández GJ Pérez-Torres CA Caballero-Pérez J Herrera-Estrella L 《Journal of experimental botany》2012,63(5):2189-2202
16.
17.
Yang Wang Rebecca Mercier Tom C. Hobman Paul LaPointe 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2013,1833(12):2673-2681
RNAi is a highly conserved mechanism in almost every eukaryote with a few exceptions including the model organism Saccharomyces cerevisiae. A recent study showed that the introduction of the two core components of canonical RNAi systems, Argonaute and Dicer, from another budding yeast, Saccharomyces castellii, restores RNAi in S. cerevisiae. We report here that a functional RNAi system can be reconstituted in yeast with the introduction of only S. castellii Dicer and human Argonaute2. Interestingly, whether or not TRBP2 was present, human Dicer was unable to restore RNAi with either S. castellii or human Argonaute. Contrary to previous reports, we find that human Dicer, TRBP2 and Argonaute2 are not sufficient to reconstitute RNAi in yeast when bona fide RNAi precursors are co-expressed. We and others have previously reported that Hsp90 regulates conformational changes in human and Drosophila Argonautes required to accommodate the loading of dsRNA duplexes. Here we show that the activities of both human and S. castellii Argonaute are subject to Hsp90 regulation in S. cerevisiae. In summary, our results suggest that regulation of the RNAi machinery by Hsp90 may have evolved at the same time as ancestral RNAi. 相似文献
18.
In eukaryotes, it is generally assumed that translation initiation occurs at the AUG codon closest to the messenger RNA 5' cap. However, in certain cases, initiation can occur at codons differing from AUG by a single nucleotide, especially the codons CUG, UUG, GUG, ACG, AUA and AUU. While non-AUG initiation has been experimentally verified for a handful of human genes, the full extent to which this phenomenon is utilized--both for increased coding capacity and potentially also for novel regulatory mechanisms--remains unclear. To address this issue, and hence to improve the quality of existing coding sequence annotations, we developed a methodology based on phylogenetic analysis of predicted 5' untranslated regions from orthologous genes. We use evolutionary signatures of protein-coding sequences as an indicator of translation initiation upstream of annotated coding sequences. Our search identified novel conserved potential non-AUG-initiated N-terminal extensions in 42 human genes including VANGL2, FGFR1, KCNN4, TRPV6, HDGF, CITED2, EIF4G3 and NTF3, and also affirmed the conservation of known non-AUG-initiated extensions in 17 other genes. In several instances, we have been able to obtain independent experimental evidence of the expression of non-AUG-initiated products from the previously published literature and ribosome profiling data. 相似文献
19.
We previously identified Gasz (a germ cell-specific gene encoding a protein containing four ankyrin repeats, a sterile-alpha motif, and a basic leucine zipper) in six mammalian species. Here, we report GASZ orthologs in pufferfish (Fugu rubripes), zebrafish (Danio verio), and frog (Xenopus laevis). Sequences of the three Gasz cDNAs were determined by database mining and 5'- and 3'-rapid amplification of cDNA ends (RACE) followed by sequencing. The three orthologous vertebrate genes encode proteins structurally similar to mammalian GASZ and contain the characteristic four ankyrin repeats (ANKs) and sterile-alpha motif (SAM). Their ANK and SAM domains share 55- 74% and 38-55% amino acid identity with those in human GASZ, respectively. Similar to human and mouse Gasz genes, pufferfish Gasz is composed of 13 exons, spanning approximately 12 kilobases, and flanked by Cftr at its 5'-end and Wnt2 at its 3'-end. Northern and Western blot analyses detect frog Gasz expression only in testis and ovary. In situ hybridization and immunohistochemical analyses show that frog Gasz mRNA and protein expression is confined to pachytene spermatocytes in the testis and to oocytes in the ovary. In frog oocytes, GASZ protein appears to localize to a cytoplasmic structure resembling the Balbiani body, a postulated mRNA transport organizer in the cytoplasm. The high evolutionary conservation and germ cell specificity suggest that GASZ plays an essential role in gametogenesis. The data presented here are important for future studies of the physiological roles of GASZ using fish and amphibians as animal models. 相似文献
20.
Sin1: an evolutionarily conserved component of the eukaryotic SAPK pathway. 总被引:5,自引:0,他引:5
下载免费PDF全文

M G Wilkinson T S Pino S Tournier V Buck H Martin J Christiansen D G Wilkinson J B Millar 《The EMBO journal》1999,18(15):4210-4221