首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A topology map of a membrane protein defines the location of transmembrane helices and the orientation of soluble domains relative to the membrane. In the absence of a high-resolution structure, a topology map is an essential guide for studying structure-function relationships. Although these maps can be predicted directly from amino acid sequence, the predictions are more accurate if combined with experimental data, which are usually obtained by fusing a reporter protein to the C-terminus of the protein. However, as reporter proteins are large, they cannot be used to report on the cytoplasmic/periplasmic location of the N-terminus of a protein. Here, we show that the bimolecular split-green fluorescent protein complementation system can overcome this limitation and can be used to determine the location of both the N- and C-termini of inner membrane proteins in Escherichia coli.  相似文献   

2.
We have developed a periplasmic fluorescent reporter protein suitable for high-throughput membrane protein topology analysis in Escherichia coli. The reporter protein consists of a single chain (scFv) antibody fragment that binds to a fluorescent hapten conjugate with high affinity. Fusion of the scFv to membrane protein sites that are normally exposed in the periplasmic space tethers the scFv onto the inner membrane. Following permealization of the outer membrane to allow diffusion of the fluorescent hapten into the periplasm, binding to the anchored scFv renders the cells fluorescent. We show that cell fluorescence is an accurate and sensitive reporter of the location of residues within periplasmic loops. For topological analysis, a set of nested deletions in the membrane protein gene is employed to construct two libraries of gene fusions, one to the scFvand one to the cytoplasmic reporter green fluorescent protein (GFP). Fluorescent clones are isolated by flow cytometry and the sequence of the fusion junctions is determined to identify amino acid residues within periplasmic and cytoplasmic loops, respectively. We applied this methodology to the topology analysis of E. coli TatC protein for which previous studies had led to conflicting results. The ease of screening libraries of fusions by flow cytometry enabled the rapid identification of almost 90 highly fluorescent scFv and GFP fusions, which, in turn, allowed the fine mapping of TatC membrane topology.  相似文献   

3.
A genetic system for directly synthesizing eukaryotic membrane proteins in Escherichia coli and assessing their ability to insert into the bacterial cytoplasmic membrane is described. The components of this system are the direct expression vector, pYZ4, and the mature beta-lactamase (BlaM) cassette plasmid, pYZ5, that can be used to generate translational fusions of BlaM to any synthesized membrane protein. The beta-subunit of sheep-kidney Na,K-ATPase (beta NKA), a class-II plasma membrane protein, was synthesized in E. coli using pYZ4, and BlaM was fused to a normally extracellular portion of it. The fusion protein conferred ampicillin resistance on individual host cells, indicating that the BlaM portion had been translocated to the bacterial periplasm, and that, by inference, the eukaryotic plasma-membrane protein can insert into the bacterial cytoplasmic membrane. A series of 31 beta NKA::BlaM fusion proteins was isolated and characterised to map the topology of the eukaryotic plasma membrane protein with respect to the bacterial cytoplasmic membrane. This analysis revealed that the organisation of the beta NKA in the E. coli cytoplasmic membrane was indistinguishable from that in its native plasma membrane.  相似文献   

4.
Tripartite ATP-independent periplasmic ('TRAP') transporters are a novel group of bacterial and archaeal secondary solute uptake systems which possess a periplasmic binding protein, but which are unrelated to ATP-binding cassette (ABC) systems. In addition to the binding protein, TRAP transporters contain two integral membrane proteins or domains, one of which is 40-50 kDa with 12 predicted transmembrane (TM) helices, thought to be the solute import protein, while the other is 20-30 kDa and of unknown function. Using a series of plasmid-encoded beta-lactamase fusions, we have determined the topology of DctQ, the smaller integral membrane protein from the high-affinity C4-dicarboxylate transporter of Rhodobacter capsulatus, which to date is the most extensively characterised TRAP transporter. DctQ was predicted by several topology prediction programmes to have four TM helices with the N- and C-termini located in the cytoplasm. The levels of ampicillin resistance conferred by the fusions when expressed in Escherichia coli were found to correlate with this predicted topology. The data have provided a topological model which can be used to test hypotheses concerning the function of the different regions of DctQ and which can be applied to other members of the DctQ family.  相似文献   

5.
The membrane topologies of the six subunits of Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae were determined by a combination of topology prediction algorithms and the construction of C-terminal fusions. Fusion expression vectors contained either bacterial alkaline phosphatase (phoA) or green fluorescent protein (gfp) genes as reporters of periplasmic and cytoplasmic localization, respectively. A majority of the topology prediction algorithms did not predict any transmembrane helices for NqrA. A lack of PhoA activity when fused to the C terminus of NqrA and the observed fluorescence of the green fluorescent protein C-terminal fusion confirm that this subunit is localized to the cytoplasmic side of the membrane. Analysis of four PhoA fusions for NqrB indicates that this subunit has nine transmembrane helices and that residue T236, the binding site for flavin mononucleotide (FMN), resides in the cytoplasm. Three fusions confirm that the topology of NqrC consists of two transmembrane helices with the FMN binding site at residue T225 on the cytoplasmic side. Fusion analysis of NqrD and NqrE showed almost mirror image topologies, each consisting of six transmembrane helices; the results for NqrD and NqrE are consistent with the topologies of Escherichia coli homologs YdgQ and YdgL, respectively. The NADH, flavin adenine dinucleotide, and Fe-S center binding sites of NqrF were localized to the cytoplasm. The determination of the topologies of the subunits of Na+-NQR provides valuable insights into the location of cofactors and identifies targets for mutagenesis to characterize this enzyme in more detail. The finding that all the redox cofactors are localized to the cytoplasmic side of the membrane is discussed.  相似文献   

6.
The Escherichia coli serine chemoreceptor (Tsr) is a protein with a simple topology consisting of two membrane-spanning sequences (TM1 and TM2) separating a large periplasmic domain from N-terminal and C-terminal cytoplasmic regions. We analyzed the contributions of several sequence elements to the cytoplasmic localization of the C-terminal domain by using chemoreceptor-alkaline phosphatase gene fusions. The principal findings were as follows. (i) The cytoplasmic localization of the C-terminal domain depended on TM2 but was quite tolerant of mutations partially deleting or introducing charged residues into the sequence. (ii) The basal level of C-terminal domain export was significantly higher in proteins with the wild-type periplasmic domain than in derivatives with a shortened periplasmic domain, suggesting that the large size of the wild-type domain promotes partial membrane misinsertion. (iii) The membrane insertion of deletion derivatives with a single spanning segment (TM1 or TM2) could be controlled by either an adjacent positively charged sequence or an adjacent amphipathic sequence. The results provide evidence that the generation of the Tsr membrane topology is an overdetermined process directed by an interplay of sequences promoting and opposing establishment of the normal structure.  相似文献   

7.
The Escherichia coli Tat system mediates Sec-independent export of protein precursors bearing twin arginine signal peptides. Formate dehydrogenase-N is a three-subunit membrane-bound enzyme, in which localization of the FdnG subunit to the membrane is Tat dependent. FdnG was found in the periplasmic fraction of a mutant lacking the membrane anchor subunit FdnI, confirming that FdnG is located at the periplasmic face of the cytoplasmic membrane. However, the phenotypes of gene fusions between fdnG and the subcellular reporter genes phoA (encoding alkaline phosphatase) or lacZ (encoding beta-galactosidase) were the opposite of those expected for analogous fusions targeted to the Sec translocase. PhoA fusion experiments have previously been used to argue that the peripheral membrane DmsAB subunits of the Tat-dependent enzyme dimethyl sulphoxide reductase are located at the cytoplasmic face of the inner membrane. Biochemical data are presented that instead show DmsAB to be at the periplasmic side of the membrane. The behaviour of reporter proteins targeted to the Tat system was analysed in more detail. These data suggest that the Tat and Sec pathways differ in their ability to transport heterologous passenger proteins. They also suggest that caution should be observed when using subcellular reporter fusions to determine the topological organization of Tat-dependent membrane protein complexes.  相似文献   

8.
Numerous sequences of the cytochrome bd quinol oxidase (cytochrome bd) have recently become available for analysis. The analysis has revealed a small number of conserved residues, a new topology for subunit I and a phylogenetic tree involving extensive horizontal gene transfer. There are 20 conserved residues in subunit I and two in subunit II. Algorithms utilizing multiple sequence alignments predicted a revised topology for cytochrome bd, adding two transmembrane helices to subunit I to the seven that were previously indicated by the analysis of the sequence of the oxidase from E. coli. This revised topology has the effect of relocating the N-terminus and C-terminus to the periplasmic and cytoplasmic sides of the membrane, respectively. The new topology repositions I-H19, the putative ligand for heme b595, close to the periplasmic edge of the membrane, which suggests that the heme b595/heme d active site of the oxidase is located near the outer (periplasmic) surface of the membrane. The most highly conserved region of the sequence of subunit I contains the sequence GRQPW and is located in a predicted periplasmic loop connecting the eighth and ninth transmembrane helices. The potential importance of this region of the protein was previously unsuspected, and it may participate in the binding of either quinol or heme d. There are two very highly conserved glutamates in subunit I, E99 and E107, within the third transmembrane helix (E. coli cytochrome bd-I numbering). It is speculated that these glutamates may be part of a proton channel leading from the cytoplasmic side of the membrane to the heme d oxygen-reactive site, now placed near the periplasmic surface. The revised topology and newly revealed conserved residues provide a clear basis for further experimental tests of these hypotheses. Phylogenetic analysis of the new sequences of cytochrome bd reveals considerable deviation from the 16sRNA tree, suggesting that a large amount of horizontal gene transfer has occurred in the evolution of cytochrome bd.  相似文献   

9.
The topology of the cytochrome b subunit of the bc1 complex from Rhodobacter sphaeroides has been examined by generating gene fusions with alkaline phosphatase. Gene fusions were generated at random locations within the fbcB gene encoding the cytochrome b subunit. These fusion products were expressed in Escherichia coli and were screened for alkaline phosphatase activity on chromogenic plates. 33 in-frame fusions which showed activity were further characterized. The fusion junctions of all those fusions which had a high specific activity were clustered in three regions of the cytochrome b polypeptide, and thus these regions were tentatively assigned as being near the periplasmic surface. The data are consistent with a model containing eight transmembrane helices. In order to explore the validity of the gene fusion approach for a protein not normally expressed in E. coli, the topology of the L-subunit of the photosynthetic reaction center from R. sphaeroides was also explored using phoA gene fusions. A similar protocol was used as with the cytochrome b subunit. The gene fusions with high specific activity were shown to be in regions of the L-subunit polypeptide known to be at or near the periplasmic surface, as defined by the high resolution structure determined by X-ray crystallography. These data demonstrate the utility of this approach for determining membrane protein topology and extend potential applications to include at least some proteins not normally expressed in E. coli.  相似文献   

10.
The amino acid sequence of the sodium ion-dependent citrate transporter CitS of K. pneumoniae contains 12 hydrophobic stretches that could form membrane-spanning segments. A previous analysis of the membrane topology in Escherichia coli using the PhoA gene fusion technique indicated that only nine of these hydrophobic segments span the membrane, while three segments, Vb, VIII and IX, were predicted to have a periplasmic location (Van Geest, M., and Lolkema, J. S. (1996) J. Biol. Chem. 271, 25582-25589). A topology study of C-terminally truncated CitS molecules in dog pancreas microsomes revealed that the protein traverses the endoplasmic reticulum membrane 11 times. In agreement with the PhoA fusion data, segment Vb was predicted to have a periplasmic location, but, in contrast, segments VIII and IX were found to be membrane-spanning (Van Geest, M., Nilsson, I., von Heijne, G., and Lolkema, J. S. (1999) J. Biol. Chem. 274, 2816-2823). In the present study, using site-directed Cys labeling, the topology of segments VIII and IX in the full-length CitS protein was determined in the E. coli membrane. Engineered cysteine residues in the loop between the two segments were accessible to a membrane-impermeable thiol reagent exclusively from the cytoplasmic side of the membrane, demonstrating that transmembrane segments (TMSs) VIII and IX are both membrane-spanning. It follows that the folding of CitS in the E. coli and endoplasmic reticulum membrane is the same. Cysteine accessibility studies of CitS-PhoA fusion molecules demonstrated that in the E. coli membrane segment VIII is exported to the periplasm in the absence of the C-terminal CitS sequences, thus explaining why the PhoA fusions do not correctly predict the topology. An engineered cysteine residue downstream of TMS VIII moved from a periplasmic to a cytoplasmic location when the fusion protein containing TMSs I-VIII was extended with segment IX. Thus, downstream segment IX is both essential and sufficient for the insertion of segment VIII of CitS in the E. coli membrane.  相似文献   

11.
Membrane topology of the Mep/Amt family of ammonium transporters   总被引:14,自引:0,他引:14  
The Mep/Amt proteins constitute a new family of transport proteins that are ubiquitous in nature. Members from bacteria, yeast and plants have been identified experimentally as high-affinity ammonium transporters. We have determined the topology of AmtB, a Mep/Amt protein from Escherichia coli, as a representative protein for the complete family. This was established using a minimal set of AmtB-PhoA fusion proteins with a complementary set of AmtB-LacZ fusions. These data, accompanied by an in silico analysis, indicate that the majority of the Mep/Amt proteins contain 11 membrane-spanning helices, with the N-terminus on the exterior face of the membrane and the C-terminus on the interior. A small subset, including E. coli AmtB, probably have an additional twelfth membrane-spanning region at the N-terminus. Addition of PhoA or LacZ alpha-peptide to the C-terminus of E. coli AmtB resulted in complete loss of transport activity, as judged by measurements of [14C]-methylammonium uptake. This C-terminal region, along with four membrane-spanning helices, contains multiple residues that are conserved within the Mep/Amt protein family. Structural modelling of the E. coli AmtB protein suggests a number of secondary structural features that might contribute to function, including a putative ammonium binding site on the periplasmic face of the membrane at residue Asp-182. The implications of these results are discussed in relation to the structure and function of the related human Rhesus proteins.  相似文献   

12.
The minimum structural information necessary to formulate and assess mechanistic models of integral membrane protein function is that of membrane topology. This paper characterizes the topological structure of the melibiose carrier of Escherichia coli based on constraints provided by genetic fusions to the compartment-specific reporter protein alkaline phosphatase. Twenty-eight unique chimeras exhibiting either low alkaline phosphatase activity (cytoplasmic location of the fusion joint) or high alkaline phosphatase activity (periplasmic location of the fusion joint) were characterized and used in conjunction with Goldman-Engelman-Steitz hydropathy analysis to model topological structure. The melibiose carrier is predicted to have a cytoplasmic amino terminus, two sets of six transmembrane domains separated by an unusually large cytoplasmic loop ("six-loop-six" arrangement), and a 45-residue cytoplasmic carboxyl tail. Remarkably, the identical six-loop-six arrangement is predicted from the hydrophobicity plots of the H(+)-coupled lactose, arabinose, xylose, and citrate cotransporters of E. coli, the glucose transporter from rat brain, the family of glucose transporters isolated from various human tissues and cell lines, and the human, mouse, and hamster multidrug resistance transporters (Henderson, P.J.F. (1990) Res. Microbiol. 141, 316-328; Maloney, P.C. (1990) Res. Microbiol. 141, 374-383). Such a broad degree of conservation (or convergence) suggests a distinct structural and/or mechanistic advantage associated with the six-loop-six motif. The nature of this advantage is as yet unknown.  相似文献   

13.
The transposon Tn10-encoded tetracycline resistance protein TetA is an integral membrane protein responsible for the export of tetracycline from the cytoplasmic to the periplasmic side of the inner membrane of Gram-negative bacteria. From a plot of the average hydrophobicity along the sequence of this protein, a two-dimensional membrane topology with 12 transmembrane domains may be predicted. Using plasmid-bearing Escherichia coli maxicells we specifically radiolabeled the TetA protein. The amino terminus of this membrane protein was shown not to be processed, and its location on the inner side of the cytoplasmic membrane was demonstrated by a newly developed use of a chemical method. Spheroplasts and inside-out vesicles of the TetA protein synthesizing maxicells were subjected to limited digestion by proteases of different specificities. The TetA protein was not accessible to proteases from the periplasmic side. On the inner side of the cytoplasmic membrane, the carboxyl terminus and four sites accessible to endoproteases could be identified. The cleavage sites are proposed to be localized between amino acid residues 60-70, 110-130, 180-200, and at amino acid 327. These results allow the definition of a model for the two-dimensional topology of the TetA protein.  相似文献   

14.
The lsp gene of Escherichia coli encodes the inner membrane enzyme, signal peptidase II (SPase II). SPase II is comprised of 164 amino acid residues and contains four hydrophobic domains. A series of lsp-phoA and lsp-lacZ gene fusions have been constructed in vitro to determine the topology of SPase II. The fusion junction for each of these gene fusions was determined by DNA sequencing. The lengths of the SPase II fragment in the fusions varied from 12 to 159 amino acid residues. Strains containing SPase II-PhoA fusions to the two predicted periplasmic loops exhibited higher levels of alkaline phosphatase activity than fusions to the predicted cytoplasmic domains. In contrast, SPase II-LacZ fusions at the cytoplasmic and the periplasmic domains of SPase II showed high and low levels of beta-galactosidase activity, respectively, a result opposite to those shown by SPase II-PhoA fusions located at precisely the same amino acid of SPase II. Taken together, these results strongly support the predicted model for SPase II topology, i.e. this enzyme spans the cytoplasmic membrane four times with both the amino and the carboxyl termini facing the cytoplasm.  相似文献   

15.
The Escherichia coli ProU system is a member of the ATP-binding cassette (ABC) superfamily of transporters. ProU consists of three components (ProV, ProW, and ProX) and functions as a high-affinity, binding protein-dependent transport system for the osmoprotectants glycine betaine and proline betaine. The ProW protein is the integral inner membrane component of the ProU system. Its hydropathy profile predicts seven transmembrane spans and a hydrophilic amino terminus of approximately 100 residues, and it suggests the presence of an amphiphilic alpha-helix (L-61 to F-97) in close proximity to the first strongly hydrophobic segment of ProW. We have studied the membrane topology of the ProW protein by the phoA and lacZ gene fusion approach. A collection of 10 different proW-phoA fusions with alkaline phosphatase activity and 8 different proW-lacZ fusions with beta-galactosidase activity were isolated in vivo after TnphoAB and TnlacZ mutagenesis of a plasmid-encoded proW gene. The recovery of both enzymatically active ProW-PhoA and ProW-LacZ hybrid proteins indicates that segments of ProW are exposed on both sides of the cytoplasmic membrane. To compare the enzymatic activities of each of the indicator proteins joined at a particular site in ProW, we switched the phoA and lacZ reporter genes in vitro in each of the originally in vivo-isolated gene fusions. A mirror-like pattern in the enzyme activity of the resulting new ProW-PhoA and ProW-LacZ hybrid proteins emerged, thus providing positive signals for the location of both periplasmic and cytoplasmic domains in ProW. The protease kallikrein digests the amino-terminal tail of a ProW-LacZ hybrid protein in spheroplasts, suggesting that the amino terminus of ProW is located on the periplasmic side of the cytoplasmic membrane. From these data, a two-dimensional model for ProW was constructed; this model consists of seven transmembrane alpha-helices and an unusual amino-terminal tail of approximately 100 amino acid residues that protrudes into the periplasmic space.  相似文献   

16.
The ars operon of the conjugative R-factor R773 encodes an oxyanion pump that catalyzes extrusion of arsenicals from cells of Escherichia coli. The oxyanion translocation ATPase is composed of two polypeptides, the catalytic ArsA protein and the intrinsic membrane protein, ArsB. The topology of regions of the ArsB protein in the inner membrane was determined using a variety of gene fusions. Random gene fusions with lacZ and phoA were generated using transposon mutagenesis. A series of gene fusions with blaM were constructed in vitro using a beta-lactamase fusion vector. To localize individual segments of the ArsB protein, a ternary fusion method was developed, where portions of the arsB gene were inserted in-frame between the coding regions for two heterologous proteins, in this case a portion of a newly identified arsD gene and the blaM sequence encoding the mature beta-lactamase. The location of a periplasmic loop was determined from V8 protease digestion of an ArsA-ArsB chimera. From analysis of data from 26 fusions, a topological model of the ArsB protein with 12 membrane-spanning regions is proposed.  相似文献   

17.
The tetracycline resistance gene of pBR322 encodes a 41-kDa inner membrane protein (TetA) that acts as a tetracycline/H+ antiporter. Based on hydrophobicity profiles, we identified 12 potential transmembrane segments in TetA. We used oligonucleotide deletion mutagenesis to fuse alkaline phosphatase (PhoA) to the C-terminal edge of each of the predicted periplasmic and cytoplasmic segments of TetA. In general, the PhoA activities of the TetA-PhoA fusions support a TetA topology model consisting of 12 transmembrane segments with the N and C termini in the cytoplasm. However, several TetA-PhoA fusions have unexpected properties. One PhoA fusion to a predicted cytoplasmic segment (C6) has high activity. However, previous protease accessibility studies on the related Tn10 TetA protein indicated that C6 is cytoplasmically localized as predicted (Eckert, B., and Beck, C. F. (1989) J. Biol. Chem. 264, 11663-11670). PhoA fusions to three predicted periplasmic segments (P1, P2, and P5) have low to intermediate activity. In each case, the preceding transmembrane segment (TM1, TM3, and TM9) contains an aspartate (Asp17, Asp86, and Asp287). We show that these aspartates act like signal sequence mutations for PhoA export: (i) Asp----Ala mutations increase the PhoA activity of fusions to P1, P2, and P5. (ii) The signal sequence mutation suppressor prlA402 increases the PhoA activity of these same fusions. We also show that the aspartates in TM1, TM3, and TM9 are critical for wild-type TetA function; they are conserved in related TetA proteins and Asp----Ala mutations reduce or eliminate tetracycline resistance. The properties of the anomalous TetA-PhoA fusions suggest that TetA sequences C-terminal to some cytoplasmic and periplasmic segments are required for the proper localization of those segments, i.e. long range interactions may be more important in determining the membrane topology of TetA than suggested in some general models.  相似文献   

18.
Zhang J  Barquera B  Gennis RB 《FEBS letters》2004,561(1-3):58-62
The cytochrome bd quinol oxidase is a component of the respiratory chain of many prokaryotes. The enzyme contains two subunits, CydA and CydB, which were initially predicted based on the sequence of the Escherichia coli oxidase to have seven and eight transmembrane spans, respectively. More recently, the topological model of CydA was revised to predict nine transmembrane helices, based on additional sequence information from other organisms. In the current work, the topology of the E. coli oxidase was experimentally examined using beta-lactamase gene fusions. The results confirm the revised topology, which places the oxygen reactive site near the periplasmic surface.  相似文献   

19.
The transporter SbtA is a high affinity Na+-dependent HCO3- uptake system present in a majority of cyanobacterial clades. It functions in conjunction with CO2 uptake systems and other HCO3- uptake systems to allow cyanobacteria to accumulate high levels of HCO3- used to support efficient photosynthetic CO2 fixation via the CO2 concentrating mechanism in these species. The phoA/lacZ fusion reporter method was used to determine the membrane topology of the cyanobacterial bicarbonate transporter, SbtA (predicted size of ~39.7 kD), cloned from the freshwater strain, Synechocystis PCC6803. The structure conforms to a model featuring 10 transmembrane helices (TMHs), with a distinct 5+5 duplicated structure. Both the N- and C-terminus are outside the cell and the second half of the protein is inverted relative to the first. The first putative helix appears to lack sufficient topogenic signals for its correct orientation in the membrane and instead relies on the presence of later helices. The cytoplasmic loop between helices 5 and 6 is a likely location for regulatory mechanisms that could govern activation of the transporter, and the cytoplasmic loop between helices 9 and 10 also contains some conserved putative regulatory residues.  相似文献   

20.
The Rhizobium meliloti dctA gene encodes the C4-dicarboxylate permease which mediates uptake of C4-dicarboxylates, both in free-living and symbiotic cells. Based on the hydrophobicity of the DctA protein, 12 putative membrane spanning regions were predicted. The membrane topology was further analysed by isolating in vivo fusions of DctA to Escherichia coli alkaline phosphatase (PhoA) and E. coli β-galactosidase (LacZ). Of 10 different fusions 7 indicated a periplasmic and 3 a cytoplasmic location of the corresponding region of the DctA protein. From these data a two-dimensional model of DctA was constructed which comprised twelve transmembrane α-helices with the amino-terminus and the carboxy-terminus located in the cytoplasm. In addition, four conserved amino acid motifs present in many eukaryotic and prokaryotic transport proteins were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号