首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Subfamily Barnadesioideae (Asteraceae) consists of nine genera and 91 species endemic to South America. They include annual and perennial herbs, arching shrubs and trees up to 30 m tall. Presumed sister to all other Asteraceae, its intergeneric relationships are key to understanding the early evolution of the family. Results of the only molecular study on the subfamily conflict with relationships inferred from morphology. We investigate inter- and intrageneric relationships in Barnadesioideae with novel DNA sequence data and morphological characters using parsimony, likelihood and Bayesian inference. All results verify Barnadesioideae as monophyletic and sister to the rest of the family. A basal split within the subfamily is recognized, with Chuquiraga, Doniophyton and Duseniella in one clade, and Arnaldoa, Barnadesia, Dasyphyllum, Fulcaldea, Huarpea and possibly Schlechtendalia in another. The largest genus, Dasyphyllum, is revealed as biphyletic with the two clades separating along subgeneric and geographic lines. Schlechtendalia, suggested as the earliest diverging lineage of the subfamily by morphological studies and parsimony analyses, is found in a more derived position under model-based inference methods. Competing phylogenetic hypotheses, both previous and present, are evaluated using likelihood-based tests. Evolutionary trends within Barnadesioideae are inferred: hummingbird pollination has developed convergently at least three times. An early vicariance in the subfamily’s distribution is revealed. X = 9 is supported as the ancestral base chromosome number for both Barnadesioideae and the family as a whole.  相似文献   

3.
中国山矾属一新种   总被引:1,自引:0,他引:1  
潮安山矾新种图1SymplocoschaoanensisF.G.WangetH.G.Ye,sp.nov.(subg.Hopea)Fig.1 SpeciessimilisS.euryoidiHand.-Mazz.,quaramulispubescentibus,floresolitario,fructibuscylin-dricisdiffert. Guangdong(广东):ChaoanXian(潮安县),FenghuangMountain(凤凰山),alt.1000-1200m.H.G.Ye3986(holotype,IBSC). Evergreenshrubs,2-3mhigh.Branchesterete,glabrousandblackish.Leavesalternate,thickleathery,elliptic,obovateornarrowlyobovate,1.5-3.4cmlong,0.7-1.5cmbroad,apexacute,rarelyacuminat…  相似文献   

4.
中国山矾属一新种   总被引:1,自引:0,他引:1  
乌饭树叶山矾新种图1 SymplocosvacciniifoliaH.S.ChenetH.G.Ye,sp.nov.(subg.Hopeasect.Palaeosymplocos).TYPE:China.Guangdong:Yangchun,Bajiatown,Xianjiadong,altitude700m,Oct.27,2001,H.G.Yeetc.,6547.(holotype,IBSC).Figure1. SpeciesnovaS.kwangsiensiMerr.exH.L.Liaffinis,sedabearamulis,petiolispedunculisquepubescentibus,staminibus14-16,filamentisteretibus,liberis,ovariobilocularidiffert. Shrubs1-3mtall.Branchletterete,brownanddenselypubescentwhenyoung.Leavessimple,alter…  相似文献   

5.
Trogidae constitute a monophyletic and biologically unique family within Scarabaeoidea, being the only keratinophagous group in the superfamily. Traditionally, the family has been divided into three distinctive genera, Polynoncus Burmeister, Omorgus Erichson and Trox Fabricius. Although the taxonomy of the group is relatively well studied, changes to the existing classification have recently been proposed and the family as currently constituted has not been subjected to phylogenetic analyses. Here we present a molecular phylogeny for this cosmopolitan family based on three partially sequenced gene regions: 16S rRNA, 18S rRNA and 28S rRNA (domain 2). Included in the analyses are representatives belonging to four of the five extant genera (and three of the four subgenera) from all major zoogeographic regions, representing about 20% of the known trogid species diversity in the family. Phylogenetic analyses performed included parsimony and Bayesian inference. We deduce their historical biogeography by using trogid fossils as calibration points for divergence estimates. Our analyses resolved relationships between and within genera and subgenera that are largely congruent with existing phylogeny hypotheses based on morphological data. We recovered four well‐supported radiations: Polynoncus, Omorgus, Holarctic Trox and African Phoberus MacLeay. On the basis of this study, it is proposed that taxonomic changes to the generic classification of the family be made. The subgenera Trox and Phoberus should be elevated to genera to include the Holarctic and all the Afrotropical species, respectively, and Afromorgus returned to subgeneric rank. Estimates of divergence time are consistent with a Pangaean origin of the family in the Early Jurassic. The subsequent diversification of the major lineages is largely attributed to the break‐up of Pangaea and Gondwana in the Middle Jurassic and early Late Cretaceous, respectively.  相似文献   

6.

Background

Phylogenetic relationships within Gastrotricha are poorly known. Attempts to shed light on this subject using morphological traits have led to hypotheses lacking satisfactory statistical support; it seemed therefore that a different approach was needed.

Methodology/Principal Findings

In this paper we attempt to elucidate the relationships within the taxonomically vast family Thaumastodermatidae (Macrodasyida) using molecular sequence data. The study includes representatives of all the extant genera of the family and for the first time uses a multi-gene approach to infer evolutionary liaisons within Gastrotricha. The final data set comprises sequences of three genes (18S, 28S rDNA and COI mtDNA) from 41 species, including 29 thaumastodermatids, 11 non-thaumastodermatid macrodasyidans and a single chaetonotidan. Molecular data was analyzed as a combined set of 3 genes and as individual genes, using Bayesian and maximum likelihood approaches. Two different outgroups were used: Xenotrichula intermedia (Chaetonotida) and members of the putative basal Dactylopodola (Macrodasyida). Thaumastodermatidae and all other sampled macrodasyidan families were found monophyletic except for Cephalodasyidae. Within Thaumastodermatidae Diplodasyinae and Thaumastodermatinae are monophyletic and so are most genera. Oregodasys turns out to be the most basal group within Thaumastodermatinae in analyses of the concatenated data set as well as in analyses of the nuclear genes. Thaumastoderma appears as the sister taxon to the remaining species. Surprisingly, Tetranchyroderma is non-monophyletic in our analyses as one group of species clusters with Ptychostomella while another appears as the sister group of Pseudostomella.

Conclusions/Significance

Results in general agree with the current classification; however, a revision of the more derived thaumastodermatid taxa seems necessary. We also found that the ostensible COI sequences from several species do not conform to the general invertebrate or any other published mitochondrial genetic code; they may be mitochondrially derived nuclear genes (numts), or one or more modifications of the mitochondrial genetic code within Gastrotricha.  相似文献   

7.
A new species,Symplocos incahuasensis Sagást. & Dillon, is described and illustrated, and its relationships are discussed. A key to the small-leaved Peruvian species is provided.  相似文献   

8.
The traditional classification of Gymnopilus (Agaricales) recognizes two primary groups, Annulati and Gymnopilus, based on the presence or absence of a membranous partial veil. While our analyses of DNA sequence data from the nuclear ribosomal ITS1-5.8S-ITS2 (ITS) gene supports the monophyly of the genus, these traditional subgroups were not recovered. Five well-supported clades within the genus were identified through these analyses: 1) the spectabilis-imperialis group; 2) nevadensis-penetrans group; 3) a clade formed by G. underwoodii, G. validipes and G. cf. flavidellus; 4) aeruginosus-luteofolius group; and 5) lepidotus-subearlei group. Relationships among these subgroups were not resolved.  相似文献   

9.
10.
This paper presents phylogenies of the small but ecologically and horticulturally important Australian genus Correa (Rutaceae). Consensus phylogenies generated using parsimony were congruent with their counterparts generated by Bayesian analysis, although usually less well resolved. The phylogeny generated from the second internal transcribed spacer region of the nuclear ribosomal DNA supported the monophyly of Correa and identified two well supported clades (one comprising C. lawrenceana and C. baeuerlenii and the other containing all other species of the genus). Phylogenetic reconstructions based on the combined trnL-trnF spacer and the trnK intron (including the matK gene) regions of chloroplast DNA also supported the monophyly of Correa and of the C. lawrenceana/C. baeuerlenii clade, but the topology among the other species differed markedly from that in the ITS-based phylogeny. The major clades identified in the chloroplast phylogenies seemed to follow geographic patterns rather than species boundaries, with different samples of C. glabra bearing chloroplast genotypes from different clades. These patterns are likely to be because of independent evolution of the chloroplast and nuclear genomes, and are typical of cases of introgressive hybridisation among species or incomplete lineage sorting of chloroplast genomes leading to incongruence between chloroplast and nuclear phylogenies. Thus, the phylogenies based on nuclear DNA should reflect species relations better than the chloroplast phylogeny in Correa, and we propose a new subgeneric classification of the genus on the basis of the ITS-based phylogeny and morphology. Correa subgenus Persistens Othman, Duretto and G.J. Jord., containing C. lawrenceana and C. baeuerlenii, is formally described.  相似文献   

11.
Peterson KR  Pfister DH 《Mycologia》2010,102(6):1398-1416
Cyttaria species (Leotiomycetes, Cyttariales) are obligate, biotrophic associates of Nothofagus (Hamamelididae, Nothofagaceae), the southern beech. As such Cyttaria species are restricted to the southern hemisphere, inhabiting southern South America (Argentina and Chile) and southeastern Australasia (southeastern Australia including Tasmania, and New Zealand). The relationship of Cyttaria to other Leotiomycetes and the relationships among species of Cyttaria were investigated with newly generated sequences of partial nucSSU, nucLSU and mitSSU rRNA, as well as TEF1 sequence data and morphological data. Results found Cyttaria to be defined as a strongly supported clade. There is evidence for a close relationship between Cyttaria and these members of the Helotiales: Cordierites, certain Encoelia spp., Ionomidotis and to a lesser extent Chlorociboria. Order Cyttariales is supported by molecular data, as well as by the unique endostromatic apothecia, lack of chitin and highly specific habit of Cyttaria species. Twelve Cyttaria species are hypothesized, including all 11 currently accepted species plus an undescribed species that accommodates specimens known in New Zealand by the misapplied name C. gunnii, as revealed by molecular data. Thus the name C. gunnii sensu stricto is reserved for specimens occurring on N. cunninghamii in Australia, including Tasmania. Morphological data now support the continued recognition of C. septentrionalis as a species separate from C. gunnii. Three major clades are identified within Cyttaria: one in South America hosted by subgenus Nothofagus, another in South America hosted by subgenera Nothofagus and Lophozonia, and a third in South America and Australasia hosted by subgenus Lophozonia, thus producing a non-monophyletic grade of South American species and a monophyletic clade of Australasian species, including monophyletic Australian and New Zealand clades. Cyttaria species do not sort into clades according to their associations with subgenera Lophozonia and Nothofagus.  相似文献   

12.
To elucidate the phylogeny of the Dunaliellales sensu Ettl. the taxon often thought to be intermediate between primitive green flagellates such as the prasinophytes and the advanced chlorophycean algae, the sequences of the nuclear-encoded small subunit ribosomal RNA gene (18SrDNA) were determined and analyzed for five green algae, including three dunaliellalean algae. Phylogenetic trees based on 18SrDNA suggest that Oltmannsiellopsis viridis (Margraves et Steele) Chihara et Inouye represents an early divergence in the Ulvophyceae/Trebouxio-phyceae/Chlorophyceae clade and has no close relationship to any other green algae, as also suggested from ultrastructural characters. We propose Oltmannsiellopsidates ord. nov. for this genus. Hafniomonas and Polytomella are included in the clade which is characterized by clockwise basal bodies (CW group). The 18SrDNA trees suggest that multiple losses of the cell wall of the flagellate cell occurred in the CW group, and that the Dunaliellales sensu Ettl has a polyphyletic nature. This study also suggests that Planophita terrestns Groover et Hof-stetter (Chaetopeltidales) and Chaetophora incras-sata (Hudson) Hazen (Chaetophorales) are distinct lineages in the Chlorophyceae.  相似文献   

13.
中国山矾属一新种及新异名   总被引:1,自引:0,他引:1  
阳春山矾新种图1 SymplocosyangchunensisH.G.YeetXing,sp.nov.(subg.Symplocos)Figure1.TYPE:China.Guangdong:Yangchun,Heweimountain,altitude700m,Oct.26,2001,H.G.Ye6546(holotype,IBSC). HaecspeciesSymplocosconfusaeBrandaffinis,sedabeacorollisrubellis13-15mmlongis,filamentitubis8mmlongis,drupisellipsoideisurceolatis13-16mmlongisdiffert. Evergreentrees,8mtall.Twigscylindric,brownandglabrous.Leavessimple,alternate,leathery,estipulate;laminanarrowlyelliptictoelliptic,6-8.5×…  相似文献   

14.
15.
The phylogenetic relationships of calcareous dinoflagellates (i.e., Calciodinellaceae and Thoracosphaera) are investigated. Molecular data from the ribosomal 5.8S rRNA and highly conserved motifs of the ITS1 show Calciodinellaceae s.l. to be monophyletic when few non-calcareous taxa are included. They segregate into three monophyletic assemblages in a molecular analysis that considers the 5.8S rRNA and both the Internal Transcribed Spacer regions ITS1 and ITS2: a clade comprising species of Ensiculifera and Pentapharsodinium (E/P-clade), Scrippsiella s.l. (including fossil-based taxa such as Calciodinellum and Calcigonellum), and a heterogeneous group (T/P-clade) of calcareous (e.g., Thoracosphaera) and non-calcareous taxa (e.g., the highly toxic Pfiesteria). The potential to produce calcareous structures is considered as apomorphic within alveolates, and non-calcareous taxa nesting with calcareous dinoflagellates may have reduced calcification secondarily. Molecular results do not contradict general evolutionary scenarios provided by previous morphological (mainly paleontological) investigations.  相似文献   

16.
We investigated the phylogenetic relationships of species and subspecies of the cosmopolitan genus Pica using 813 bp of the mitochondrial genome (including portions of 16s rDNA, tRNA-Leu, and ND1). The phylogenetic relationships within the genus Pica revealed in our molecular analyses can be summarized as follows: (1). the Korean magpie (Pica pica sericea) appears basal within the genus Pica; (2). the European magpie (Pica pica pica) shows a close relationship to the Kamchatkan magpie (Pica pica camtschatica); (3). two North American species (Pica hudsonia and Pica nuttalli) shows a sister-group relationship; (4). most importantly, the European+Kamchatkan clade appears more closely related to the North American clade than to Korean magpies. Based on these results and genetic distance data, it is possible that members of an ancestral magpie lineage in East Asia initially moved north to form Kamchatkan magpies and then crossed the Bering land bridge to found North American taxa. At a later date, a group might have split off from Kamchatkan magpies and migrated west to form the Eurasian subspecies. The divergence between the two North American taxa appears to have happened no later than the divergence of Eurasian subspecies and both processes appear to have been relatively rapid. Rather than the formation of P. hudsonia by re-colonization from an Asian magpie ancestor, as suggested by, our data suggest a shared ancestry between P. hudsonia and P. nuttalli. Based on the above findings, including phylogenetic placement of P. hudsonia and P. nuttalli as nested within the larger Pica pica clade, and the lack of evidence suggesting reproductive isolation within the genus Pica, we believe that the current classification may be inaccurate. A more conservative classification would recognize one monophyletic species (i.e., P. pica) and treat P. nuttalli and P. hudsonia as subspecies (i.e., P. p. nuttalli and P. p. hudsonia). More extensive studies on the population genetics and biogeography of magpies should be conducted to better inform any taxonomic decisions.  相似文献   

17.
The phylogenetic relationships of Peniocereus (Cactaceae) species were studied using parsimony analyses of DNA sequence data. The plastid rpl16 and trnL-F regions were sequenced for 98 taxa including 17 species of Peniocereus, representatives from all genera of tribe Pachycereeae, four genera of tribe Hylocereeae, as well as from three additional outgroup genera of tribes Calymmantheae, Notocacteae, and Trichocereeae. Phylogenetic analyses support neither the monophyly of Peniocereus as currently circumscribed, nor the monophyly of tribe Pachycereeae since species of Peniocereus subgenus Pseudoacanthocereus are embedded within tribe Hylocereeae. Furthermore, these results show that the eight species of Peniocereus subgenus Peniocereus (Peniocereus sensu stricto) form a well-supported clade within subtribe Pachycereinae; P. serpentinus is also a member of this subtribe, but is sister to Bergerocactus. Moreover, Nyctocereus should be resurrected as a monotypic genus. Species of Peniocereus subgenus Pseudoacanthocereus are positioned among species of Acanthocereus within tribe Hylocereeae, indicating that they may be better classified within that genus. A number of morphological and anatomical characters, especially related to the presence or absence of dimorphic branches, are discussed to support these relationships.  相似文献   

18.
Parsimony analysis based on ITS sequence data was carried out to investigate the Hypochnicium punctulatum complex (Basidiomycota). The study gives full support to earlier, crossing test-based species delimitations. Altogether, 18 specimens were sequenced and their spore sizes plotted together with measurements from the corresponding type specimens. Spore sizes were found to cluster readily into four groups, all of which were supported by the phylogenetic analysis. However, in the case of H. punctulatum and H. albostramineum, the morphological delimitation is unsatisfactory and a zone of potential spore size overlap is shown to exist. The new combination Hypochnicium cremicolor is proposed for a species previously known as a small-spored taxon in the H. punctulatum complex, and H. caucasicum is shown to be a younger synonym to H. wakefieldiae. A key to the species is provided.  相似文献   

19.
Symplocos pachycarpa is described as new, and an illustration is provided. This species grows in cloud forests and oak-pine forests of Oaxaca and Guerrero, Mexico, and is most similar toS. citrea. A key is provided to distinguishS. pachycarpa from related Mexican species.  相似文献   

20.
BACKGROUND AND AIMS: The precise generic delimitation of the Rhaponticum group is not totally resolved. The lack of knowledge of the relationships between the basal genera of Centaureinae could imply that genera whose position is as yet unresolved could belong to the Rhaponticum group. On the other hand, the affinities among the genera that are considered as members of this group are not well known. The aim of the study is to contribute to the phylogenetic and generic delineation of the Rhaponticum group on the basis of molecular data. METHODS: Parsimony and Bayesian analyses of the combined sequences of one plastid (trnL-trnF) and two nuclear (ITS region and ETS) molecular markers were carried out. The results of these analyses are discussed in the light of the biogeographic history. KEY RESULTS: The Rhaponticum group appears as monophyletic, and closely related to the genus Klasea. The results confirm the preliminary generic delimitation of the Rhaponticum group, with the new incorporation of the genus Centaurothamnus. Ochrocephala is supported as a separate genus from Rhaponticum and, contrary to this, Acroptilon and Leuzea appear as merged into the genus Rhaponticum. Several nomenclatural rearrangements are made in Klasea and Rhaponticum. CONCLUSIONS: The new molecular evidence is consistent with the morphological and karyological data, and suggests particularly coherent biogeographic routes of migration and speciation processes for the genus Rhaponticum. The biogeographic inference proposes a Near East and/or Caucasian origin for the genus. Furthermore, representatives of Rhaponticum could have reached Europe in two different ways: (1) expansion across central Asia to eastern Europe, and (2) expansion through the Near East, North Africa and then to the Iberian Peninsula and the Alps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号