首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tribe Acacieae (Fabaceae: Mimosoideae) contains two genera, the monotypic African Faidherbia and the pantropical Acacia, which comprise about 1200 species with over 950 confined to Australia. As currently recognized, the genus Acacia is subdivided into three subgenera: subg. Acacia, subg. Aculeiferum, and the predominantly Australian subg. Phyllodineae. Morphological studies have suggested the tribe Acacieae and genus Acacia are artificial and have a close affinity to the tribe Ingeae. Based on available data there is no consensus on whether Acacia should be subdivided. Sequence analysis of the chloroplast trnK intron, including the matK coding region and flanking noncoding regions, indicate that neither the tribe Acacieae nor the genus Acacia are monophyletic. Two subgenera are monophyletic; section Filicinae of subgenus Aculeiferum does not group with taxa of the subgenus. Section Filicinae, eight Ingeae genera, and Faidherbia form a weakly supported paraphyletic grade with respect to subg. Phyllodineae. Acacia subg. Aculeiferum (s. s.) is sister to the grade. These data suggest that characters currently used to differentiate taxa at the tribal, generic, and subgeneric levels are polymorphic and homoplasious in cladistic analyses.  相似文献   

2.
3.
Phylogenetic relationships among the 22 genera of the palm subfamily Calamoideae were investigated using DNA sequence data from the nuclear ribosomal internal transcribed spacer (ITS) region and the chloroplast rps16 intron. The rps16 intron displayed low levels of variation, corroborating previous reports that the chloroplast genome of palms is highly conserved. High levels of within-individual polymorphism were identified in the ITS region, indicating that concerted evolution is not effectively homogenizing the ITS repeats. In the majority of cases, multiple clones from individuals resolved as monophyletic. However, the high levels of homoplasy in the ITS dataset, along with generally poor jackknife support for many clades, led to concerns that topologies obtained from these data might be unreliable. Nevertheless, congruence between trees based on ITS data alone and those based on rps16 intron data was high. Simultaneous analyses of both datasets yielded well-resolved topologies with high levels of jackknife support. A number of exciting groups emerged from the analyses: the African rattan clade comprising the endemic African rattan genera Laccosperma, Eremospatha, and Oncocalamus; the Lepidocaryeae-Raphia clade comprising the fan-leaved New World tribe Lepidocaryeae and the African genus Raphia; and the Asian clade comprising all Asian genera except Eugeissona. The position of Eugeissona was variable, although it did not resolve inside any of the three major clades mentioned above.  相似文献   

4.
BACKGROUND AND AIMS: Boragineae is one of the main tribes of Boraginaceae, but delimitation and intergeneric classification of this group are unclear and have not yet been studied using DNA sequences. In particular, phylogenetic relationships in Anchusa s.l. still need to be elucidated in order to assess its taxonomic boundaries with respect to the controversial segregate genera Hormuzakia, Gastrocotyle, Phyllocara and Cynoglottis. METHODS: Phylogenetic relationships among 51 taxa of tribe Boragineae were investigated by comparative sequencing of the trnL(UAA) intron of the plastid genome and of the ITS1 region of the nuclear ribosomal DNA. Exemplar taxa from 16 genera of Boragineae and all subgenera of Anchusa s.l. were included, along with two selected outgroups from tribes Lithospermeae and Cynoglosseae. KEY RESULTS: Phylogenies generated by maximum parsimony and combined ITS1-trnL sequences support the monophyly of the tribe and a split into two clades, Pentaglottis and the remainder of Boragineae. The latter contains two large monophyletic groups. The first consists of three moderately to well-supported branches, Borago-Symphytum, Pulmonaria-Nonea and Brunnera. In the Pulmonaria-Nonea subclade, the rare endemic Paraskevia cesatiana is sister to Pulmonaria, and Nonea appears to be paraphyletic with respect to Elizaldia. The second main group corresponds to the well-supported clade of Anchusa s.l., with the megaphyllic, polyploid herb Trachystemon orientalis as sister taxon, although with low support. Anchusa s.l. is highly paraphyletic to its segregate genera and falls into four subclades: (1) Phyllocara, Hormuzakia, Anchusa subgenus Buglossum and A. subgenus Buglossoides; (2) Gastrocotyle; (3) A. subgenus Buglossellum and Cynoglottis; and (4) A. subgenus Anchusa, Lycopsis and Anchusella. All species of Anchusa subg. Anchusa, including the South African A. capensis, are included in a single unresolved clade. Anchusa subgenus Limbata is also included here despite marked divergence in floral morphology. The low nucleotide variation of ITS1 suggests a recent partly adaptive radiation within this group. CONCLUSIONS: Molecular data show that nine of the usually accepted genera of the Boragineae consisting of two or more species are monophyletic: Anchusella, Borago, Brunnera, Cynoglottis, Gastrocotyle, Hormuzakia, Nonea, Pulmonaria and Symphytum. In addition, the tribe includes the four monotypic genera Paraskevia, Pentaglottis, Phyllocara and Trachystemon. The morphologically well-characterized segregate genera in Anchusa s.l. are all confirmed by DNA sequences and should be definitively accepted. Most of the traditionally recognized subgenera of Anchusa are also supported as monophyletic groups by both nuclear and plastid sequence data. In order to bring taxonomy in line with phylogeny, the institution of new, independent generic entities for subgenera Buglossum, Buglossellum and Buglossoides and a narrower but more natural concept of Anchusa are advocated.  相似文献   

5.
The Nymphaeaceae are one of the most important taxa for understanding the origin and evolution of primitive angiosperms due to its basal position in the cladograms of the angiosperms recently given based both on several gene sequences and on morphological characters, but phylogenetic relationships within the family have not as yet been resolved. The sequences of nrDNA ITS region of 11 species representing seven genera of the Nymphaeaceae and one outgroup, Ceratophyllum demersum, were used to reconstruct the phylogeny of the family using PAUP4.0b4A. Three most parsimonious trees (Length=1125, CI=0.7618 and RI=0.7214) were obtained. In the consensus tree: (1) Nelumbo was basal to the other genera with a bootstrap value of 100% and occupied an isolated position, so it could be separated from the Nymphaeaceae and placed in its own family, Nelumbonaceae, and its own order, Nelumbonales; (2) Nuphar was monophyletic, nested in the basal position of clade II and was strongly supported to be the sister group of the other genera (excluding Nelumbo) of the Nymphaeaceae, suggesting that its traditional inclusion in the Nymphaeaceae should be maintained; (3) Cabomba and Brasenia were sister group and formed a subclade with a bootstrap value of 99%, indicating their close affinity; (4) Nymphaea was strongly supported to be the sister group of a subclade comprising Euryale and Victoria with a bootstrap value of 94%, indicating that they should be placed in the Nymphaeaceae.  相似文献   

6.
Phylogenetic relationships among 13 genera of the subtribe Glycininae, two genera of the allied subtribe Diocleinae that were included within Glycininae by Polhill, and two genera of the subtribe Erythrininae as outgroups were inferred from chloroplast DNA rps16 intron sequence variation. Pairwise sequence divergence values ranged from identity between Teramnus mollis and T. micans and between T. flexilis and T. labialis to 7.89% between Pueraria wallichii and Pseudeminia comosa across all accessions. Phylogenies estimated using parsimony and neighbor-joining methods revealed that (1) Glycininae is monophyletic if Pachyrhizus and Calopogonium (both Diocleinae) are included within Glycininae; (2) the genus Teramnus is closely related to Glycine, and Amphicarpaea showed a sister relationship to the clade comprising Teramnus and Glycine; (3) the expanded Glycininae including two genera of Diocleinae is divided into three branches, temporarily named I (comprising the rest of the examined taxa), II (Pueraria wallichii), and III (Mastersia), but their relationships are equivocal; and (4) the genus Pueraria, regarded as a closely related genus to Glycine, is not monophyletic and should be divided into at least four genera (a hypothesis supported previously by Lackey).  相似文献   

7.
The phylogeny of Gardenieae (Rubiaceae) is evaluated using 70 morphological and anatomical characters and 81 terminal taxa. After successive reweighting of the characters and modified bootstrap tests the following is concluded. The position of the Diplosporinae genera Argocoffeopsis, Calycosiphonia, Cremaspora and Tricalysia with the genera belonging to the tribes Aulacocalyceae, Coffeeae, Octotropideae and Pavetteae, suggests that this subtribe does not belong in Gardenieae. Posoqueria is nested among outgroup genera and consequently is not a member of the tribe. Robbrecht & Puff's informal 'tetrad group' is monophyletic. Likewise, their 'Alibertia group' is supported as monophyletic, although slightly rearranged. On the other hand, their 'Aidia group' must he greatly expanded with several genera in order to be monophyletic, but the monophyly of this group is weakly supported. Several disputed genera should be included in Gardenieae ( Anomanthodia, Amaioua, Brachytome , and supposedly Bertiera ). Most inferred groups, however, exhibit low bootstrap values and should he viewed with caution.  相似文献   

8.
Abstract. The subfamily Ambleminae is the most diverse subfamily of fresh‐water mussels (order Unionoida), a globally diverse and ecologically prominent group of bivalves. About 250 amblemine species occur in North America; however, this diversity is highly imperiled, with the majority of species at risk. Assessing and protecting this diversity has been hampered by the uncertain systematics of this group. This study sought to provide an improved phylogenetic framework for the Ambleminae. Currently, 37 North American genera are recognized in Ambleminae. Previous phylogenetic studies of amblemines highlighted the need for more extensive sampling due to the uncertainties arising from polyphyly of many currently recognized taxa. The present study incorporated all amblemine genera occurring in North America north of the Rio Grande, with multiple species of most genera, including the type species for all but seven genera. A total of 192 new DNA sequences were obtained for three mitochondrial gene regions: COI, 16S, and ND1. In combination with published data, this produced a data matrix incorporating 357 gene sequences for 143 operational taxonomic units, representing 107 currently recognized species. Inclusion of published data provides additional taxa and a summary of present molecular evidence on amblemine phylogeny, if at the cost of increasing the amount of missing data. Parsimony and Bayesian analyses suggest that most amblemine genera, as currently defined, are polyphyletic. At higher taxonomic levels, the tribes Quadrulini, Lampsilini, and Pleurobemini were supported; the extent of Amblemini and the relationships of some genera previously assigned to that tribe remain unclear. The eastern North American amblemines appear monophyletic. Gonidea and some Eurasian taxa place as probable sister taxa for the eastern North American Ambleminae. The results also highlight problematic taxa of particular interest for further work.  相似文献   

9.
A recent phylogenetic study based on morphological, biochemical and early life history characters resurrected the genus Scartomyzon (jumprock suckers, c . eight−10 species) from Moxostoma (redhorse suckers, c . 10–11 species) and advanced the understanding of relationships among species in these two genera, and the genealogical affinities of these genera with other evolutionary lineages within the tribe Moxostomatini in the subfamily Catostominae. To further examine phylogenetic relationships among moxostomatin suckers, the complete mitochondrial (mt) cytochrome b gene was sequenced from all species within this tribe and representative outgroup taxa from the Catostomini and other catostomid subfamilies. Phylogenetic analysis of gene sequences yielded two monophyletic clades within Catostominae: Catostomus + Deltistes + Xyrauchen + Erimyzon + Minytrema and Moxostoma + Scartomyzon + Hypentelium + Thoburnia . Within the Moxostomatini, Thoburnia was either unresolved or polyphyletic; Thoburnia atripinnis was sister to a monophyletic Hypentelium . In turn, this clade was sister to a monophyletic clade containing Scartomyzon and Moxostoma . Scartomyzon was never resolved as monophyletic, but was always recovered as a polyphyletic group embedded within Moxostoma , rendering the latter genus paraphyletic if ' Scartomyzon ' continues to be recognized. Relationships among lineages within the Moxostoma and' Scartomyzon 'clade were resolved as a polytomy. To better reflect phylogenetic relationships resolved in this analysis, the following changes to the classification of the tribe Moxostomatini are proposed: subsumption of' Scartomyzon 'into Moxostoma ; restriction of the tribe Moxostomatini to Moxostoma ; resurrect the tribe Erimyzonini, containing Erimyzon and Minytrema , classified as incertae sedis within Catostominae; retain the tribe Thoburniini.  相似文献   

10.
A parsimony‐based phylogenetic analysis of eighty‐three morphological characters of adults and immatures of seventy representatives of the tribes and subfamilies of Membracidae and two outgroup taxa was conducted to evaluate the status and relationships of these taxa. Centrotinae apparently gave rise to Nessorhinini and Oxyrhachini (both formerly treated as subfamilies, now syn.n. and syn.reinst., respectively, of Centrotinae). In contrast to previous analyses, a clade comprising Nicomiinae, Centronodinae, Centrodontinae, and the unplaced genera Holdgatiella Evans, Euwalkeria Goding and Antillotolania Ramos was recovered, but relationships within this clade were not well resolved. Nodonica bispinigera, gen.n. and sp.n., is described and placed in Centrodontini based on its sister‐group relationship to a clade comprising previously described genera of this tribe. Membracinae and Heteronotinae were consistently monophyletic. Neither Darninae nor Smiliinae, as previously defined, was monophyletic on the maximally parsimonious cladograms, but constraining both as monophyletic groups required only one additional step. The monophyly of Stegaspidinae, including Deiroderes Ramos (unplaced in Membracidae), was supported on some but not all equally parsimonious cladograms. More detailed analyses of individual subfamilies, as well as morphological data on the undescribed immatures of several membracid tribes and genera, will be needed to elucidate relationships among tribes and genera. A key to the subfamilies and tribes is provided.  相似文献   

11.
The Aizoaceae is the largest family of leaf succulent plants, and most of its species are endemic to southern Africa. To evaluate subfamilial, generic, and tribal relationships, we produced two plastid DNA data sets for 91 species of Aizoaceae and four outgroups: rps16 intron and the trnL-F gene region (both the trnL intron and the trnL-F intergenic spacer). In addition, we generated two further plastid data sets for 56 taxa restricted to members of the Ruschioideae using the atpB-rbcL and the psbA-trnH intergenic spacers. In the combined tree of the rps16 intron and trnL-F gene region, three of the currently recognized subfamilies (Sesuvioideae, Mesembryanthemoideae, and Ruschioideae) are each strongly supported monophyletic groups. The subfamily Tetragonioideae is polyphyletic, with Tribulocarpus as sister to the Sesuvioideae and Tetragonia embedded in the Aizooideae. Our study showed that the group consisting of the Sesuvioideae, Aizooideae, and Tetragonioideae does not form a monophyletic entity. Therefore, it cannot be recognized as a separate family in order to accommodate the frequently used concept of the Mesembryanthemaceae or "Mesembryanthema," in which the subfamilies Mesembryanthemoideae and Ruschioideae are included. We also found that several genera within the Mesembryanthemoideae (Mesembryanthemum, Phyllobolus) are not monophyletic. Within the Ruschioideae, our study retrieved four major clades. However, even in the combined analysis of all four plastid gene regions, relationships within the largest of these four clades remain unresolved. The few nucleotide substitutions that exist among taxa of this clade point to a rapid and recent diversification within the arid winter rainfall area of southern Africa. We propose a revised classification for the Aizoaceae.  相似文献   

12.
The tribe Arctotideae (African Daisies), of the flowering plant family Compositae (Asteraceae), is a diverse and interesting group with a primarily southern African distribution (ca. 13 genera, 215 species) and many species in the Cape Floristic Region. It is divided into two subtribes: Arctotidinae (ca. 5 genera, 85 species) and Gorteriinae (ca. 8 genera, 130 species). The monophyly of the genera within the subtribe Gorteriinae and their relationship to one another was investigated using 71 samples/212 sequences including 64/141 of which are newly reported from three phylogenetic markers, two from chloroplast DNA (trnL-F and ndhF) and one from the nuclear genome (ITS). The outgroup was composed of seven members from the sister subtribe. Results show the subtribe Gorteriinae to be divided into three monophyletic groups, the Gazania-Hirpicium-Gorteria group, the Didelta group, and the Berkheya-Cullumia group. Within these three groups are 13 sub-groups, one of which has sub-clades. The genus Berkheya Ehrh. is paraphyletic, falling into five different sub-groups. The two monotypic genera, Cuspidia and Heterorhachis are not nested within any of the Berkheya clades. Hirpicium and Cullumia each have most of their taxa in a monophyletic group, but they also have one or two taxa associated with other clades. Four of the five sub-groups of Berkheya have morphologically recognizable shared characters, such as habit and spines that have been recognized by past studies. However, the grouping of one species with Didelta is difficult to explain. Support for the major clades and most of the sub-groups is strong but the relationships among some of the terminal taxa are variable.  相似文献   

13.
Despite intensive morphological and molecular studies of Onagraceae, relationships within the family are not fully understood. One drawback of previous analyses is limited sampling within the large tribe Onagreae. In addition, the monophyly of two species-rich genera in Onagreae, Camissonia and Oenothera, has never been adequately tested. To understand relationships within Onagraceae, test the monophyly of these two genera, and ascertain the affinities of the newly discovered genus Megacorax, we conducted parsimony and maximum likelihood analyses with rbcL and ndhF sequence data for 24 taxa representing all 17 Onagraceae genera and two outgroup Lythraceae. Results strongly support a monophyletic Onagraceae, with Ludwigia as the basal lineage and a sister-taxon relationship between Megacorax and Lopezia. Gongylocarpus is supported as sister to Epilobieae plus the rest of Onagreae, although relationships within the latter clade have limited resolution. Thus, we advocate placement of Gongylocarpus in a monogeneric tribe, Gongylocarpeae. Most relationships within Onagreae are weakly resolved, suggesting a rapid diversification of this group in western North America. Neither Camissonia nor Oenothera appears to be monophyletic; however, increased taxon sampling is needed to clarify those relationships. Morphological characters generally agree with the molecular data, providing further support for relationships.  相似文献   

14.
The phylogeny of Cyperus and allied genera has been reconstructed using cladistic analysis of plastid rbcL gene, rps16 intron, trnL intron, and trnL-F intergenic spacer sequence data in 40 species of tribe Cypereae. Cyperus s.s. as currently circumscribed is not monophyletic because ten cyperoid genera are embedded within it. Eucyperoid Cyperus species (with a C3 anatomy, e.g. C. involucratus ) and the genera Courtoisina , Kyllingiella and Oxycaryum form a clade that is sister to a clade comprising chlorocyperoid species (with a C4 anatomy, e.g. C. papyrus ) and the genera Alinula , Ascolepis , Kyllinga , Lipocarpha , Pycreus , Remirea and Sphaerocyperus . The position of two species is uncertain; C . tenellus is resolved in a clade together with Isolepis although with typical cyperoid spikelets, whereas I. humillima is not resolved near either Isolepis or Cyperus s . l . © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 138 , 145–153.  相似文献   

15.
Phylogenetic relationships within Colchicaceae   总被引:1,自引:0,他引:1  
Three plastid regions-the rps16 intron, the atpB-rbcL intergenic spacer, and the trnL-F region-in 73 taxa representing all the genera of Colchicaceae except Kuntheria were sequenced to investigate the intrafamilial relationships of the family. In total, the three gene regions, comprising 3830 characters, were analyzed both separately and in a combined matrix. The results did not support the division of the family into two subfamilies, but they did support a core clade of mainly African genera and a grade of Australian, North American, and Asian taxa. One of the four tribes, Iphigenieae, was grossly paraphyletic, and, unexpectedly, Colchicum was nested within Androcymbium. Further, taxa of Gloriosa and Littonia were intermixed.  相似文献   

16.
17.
Worldwide in distribution, the tribe Muscini comprises 21 accepted genera and about 350 species. In the present study, a cladistic analysis based upon adult morphological characters is carried out in order to discuss the monophyly of the tribe and its genera, the intergeneric relationships and, in some cases, also the intrageneric relationships. As a result, Muscini is supported as a monophyletic tribe sister-group of Stomoxyini. Except for Morellia Robineau-Desvoidy, Curranosia Paterson, and Eudasyphora Townsend, all the remaining genera are monophyletic. The results are dubious for Polietes Rondani, which was then provisionally kept unchanged. Morellia was broadened to include the Neotropical endemic genera Parapyrellia Townsend, Trichomorellia Stein, and Xenomorellia Malloch. Therefore, a new classification is proposed for Morellia in which it is divided into four subgenera: Morellia s.s. , Parapyrellia , Trichomorellia , and Xenomorellia . Furthermore, the previously proposed subgenus Dasysterna Zimin is given new status as a genus; however, as it is preoccupied by Dasysterna Dejean, the new replacement name Ziminellia nom. nov. is proposed herewith. Eudasyphora was found to be a paraphyletic group relative to Dasyphora Robineau-Desvoidy; both genera are hence synonymized, and Dasyphora is classified in three subgenera: Dasyphora s.s. , Eudasyphora , and Rypellia Malloch. The analysis demonstrated that the traditional classification of Musca Linnaeus into subgenera is artificial and, moreover, that the use of characters from male genitalia could be strongly informative for classifying the genus in phylogeny-supported species groups. Finally, the new classification proposal for Muscini recognizes 18 genera and, furthermore, two undescribed genus-ranked taxa are indicated.  © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society , 2007, 149 , 493–532.  相似文献   

18.
Generic boundaries among the genera Cheilosporum, Haliptilon, and Jania—currently referred to the tribe Janieae (Corallinaceae, Corallinales, Rhodophyta)—were reassessed. Phylogenetic relationships among 42 corallinoidean taxa were determined based on 26 anatomical characters and nuclear SSU rDNA sequence data for 11 species (with two duplicate plants) referred to the tribe Corallineae and 15 species referred to the tribe Janieae (two species of Cheilosporum, seven of Haliptilon, and six of Jania, with five duplicate plants). Results from our approach were consistent with the hypothesis that the tribe Janieae is monophyletic. Our data indicate, however, that Jania and Haliptilon as currently delimited are not monophyletic, and that Cheilosporum should not be recognized as an independent genus within the Janieae. Our data resolved two well‐supported biogeographic clades for the included Janieae, an Indian‐Pacific clade and a temperate North Atlantic clade. Among anatomical characters, reproductive structures reflected the evolution of the Janieae. Based on our results, three genera, Cheilosporum, Haliptilon, and Jania, should be merged into a single genus, with Jania having nomenclatural priority. We therefore propose new combinations where necessary of some species previously included in Cheilosporum and Haliptilon.  相似文献   

19.
睡莲科的系统发育:核糖体DNA ITS区序列证据   总被引:12,自引:1,他引:12  
以金鱼藻Ceratophyllum demersum为外类群,使用PAUP4.0b4A软件对睡莲科Nymphaeaceae植物7属11个代表种的ITS区序列进行了系统发育分析。采用最大简约法分析获得了3个最简约树,步长为1125,一致性指数(CI)和维持性指数(RI)值分别为0.7618和0.7214。利用3个最简约树获取严格一致树。结果表明:(1)莲属Nelumbo位于系统树的基部,自展支持率为100%,可从睡莲科中独立出来成立莲科Nelumbonaceae和莲目Nelumbonales;(2)萍蓬草属Nuphar是一单系类群,位于分支Ⅱ的基部,并和睡莲科其他属(不包括莲属)植物聚在一起构成姐妹群,故萍蓬草属仍应置于睡莲科中;(3)水盾草属Cabomba和莼菜属Brasenia聚成一小支并构成姐妹群,自展支持率为99%,说明这两属之间亲缘关系较近;(4)睡莲属和芡实属Euryale、王莲属Victoria聚成一小支并构成姐妹群,自展支持率为94%,说明三者亲缘关系较近,仍应置于睡莲科中。  相似文献   

20.
Phylogenetic relationships among 76 species of Oleaceae, representing all 25 recognized genera of the family, were assessed by a cladistic analysis of DNA sequences from two noncoding chloroplast loci, the rps16 intron and the trnL-F region. Consensus trees from separate and combined analyses are congruent and agree well with nonmolecular data (chromosome numbers, fruit and wood anatomy, leaf glycosides, and iridoids). The two debated genera Dimetra and Nyctanthes, previously suggested to belong to Verbenaceae (sensu lato) or Nyctanthaceae, are shown to belong to Oleaceae, sister to the hitherto genus incertae sedis Myxopyrum. This clade is also supported by anatomical and chemical data. The subfamily Jasminoideae is paraphyletic, and a new classification is presented. The subfamily level is abandoned, and the former Jasminoideae is split into four tribes: Myxopyreae (Myxopyrum, Nyctanthes, and Dimetra), Fontanesieae (Fontanesia), Forsythieae (Abeliophyllum and Forsythia), and Jasmineae (Jasminum and Menodora). The tribe Oleeae (previous subfamily Oleoideae) is clearly monophyletic, comprising the subtribes Ligustrinae (Syringa and Ligustrum), Schreberinae status novus (Schrebera and Comoranthus), Fraxininae status novus (Fraxinus), and Oleinae (12 drupaceous genera). An rps16 sequence obtained from Hesperelaea, known only from the type specimen collected in 1875, confirmed the placement of this extinct taxon in the subtribe Oleinae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号