首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arabidopsis thaliana peptide deformylase PDF1B was expressed in tobacco chloroplasts using spectinomycin as the selective agent. The foreign protein accumulated in chloroplasts (6% of the total soluble protein) and was enzymatically active. Transplastomic plants were evaluated for resistance to the peptide deformylase inhibitor actinonin. In vitro seed germination in the presence of actinonin and in planta application of the inhibitor demonstrated the resistance of the transformed plants. In addition, transgenic leaf explants were able to develop shoots via organogenesis in the presence of actinonin. However, when the combination of the PDF1B gene and actinonin was used as the primary selective marker system for chloroplast transformation of tobacco, all developed shoots were escapes. Therefore, under the experimental conditions tested, the use of this system for plastid transformation would be limited to function as a secondary selective marker.  相似文献   

2.
Arabidopsis (ecotype Columbia-0) genes, AtDEF1 and AtDEF2, represent eukaryotic homologs of the essential prokaryotic gene encoding peptide deformylase. Both deduced proteins contain three conserved protein motifs found in the active site of all eubacterial peptide deformylases, and N-terminal extensions identifiable as chloroplast-targeting sequences. Radiolabeled full-length AtDEF1 was imported and processed by isolated pea (Pisum sativum L. Laxton's Progress No. 9) chloroplasts and AtDEF1 and 2 were immunologically detected in Arabidopsis leaf and chloroplast stromal protein extracts. The partial cDNAs encoding the processed forms of Arabidopsis peptide deformylase 1 and 2 (pAtDEF1 and 2, respectively) were expressed in Escherichia coli and purified using C-terminal hexahistidyl tags. Both recombinant Arabidopsis peptide deformylases had peptide deformylase activity with unique kinetic parameters that differed from those reported for the E. coli enzyme. Actinonin, a specific peptide deformylase inhibitor, was effective in vitro against Arabidopsis peptide deformylase 1 and 2 activity, respectively. Exposure of several plant species including Arabidopsis to actinonin resulted in chlorosis and severe reductions in plant growth and development. The results suggest an essential role for peptide deformylase in protein processing in all plant plastids.  相似文献   

3.
Photosystem II (PSII) core complexes consist of CP47, CP43, D1, D2 proteins and of several low molecular weight integral membrane polypeptides, such as the chloroplast-encoded PsbE, PsbF, and PsbI proteins. To elucidate the function of PsbI in the photosynthetic process as well as in the biogenesis of PSII in higher plants, we generated homoplastomic knock-out plants by replacing most of the tobacco psbI gene with a spectinomycin resistance cartridge. Mutant plants are photoautotrophically viable under green house conditions but sensitive to high light irradiation. Antenna proteins of PSII accumulate to normal amounts, but levels of the PSII core complex are reduced by 50%. Bioenergetic and fluorescence studies uncovered that PsbI is required for the stability but not for the assembly of dimeric PSII and supercomplexes consisting of PSII and the outer antenna (PSII-LHCII). Thermoluminescence emission bands indicate that the presence of PsbI is required for assembly of a fully functional Q(A) binding site. We show that phosphorylation of the reaction center proteins D1 and D2 is light and redox-regulated in the wild type, but phosphorylation is abolished in the mutant, presumably due to structural alterations of PSII when PsbI is deficient. Unlike wild type, phosphorylation of LHCII is strongly increased in the dark due to accumulation of reduced plastoquinone, whereas even upon state II light phosphorylation is decreased in delta psbI. These data attest that phosphorylation of D1/D2, CP43, and LHCII is regulated differently.  相似文献   

4.
5.
Peng L  Ma J  Chi W  Guo J  Zhu S  Lu Q  Lu C  Zhang L 《The Plant cell》2006,18(4):955-969
To gain insight into the processes involved in photosystem II (PSII) biogenesis and maintenance, we characterized the low psii accumulation1 (lpa1) mutant of Arabidopsis thaliana, which generally accumulates lower than wild-type levels of the PSII complex. In vivo protein labeling experiments showed that synthesis of the D1 and D2 proteins was greatly reduced in the lpa1 mutant, while other plastid-encoded proteins were translated at rates similar to the wild type. In addition, turnover rates of the PSII core proteins CP47, CP43, D1, and D2 were higher in lpa1 than in wild-type plants. The newly synthesized PSII proteins were assembled into functional protein complexes, but the assembly was less efficient in the mutant. LPA1 encodes a chloroplast protein that contains two tetratricopeptide repeat domains and is an intrinsic membrane protein but not an integral subunit of PSII. Yeast two-hybrid studies revealed that LPA1 interacts with D1 but not with D2, cytochrome b6, or Alb3. Thus, LPA1 appears to be an integral membrane chaperone that is required for efficient PSII assembly, probably through direct interaction with the PSII reaction center protein D1.  相似文献   

6.
Ma J  Peng L  Guo J  Lu Q  Lu C  Zhang L 《The Plant cell》2007,19(6):1980-1993
To elucidate the molecular mechanism of photosystem II (PSII) assembly, we characterized the low psii accumulation2 (lpa2) mutant of Arabidopsis thaliana, which is defective in the accumulation of PSII supercomplexes. The levels and processing patterns of the RNAs encoding the PSII subunits are unaltered in the mutant. In vivo protein-labeling experiments showed that the synthesis of CP43 (for chlorophyll a binding protein) was greatly reduced, but CP47, D1, and D2 were synthesized at normal rates in the lpa2-1 mutant. The newly synthesized CP43 was rapidly degraded in lpa2-1, and the turnover rates of D1 and D2 were higher in lpa2-1 than in wild-type plants. The newly synthesized PSII proteins were assembled into PSII complexes, but the assembly of PSII was less efficient in the mutant than in wild-type plants. LPA2 encodes an intrinsic thylakoid membrane protein, which is not an integral subunit of PSII. Yeast two-hybrid assays indicated that LPA2 interacts with the PSII core protein CP43 but not with the PSII reaction center proteins D1 and D2. Moreover, direct interactions of LPA2 with Albino3 (Alb3), which is involved in thylakoid membrane biogenesis and cell division, were also detected. Thus, the results suggest that LPA2, which appears to form a complex with Alb3, is involved in assisting CP43 assembly within PSII.  相似文献   

7.
AtCYP38 is a thylakoid lumen protein comprising the immunophilin domain and the phosphatase inhibitor module. Here we show the association of AtCYP38 with the photosystem II (PSII) monomer complex and address its functional role using AtCYP38-deficient mutants. The dynamic greening process of etiolated leaves failed in the absence of AtCYP38, due to specific problems in the biogenesis of PSII complexes. Also the development of leaves under short-day conditions was severely disturbed. Detailed biophysical and biochemical analysis of mature AtCYP38-deficient plants from favorable growth conditions (long photoperiod) revealed: (i) intrinsic malfunction of PSII, which (ii) occurred on the donor side of PSII and (iii) was dependent on growing light intensity. AtCYP38 mutant plants also showed decreased accumulation of PSII, which was shown not to originate from impaired D1 synthesis or assembly of PSII monomers, dimers and supercomplexes as such but rather from the incorrect fine-tuning of the oxygen-evolving side of PSII. This, in turn, rendered PSII centers extremely susceptible to photoinhibition. AtCYP38 deficiency also drastically decreased the in vivo phosphorylation of PSII core proteins, probably related to the absence of the AtCYP38 phosphatase inhibitor domain. It is proposed that during PSII assembly AtCYP38 protein guides the proper folding of D1 (and CP43) into PSII, thereby enabling the correct assembly of the water-splitting Mn4–Ca cluster even with high turnover of PSII.  相似文献   

8.
DegP proteases have been shown to possess both chaperone and protease activities. The proteolytic activities of chloroplast DegP‐like proteases have been well documented. However, whether chloroplast Deg proteases also have chaperone activities has remained unknown. Here we show that chloroplast Deg1 also has chaperone activities, like its Escherichia coli ortholog DegP. Transgenic plants with reduced levels of Deg1 accumulated normal levels of different subunits of the major photosynthetic protein complexes, but their levels of photosystem‐II (PSII) dimers and supercomplexes were reduced. In vivo pulse‐chase protein labeling experiments showed that the assembly of newly synthesized proteins into PSII dimers and supercomplexes was impaired, although the synthesis rate of chloroplast proteins was unaffected in the transgenic lines. Protein overlay assays provided direct evidence that Deg1 interacts with the PSII reaction center protein D2. These results suggest that Deg1 assists the assembly of the PSII complex, probably through interaction with the PSII reaction center D2 protein.  相似文献   

9.
10.
Photosystem II (PSII) of oxygen-evolving cyanobacteria, algae, and land plants mediates electron transfer from the Mn4Ca cluster to the plastoquinone pool. It is a dimeric supramolecular complex comprising more than 30 subunits per monomer, of which 16 are bitopic or peripheral, low-molecular-weight components. Directed inactivation of the plastid gene encoding the low-molecular-weight peptide PsbTc in tobacco (Nicotiana tabacum) does not prevent photoautotrophic growth. Mutant plants appear normal green, and levels of PSII proteins are not affected. Yet, PSII-dependent electron transport, stability of PSII dimers, and assembly of PSII light-harvesting complexes (LHCII) are significantly impaired. PSII light sensitivity is moderately increased and recovery from photoinhibition is delayed, leading to faster D1 degradation in ΔpsbTc under high light. Thermoluminescence emission measurements revealed alterations of midpoint potentials of primary/secondary electron-accepting plastoquinone of PSII interaction. Only traces of CP43 and no D1/D2 proteins are phosphorylated, presumably due to structural changes of PSII in ΔpsbTc. In striking contrast to the wild type, LHCII in the mutant is phosphorylated in darkness, consistent with its association with PSI, indicating an increased pool of reduced plastoquinone in the dark. Finally, our data suggest that the secondary electron-accepting plastoquinone of PSII site, the properties of which are altered in ΔpsbTc, is required for oxidation of reduced plastoquinone in darkness in an oxygen-dependent manner. These data present novel aspects of plastoquinone redox regulation, chlororespiration, and redox control of LHCII phosphorylation.  相似文献   

11.
Iron superoxide dismutases (FeSODs) play an important role in preventing the oxidative damage associated with photosynthesis. To investigate the mechanisms of FeSOD in protection against photooxidative stress, we obtained transgenic tobacco (Nicotiana tabacum) plants with severely decreased FeSOD by using a gene encoding tobacco chloroplastic FeSOD for the RNAi construct. Transgenic plants were highly sensitive to photooxidative stress and accumulated increased levels of O??? under normal light conditions. Spectroscopic analysis and electron transport measurements showed that PSII activity was significantly reduced in transgenic plants. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed that there was a slow electron transfer between Q(A) and Q(B) and decreased redox potential of Q(B) in transgenic plants, whereas the donor side function of PSII was not affected. Immunoblot and blue native gel analyses showed that PSII protein accumulation was also decreased in transgenic plants. PSII photodamage and D1 protein degradation under high light treatment was increased in transgenic plants, whereas the PSII repair was not affected, indicating that the stability of the PSII complex was decreased in transgenic plants. The results in this study suggest that FeSOD plays an important role in maintaining PSII function by stabilizing PSII complexes in tobacco plants.  相似文献   

12.
The protein assembly and stability of photosystem II (PSII) (sub)complexes were studied in mature leaves of four plastid mutants of tobacco (Nicotiana tabacum L), each having one of the psbEFLJ operon genes inactivated. In the absence of psbL, no PSII core dimers or PSII-light harvesting complex (LHCII) supercomplexes were formed, and the assembly of CP43 into PSII core monomers was extremely labile. The assembly of CP43 into PSII core monomers was found to be necessary for the assembly of PsbO on the lumenal side of PSII. The two other oxygen-evolving complex (OEC) proteins, PsbP and PsbQ, were completely lacking in Delta psbL. In the absence of psbJ, both intact PSII core monomers and PSII core dimers harboring the PsbO protein were formed, whereas the LHCII antenna remained detached from the PSII dimers, as demonstrated by 77 K fluorescence measurements and by the lack of PSII-LHCII supercomplexes. The Delta psbJ mutant was characterized by a deficiency of PsbQ and a complete lack of PsbP. Thus, both the PsbL and PsbJ subunits of PSII are essential for proper assembly of the OEC. The absence of psbE and psbF resulted in a complete absence of all central PSII core and OEC proteins. In contrast, very young, vigorously expanding leaves of all psbEFLJ operon mutants accumulated at least traces of D2, CP43 and the OEC proteins PsbO and PsbQ, implying developmental control of the expression of the PSII core and OEC proteins. Despite severe problems in PSII assembly, the thylakoid membrane complexes other than PSII were present and correctly assembled in all psbEFLJ operon mutants.  相似文献   

13.
Mutants lacking a thylakoid membrane-bound metalloprotease, FtsH, are known to cause leaf variegation in Arabidopsis. However, the effect of reduced FtsH levels on leaf variegation has scarcely been examined in other plants. In this study, we performed RNA interference (RNAi) by which FtsH expression was suppressed in tobacco. The resulting FtsH knock-down tobacco plants showed variegation in their leaves, and a negative correlation between the degree of variegation and the level of FtsH, which supported earlier observations in Arabidopsis. A decrease of NtFtsH2 as well as NtFtsH1 suggested that these are the two major isoforms comprising the FtsH complex in tobacco chloroplasts. The RNAi tobacco lines also showed photoinhibition-vulnerable phenotypes, as evidenced by high-light-sensitive PSII activity and retarded degradation of D1 protein. Interestingly, the formation of variegated sectors during leaf development appeared to differ between Arabidopsis and tobacco. In contrast to the formation of variegation in Arabidopsis, the yellow sectors in FtsH RNAi tobacco emerged from green leaves at a late stage of leaf development. A series of cytological observations implied that thylakoid membranes were dismantled after development had already occurred. Late formation of variegation in FtsH RNAi tobacco suggested that the heteromeric FtsH complex is important for maintaining thylakoid membranes.  相似文献   

14.
Zhang D  Zhou G  Liu B  Kong Y  Chen N  Qiu Q  Yin H  An J  Zhang F  Chen F 《Plant physiology》2011,157(2):608-619
Numerous auxiliary nuclear factors have been identified to be involved in the dynamics of the photosystem II (PSII) complex. In this study, we characterized the high chlorophyll fluorescence243 (hcf243) mutant of Arabidopsis (Arabidopsis thaliana), which shows higher chlorophyll fluorescence and is severely deficient in the accumulation of PSII supercomplexes compared with the wild type. The amount of core subunits was greatly decreased, while the outer antenna subunits and other subunits were hardly affected in hcf243. In vivo protein-labeling experiments indicated that the synthesis rate of both D1 and D2 proteins decreased severely in hcf243, whereas no change was found in the rate of other plastid-encoded proteins. Furthermore, the degradation rate of the PSII core subunit D1 protein is higher in hcf243 than in the wild type, and the assembly of PSII is retarded significantly in the hcf243 mutant. HCF243, a nuclear gene, encodes a chloroplast protein that interacts with the D1 protein. HCF243 homologs were identified in angiosperms with one or two copies but were not found in lower plants and prokaryotes. These results suggest that HCF243, which arose after the origin of the higher plants, may act as a cofactor to maintain the stability of D1 protein and to promote the subsequent assembly of the PSII complex.  相似文献   

15.
The modified Cry l Ac was expressed in transgenic tobacco plants. To allow secretion of the CrylAc protein into the intercellular space, the signal peptide sequence of potato proteinase inhibitor II (pinII) was N-terminally fused to the CrylAc encoding region. Expression of Cry 1 Ac in transgenic tobacco plants was assayed with ELISA. The results showed that pinII signal peptide sequence enhanced the expression of Cry lAc protein and led to the secretion of the Cry 1 Ac protein in transgenic tobacco plants. GFP gene was also fused to the signal peptide sequence and transformed to tobacco. The results of fluorescent detection showed that GFP had localized in the apoplast of transgenic plants.  相似文献   

16.
Transgenic tobacco plants expressing three different forms of Arabidopsis plant peptide deformylase ( At DEF1.1, At DEF1.2 and At DEF2; EC 3.5.1.88) were evaluated for resistance to actinonin, a naturally occurring peptide deformylase inhibitor. Over-expression of either AtDEF1.2 or AtDEF2 resulted in resistance to actinonin, but over-expression of AtDEF1.1 did not. Immunological analyses demonstrated that At DEF1.2 and At DEF2 enzymes were present in both stromal and thylakoid fractions in chloroplasts, but At DEF1.1 was localized to mitochondria. The highest enzyme activity was associated with stromal At DEF2, which was approximately 180-fold greater than the level of endogenous activity in the host plant. Resistance to actinonin cosegregated with kanamycin resistance in Atdef1.2-D and Atdef2-D transgenic plants. Here, we demonstrate that the combination of plant peptide deformylase and peptide deformylase inhibitors may represent a native gene selectable marker system for chloroplast and nuclear transformation vectors, and also suggest plant peptide deformylase as a potential broad-spectrum herbicide target.  相似文献   

17.
Insect-resistant plants have been developed throughexpression of insecticidal proteins from Bacillusthuringiensis (Bt) in the early 1980s [1,2]. However, forcontrol of insect pests, it is necessary to increase theexpression of Bt protein overall or in specific plant tissues.To increase the expression level, synthetic Bt genes havebeen developed and used to produce transgenic plants[2–5]. A number of approaches have been taken to increasethe expression level of foreign proteins in transgeni…  相似文献   

18.
The involvement of the PsbI protein in the assembly and repair of the photosystem II (PSII) complex has been studied in the cyanobacterium Synechocystis sp. PCC 6803. Analysis of PSII complexes in the wild-type strain showed that the PsbI protein was present in dimeric and monomeric core complexes, core complexes lacking CP43, and in reaction center complexes containing D1, D2, and cytochrome b-559. In addition, immunoprecipitation experiments and the use of a histidine-tagged derivative of PsbI have revealed the presence in the thylakoid membrane of assembly complexes containing PsbI and either the precursor or mature forms of D1. Analysis of PSII assembly in the psbI deletion mutant and in strains lacking PsbI together with other PSII subunits showed that PsbI was not required for formation of PSII reaction center complexes or core complexes, although levels of unassembled D1 were reduced in its absence. However, loss of PsbI led to a dramatic destabilization of CP43 binding within monomeric and dimeric PSII core complexes. Despite the close structural relationship between D1 and PsbI in the PSII complex, PsbI turned over much slower than D1, whereas high light-induced turnover of D1 was accelerated in the absence of PsbI. Overall, our results suggest that PsbI is an early assembly partner for D1 and that it plays a functional role in stabilizing the binding of CP43 in the PSII holoenzyme.  相似文献   

19.
Chen H  Zhang D  Guo J  Wu H  Jin M  Lu Q  Lu C  Zhang L 《Plant molecular biology》2006,61(4-5):567-575
Psb27 has been identified as a lumenal protein associated with photosystem II (PSII). To gain insight into the function of Psb27, we isolated a mutant Arabidopsis plant with a loss of psb27 function. The quantity of PSII complexes and electron transfer within PSII remained largely unaffected in the psb27 mutant. Our results also showed that under high-light-illumination, PSII activity and the content of the PSII reaction center protein D1 decreased more significantly in the psb27 mutant than in wild-type (WT) plant. Treatment of leaves with a chloroplast protein synthesis inhibitor resulted in similar light-induced PSII inactivation levels and D1 protein degradation rates in the WT and psb27 mutant plants. Recovery of PSII activity after photoinhibition was delayed in the psb27 mutant, suggesting that Psb27 is required for efficient recovery of the photodamaged PSII complex. Overall, these results demonstrated that Psb27 in Arabidopsis is not essential for oxygenic photosynthesis and PSII formation. Instead, our results provide evidence for the involvement of this lumenal protein in the recovery process of PSII. Hua Chen and Dongyuan Zhang contribute equally to this work.  相似文献   

20.
The PsbP protein is an extrinsic subunit of photosystem II (PSII) specifically found in land plants and green algae. Using PsbP-RNAi tobacco, we have investigated effects of PsbP knockdown on protein supercomplex organization within the thylakoid membranes and photosynthetic properties of PSII. In PsbP-RNAi leaves, PSII dimers binding the extrinsic PsbO protein could be formed, while the light-harvesting complex II (LHCII)-PSII supercomplexes were severely decreased. Furthermore, LHCII and major PSII subunits were significantly dephosphorylated. Electron microscopic analysis showed that thylakoid grana stacking in PsbP-RNAi chloroplast was largely disordered and appeared similar to the stromally-exposed or marginal regions of wild-type thylakoids. Knockdown of PsbP modified both the donor and acceptor sides of PSII; In addition to the lower water-splitting activity, the primary quinone QA in PSII was significantly reduced even when the photosystem I reaction center (P700) was noticeably oxidized, and thermoluminescence studies suggested the stabilization of the charged pair, S2/QA. These data indicate that assembly and/or maintenance of the functional MnCa cluster is perturbed in absence of PsbP, which impairs accumulation of final active forms of PSII supercomplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号