首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the genus Lesquerella produce seed oil that contains a high proportion of hydroxy fatty acids (HFAs). There are three groups of Lesquerella species that are distinguished by their most abundant seed oil fatty acid: lesquerolic acid (20:1OH; e.g. Lesquerella fendleri), densipolic acid (18:2OH; e.g. Lesquerella kathryn), and auricolic acid (20:2OH; e.g. Lesquerella auriculata). To investigate the biochemistry of HFA production in Lesquerella species, the conversion of putative radiolabeled intermediates of HFA biosynthesis, including 18:1, 20:1,18:1OH, 18:2OH, and 20:1OH, was examined in developing embryos of L. fendleri, L.kathryn, and L. auriculata. The results are consistent with (a) 18:1OH formation by hydroxylation of 18:1, (b) elongation and desaturation of 18:1OH to produce 20:1OH and 18:2OH, respectively, and (c) desaturation of 20:1OH to produce 20:2OH. The desaturation of 20:1OH was also found to occur in developing embryos of high, but not low, linolenic acid flax. This suggests that the desaturation is catalyzed by the extraplastidial linoleate desaturase. Confirming this suggestion, it was notable that 18:1OH and 18:2OH were found in low and high linolenic flax (Linum usitatissimum) seeds, respectively, at levels of 0.2 to 1%.  相似文献   

2.
3.
SUMMARY: A central goal of green chemistry is to produce industrially useful fatty acids in oilseed crops. Although genes encoding suitable fatty acid-modifying enzymes are available from many wild species, progress has been limited because the expression of these genes in transgenic plants produces low yields of the desired products. For example, Ricinus communis fatty acid hydroxylase 12 (FAH12) produces a maximum of only 17% hydroxy fatty acids (HFAs) when expressed in Arabidopsis. cDNA clones encoding R. communis enzymes for additional steps in the seed oil biosynthetic pathway were identified. Expression of these cDNAs in FAH12 transgenic plants revealed that the R. communis type-2 acyl-coenzyme A:diacylglycerol acyltransferase (RcDGAT2) could increase HFAs from 17% to nearly 30%. Detailed comparisons of seed neutral lipids from the single- and double-transgenic lines indicated that RcDGAT2 substantially modified the triacylglycerol (TAG) pool, with significant increases in most of the major TAG species observed in native castor bean oil. These data suggest that RcDGAT2 prefers acyl-coenzyme A and diacylglycerol substrates containing HFAs, and biochemical analyses of RcDGAT2 expressed in yeast cells confirmed a strong preference for HFA-containing diacylglycerol substrates. Our results demonstrate that pathway engineering approaches can be used successfully to increase the yields of industrial feedstocks in plants, and that members of the DGAT2 gene family probably play a key role in this process.  相似文献   

4.
Phenotypic variation of important seed traits like seed length, seed breadth, seed thickness, 100 seed weight and seed oil content were recorded in a total of 157 collected accessions of Pongamia. Out of these, fatty acid profiles of 38 accessions selected based on their high and low oil content was analyzed. Fatty acid profile revealed high variability in stearic, oleic and linoleic acid which varied from 0.42 to 10.61 %, 34.34 to 74.58 %, and 7.00 to 31.28 % respectively. Variations in palmitic and linolenic acid were small. Iodine value, saponification number and cetane number (CN) of fatty acid methyl esters (FAME) of seed oil ranges from 186.99 to 201.25, 81.13 to 108.19 and 46.16 to 56.47 respectively. Fatty acid compositions, degree of unsaturation and CN are the important parameters, which are used to determine quality of FAME were used as biodiesel. Some of the Pongamia accessions identified were higher in oil content while some accessions showed higher degree of unsaturation and a few of them had CN values higher than 55. Genetic diversity analysis with six TE-AFLP primers generated a total of 334 bands out of which 174 (52.10 %) were polymorphic. The genetic similarity ranged from 0.11 to 0.47. These findings clearly showed high level of genetic diversity and all economically desirable traits were not present in a single genotype of Pongamia. All these traits could be selected from these CPTs and transfer to a single elite variety through selection and breeding programme and could be utilized for large scale multiplication and plantation to produce high quantity and quality biodiesel in future.  相似文献   

5.
Lesquerella, Physaria fendleri (A. Gray) S. Watson, is a mustard native to the western United States and is currently being developed as a commercial source of valuable hydroxy fatty acids that can be used in a number of industrial applications, including biolubricants, biofuel additives, motor oils, resins, waxes, nylons, plastics, corrosion inhibitors, cosmetics, and coatings. The plant is cultivated as a winter-spring annual and in the desert southwest it harbors large populations of arthropods, several of which could be significant pests once production expands. Lygus spp. (Hemiptera: Miridae) are common in lesquerella and are known pests of a number of agronomic and horticultural crops where they feed primarily on reproductive tissues. A 4-yr replicated plot study was undertaken to evaluate the probable impact of Lygus spp. on production of this potential new crop. Plant damage and subsequent seed yield and quality were examined relative to variable and representative densities of Lygus spp. (0.3-4.9 insects per sweep net) resulting from variable frequency and timing of insecticide applications. Increasing damage to various fruiting structures (flowers [0.9-13.9%], buds [1.2-7.1%], and seed pods [19.4-42.5%]) was significantly associated with increasing pest abundance, particularly the abundance of nymphs, in all years. This damage, however, did not consistently translate into reductions in seed yield (481-1,336 kg/ha), individual seed weight (0.5-0.7 g per 1,000 seed), or seed oil content (21.8-30.4%), and pest abundance generally explained relatively little of the variation in crop yield and quality. Negative effects on yield were not sensitive to the timing of pest damage (early versus late season) but were more pronounced during years when potential yields were lower due to weed competition and other agronomic factors. Results suggest that if the crop is established and managed in a more optimal fashion, Lygus spp. may not significantly limit yield. Nonetheless, additional work will be needed once more uniform cultivars become available and yield effects can be more precisely measured. Densities of Lygus spp. in unsprayed lesquerella are on par with those in other known agroecosystem level sources of this pest (e.g., forage and seed alfalfa, Medicago sativa L.). Thus, lesquerella production may introduce new challenges to pest management in crops such as cotton.  相似文献   

6.
Producing unusual fatty acids (FAs) in crop plants has been a long-standing goal of green chemistry. However, expression of the enzymes that catalyze the primary synthesis of these unusual FAs in transgenic plants typically results in low levels of the desired FA. For example, seed-specific expression of castor (Ricinus communis) fatty acid hydroxylase (RcFAH) in Arabidopsis (Arabidopsis thaliana) resulted in only 17% hydroxy fatty acids (HFAs) in the seed oil. In order to increase HFA levels, we investigated castor phospholipid:diacylglycerol acyltransferase (PDAT). We cloned cDNAs encoding three putative PDAT enzymes from a castor seed cDNA library and coexpressed them with RcFAH12. One isoform, RcPDAT1A, increased HFA levels to 27%. Analysis of HFA-triacylglycerol molecular species and regiochemistry, along with analysis of the HFA content of phosphatidylcholine, indicates that RcPDAT1A functions as a PDAT in vivo. Expression of RcFAH12 alone leads to a significant decrease in FA content of seeds. Coexpression of RcPDAT1A and RcDGAT2 (for diacylglycerol acyltransferase 2) with RcFAH12 restored FA levels to nearly wild-type levels, and this was accompanied by a major increase in the mass of HFAs accumulating in the seeds. We show the usefulness of RcPDAT1A for engineering plants with high levels of HFAs and alleviating bottlenecks due to the production of unusual FAs in transgenic oilseeds.  相似文献   

7.
The biochemical pathways involved in the biosynthesis and accumulation of storage lipids in seeds have been extensively studied. However, the regulatory mechanisms of those pathways, their environmental interactions and the ecological implications of variation are poorly understood. We have initiated a new approach: the analysis of natural variation in Arabidopsis thaliana. Three hundred and sixty accessions were surveyed for content of oil, very long chain fatty acids (VLCFAs) and polyunsaturated fatty acids (PUFAs) in their seeds. The results revealed extensive natural variation. A core set of accessions, the seeds of which reproducibly contain extreme amounts of oil, VLCFAs and PUFAs have been identified. Reproducible oil content ranged from 34.6 to 46.0% of seed dry weight. VLCFA content ranged from 13.0 to 21.2% of total fatty acids. PUFA content, ranged from 53.3 to 66.1% of total fatty acids. Interactions were also identified for PUFA and VLCFA content of seeds with vernalisation of plants. Mapping of the regions of the genome involved in controlling the traits was conducted in an F(2) population and indicated that natural variation at the loci FAE1 and FAD3 might be involved in the regulation of VLCFA and PUFA content, respectively. A set of accessions, which capture a broad range of the natural variation for these traits available in A. thaliana, has been selected to form a core set which can be used to further dissect the genetics of the regulation of seed lipid traits and to identify the genes involved.  相似文献   

8.
The seed oils of three species (Litsea cubeba (Lour.) Pers, L. auriculata Chien et Cheng, L. subcoriacea Yang et P. H. Huang) were examined and the fatty acid composition of these oils was determined by GLC. Their major fatty acid was identified as lauric acid, Its amount ranged from 34.6%–75.4%. The major acid of the fruit coat oil from L. subcoriacea Y. H. Huang was different from that of the seed oil. The former contained 50% linoleic acid. The unsaturated C10, C12, C14 acids of the seed oil from L. cubeba (Lour.) Pers were separated by distillation, column chromatography and were identified by Periodate-Perman-ganate oxidation, IR, NMR and MS. They are cis-4-decenoic, cis-4-dodecenoic and cis-4-tetradecenoic acids respectively.  相似文献   

9.

Main conclusion

Co-expression of a lesquerella fatty acid elongase and the castor fatty acid hydroxylase in camelina results in higher hydroxy fatty acid containing seeds with normal oil content and viability. Producing hydroxy fatty acids (HFA) in oilseed crops has been a long-standing goal to replace castor oil as a renewable source for numerous industrial applications. A fatty acid hydroxylase, RcFAH, from Ricinus communis, was introduced into Camelina sativa, but yielded only 15 % of HFA in its seed oil, much lower than the 90 % found in castor bean. Furthermore, the transgenic seeds contained decreased oil content and the germination ability was severely affected. Interestingly, HFA accumulation was significantly increased in camelina seed when co-expressing RcFAH with a fatty acid condensing enzyme, LfKCS3, from Physaria fendleri, a native HFA accumulator relative to camelina. The oil content and seed germination of the transgenic seeds also appeared normal compared to non-transgenics. LfKCS3 has been previously characterized to specifically elongate the hydroxylated ricinoleic acid to lesquerolic acid, the 20-carbon HFA found in lesquerella oil. The elongation reaction may facilitate the HFA flux from phosphatidylcholine (PC), the site of HFA formation, into the acyl-CoA pool for more efficient utilization in triacylglycerol (TAG) biosynthesis. This was demonstrated by increased HFA accumulation in TAG concurrent with reduced HFA content in PC during camelina seed development, and increased C20-HFA in HFA-TAG molecules. These effects of LfKCS3 thus may effectively relieve the bottleneck for HFA utilization in TAG biosynthesis and the feedback inhibition to fatty acid synthesis, result in higher HFA accumulation and restore oil content and seed viability.  相似文献   

10.
贵州地方芝麻种质资源品质性状的分析与评价   总被引:1,自引:0,他引:1  
为探究贵州芝麻种质资源的品质特征,并对地方芝麻资源进行初步鉴定与评价,本研究对73份贵州芝麻种质资源的8个品质性状进行测试分析。结果表明:(1)贵州芝麻种质资源含油量介于41.45%~52.12%之间,平均含量为49.69%。在脂肪酸组成中,油酸、亚油酸等不饱和脂肪酸的平均含量分别为35.65%和50.66%;而棕榈酸、硬脂酸等饱和脂肪酸的平均含量仅为8.40%和4.79%。此外,贵州芝麻资源中芝麻素、芝麻林素和木质素的平均含量分别为5.03 mg/g、2.63 mg/g和4.79 mg/g。8个品质性状的变异系数介于3.69%~32.62%范围内,其中芝麻素含量变异系数最大,含油量变异系数最小。而芝麻素含量、芝麻林素含量及硬脂酸含量的变异系数均大于10%,表明这3个性状在芝麻样本间存在较大差异。(2)相关性分析结果显示:含油量与油酸、芝麻素含量呈极显著正相关,与亚油酸含量呈极显著负相关;油酸含量与芝麻素含量呈极显著正相关,与亚油酸含量呈极显负相关;亚油酸含量与芝麻素含量呈极显著负相关。表明品质性状间相关性大、关联程度较高,性状间相互影响较大。(3)主成分分析将8个品质性状综合为3个主成分,分别为油酸因子、含油量因子和芝麻素因子,3个主成分因子包含了贵州芝麻种质资源品质性状的绝大部分信息,累计贡献率达96%以上。(4)在欧氏距离D=9.75处将73份贵州芝麻资源划分为6个类群:第Ⅰ类群包含2份资源、第Ⅱ类群有7份、第Ⅲ类群有12份、第Ⅳ类群有5份、第Ⅴ类群有16份、第Ⅵ类群有31份。其中第Ⅵ类群油酸含量最高,且含油量、芝麻素含量较高。本研究探明了贵州芝麻品质的特征特性,可为芝麻种质资源的利用和创新提供依据,为芝麻品种选育和遗传改良提供参考。  相似文献   

11.
In the southeastern United States, private forestland managers are under increased pressure to provide wildlife habitat and biodiversity in addition to commercial products such as timber. This study used a stand classification scheme based on vegetation biodiversity from Hedman et al. to compare seed bank composition of benchmark (BM) and nonbenchmark (NBM) Loblolly pine ( Pinus taeda ) stands. In the Hedman et al. study, BM stands contained species associated with Longleaf pine ( P. palustris )/Wiregrass ( Aristida stricta ) communities, whereas NBM stands contained species associated with disturbed sites. The current vegetation of the BM and NBM stands had an average cover of 7.9%/m2 and an average richness of 11 species/m2. The intent for this study was to assist in understanding the potential role of the seed bank during stand development and restoration. We collected seed bank samples from six pine plantations in the winter of 2006. Seed bank samples yielded 2,885 germinants representing 56 unique species but only 4 were found in both current herbaceous vegetation plots and seed bank. The seed bank was dominated by native dicots. In BM stands, 76% of species were native, whereas in NBM stands, 69% were native. Seed bank samples from NBM stands had greater species richness ( p = 0.03) and total germinants ( p = 0.03) than BM stands. Although the seed bank in all stands was dominated by native species, our data suggest that the seed bank under P. taeda stands should not be viewed as the sole source of native species for most restoration goals.  相似文献   

12.
Exploring the elite al eles and germplasm acces-sions related to fiber quality traits wil accelerate the breeding of cotton for fiber quality improvement. In this study, 99 Gossypium hirsutum L. accessions with diverse origins were used to perform association analysis of fiber quality traits using 97 polymorphic microsatel ite marker primer pairs. A total of 107 significant marker-trait associations were detected for three fiber quality traits under three different environments, with 70 detected in two or three environments and 37 detected in only one environment. Among the 70 significant marker-trait associations, 52.86% were reported previously, implying that these are stable loci for target traits. Furthermore, we detected a large number of elite al eles associated simulta-neously with two or three traits. These elite al eles were mainly from accessions col ected in China, introduced to China from the United States, or rare al eles with a frequency of less than 5%. No one cultivar contained more than half of the elite al eles, but 10 accessions were col ected from China and the two introduced from the United States did contain more than half of these al eles. Therefore, there is great potential for mining elite al eles from germplasm accessions for use in fiber quality improvement in modern cotton breeding.  相似文献   

13.
Amino acid composition and fatty acid composition were determined on seed samples of a range of white lupin (Lupinus albus) cultivars and accessions grown in either of two environments.Variability between genotypes was found for lysine, arginine and glutamic acid content, but not for the concentrations of other amino acids. The deficiency in sulphurcontaining amino acids, typical of legume proteins, was evident, with methionine and cyst(e)ine totalling only 2.2% of the protein. Variability was limited, indicating that improvement by breeding would be impracticable. Lupinus albus differed slightly from other lupin species in amino acid composition, having higher levels of threonine, tyrosine and isoleucine, but a lower level of glutamic acid than both L. angustifolius and L. luteus. Four low-alkaloid lines of L albus each had higher lysine content than the high-alkaloid line, but ‘Kiev Mutant’, despite earlier claims, had a lysine level no higher than the other three low-alkaloid lines.Fatty acid composition of the seed oil varied considerably between genotypes. Oleic acid ranged from 43.6 to 54.4% and linolenic acid from 6.7 to 15.2%, these two fatty acids being negatively correlated at one site. Linoleic acid content varied between 17.2 and 26.9% and was not correlated with other fatty acids. Total oil content averaged 9.6% with little variability between lines.It is concluded that, relative to other lupin species, L. albus has a more favourable amino acid profile for its utilisation in cereal-based diets for animals, particularly if the energy source is wheat, which is deficient in threonine. The higher oil content would be an important energy benefit to such diets and may allow their protein/energy balance to be maintained at higher levels of incorporation of L. albus seed meal than is possible with other lupin species.  相似文献   

14.
Chemotaxonomic relationships in Onagraceae have been investigated at the level of leaf and flower compounds but not for seed traits. The objective of this study was to characterize a set of 26 accessions (25 species, 7 genera) of this family for seed oil content, fatty acid composition, tocopherol content and composition, and to evaluate the chemotaxonomic implications of the results. The accessions showed a large variation for all the traits. Gamma-linolenic acid was exclusively found in Oenothera spp. where two groups, showing different concentrations of gamma-linolenic acid and alpha-tocopherol, were observed. The species of Clarkia Pursh were markedly different to the rest of species, showing low alpha-linolenic acid and low gamma-tocopherol concentration. Circaea lutetiana L. had a characteristic tocopherol profile, with high levels (13%) of beta-tocopherol. Variation for fatty acid and tocopherol composition in Epilobium spp. suggested some phylogenetic relationships. The annual species E. pankulatum Nutt. showed a characteristic composition very similar to the closely related Boisduvalia densiflora (Lindl.) S. Watson. The accessions of the phylogenetically related E. fleischeri Hochst. and E. dodonaei Vill., also showed similar fatty acid and tocopherol composition. The results of this study suggest a potential chemotaxonomic value of seed fatty acids and tocopherols in Onagraceae.  相似文献   

15.
Berries native to Western Canada were analyzed for total anthocyanins, total phenolics, and trolox equivalent antioxidant activity (TEAC). Values ranged from 1.60 to 9.55 mmol trolox equivalent per 100 g fresh mass. Anthocyanin content ranged from 41.6 (in red twinberries) to 1081 mg cyanidin-3-glucoside equivalents per 100 g fresh mass (in honeysuckle fruits). Honeysuckle fruits contained the highest amount of total polyphenols, 1111 mg gallic acid equivalents per 100 g, among analyzed fruits. Additionally, anthocyanins in the investigated berries were identified and characterized by HPLC - electrospray ionization - tandem mass spectrometric method coupled with diode array detection. The number of anthocyanins varied from 4 in saskatoon berries (Amelanchier alnifolia Nutt.) to 20 in bilberries (Vaccinum myrtilloides Michx.). In all the samples analyzed, 6 common anthocyanidins:, cyanidin, delphinidin, pelargonidin, petunidin, peonidin, and malvidin, were found. Half the analyzed berries contained acylated anthocyanins, but a significant amount was found only in bilberries. The analyzed berry seed oils contained high amounts of unsaturated fatty acids (over 90%), but only the golden currant seed oil contained gamma-linolenic acid.  相似文献   

16.
Cucurbita moschata D. seed oil contains approximately 75% unsaturated fatty acids, with high levels of monounsaturated fatty acids and antioxidant compounds such as vitamin E and carotenoids, constituting a promising food in nutritional terms. In addition, the Brazilian germplasm of C. moschata exhibits remarkable variability, representing an important source for the genetic breeding of this vegetable and other cucurbits. The present study evaluated the productivity and profile of the seed oil of 91C. moschata accessions from different regions of Brazil maintained in the Vegetable Germplasm Bank of the Federal University of Viçosa (BGH-UFV). A field experiment was conducted between January and July 2016. The accessions showed high genetic variability in terms of characteristics related to seed oil productivity (SOP), such as the weight of seeds per fruit and productivity of seeds, providing predicted selection gains of 29.39 g and 0.26 t ha?1, respectively. Based on the phenotypic and genotypic correlations, a greater SOP can be achieved while maintaining a high oleic acid concentration and low linoleic acid concentration, providing oil of better nutritional and chemical quality. In the variability analysis, the accessions were clustered into five groups, which had different averages for SOP and fatty acid concentration of seed oil, an approach that will guide the use of appropriate germplasm in programs aimed at genetic breeding for SOP and seed oil profile. Per se analysis identified BGH-4610, BGH-5485A, BGH-6590, BGH-5556A, BGH-5472A, and BGH-5544A as the most promising accessions in terms of SOP, with an average (μ + g) of approximately 0.20 t ha?1. The most promising accessions for a higher oleic acid concentration of seed oil were BGH-5456A, BGH-3333A, BGH-5361A, BGH-5472A, BGH-5544A, BGH-5453A, and BGH-1749, with an average (μ + g) of approximately 30%, almost all of which were also the most promising in terms of a lower linoleic acid concentration of the seed oil, with an average (μ + g) of approximately 45%. Part of the C. moschata accessions evaluated in the present study can serve as a promising resource in genetic breeding programs for SOP and fatty acid profile, aiming at the production of oil with better nutritional and physicochemical quality.  相似文献   

17.
In this study, SSR markers were used to detect genetic diversity among and within accessions of Cucurbita pepo L. 26 landraces, belonging to four groups, were studied using 14 primers SSR, to investigate the genetic structure between accessions for different part of regions in Iran. Percentage of polymorphic loci, estimated using Nei's genetic diversity index and Shannon's information index revealed moderate or high levels of genetic variations within each landraces. Biochemical characters, including seed oil, protein, sitosterol, β-sitosterol, potassium and zinc content were evaluated among accessions. Results showed a great genetic variation for biochemical traits. Seed oil and protein content were from 26.5 to 45.8% and 21.0 to 28.6% respectively. β-Sitosterol content had a high positive correlation (r = 0.97) with oil content. It ranged from 15.1 to 26.5 mg/100 g oil. There was no significant difference for biochemical traits between naked seed pumpkin and vegetable marrow morphotypes.  相似文献   

18.
In 1997 and 1998, Cry9C susceptibility baselines were established for field-collected populations of European corn borer, Osrinia nubilalis (Hubner), and southwestern corn borer, Diatraea grandiosella Dyar. Bioassay of neonate European corn borer larvae of 16 colonies collected from the midwestern United States indicated LC50 values ranging from 13.2 to 65.1 ng of Cry9C protein per square centimeter. Neonate European corn borer LC50 values ranged from 46.5 to 214 ng/cm2. Neonate larvae of three colonies of southwestern corn borer collected from the southern and southwestern United States exhibited LC50 values from 16.9 to 39.9 ng of Cry9C protein per square centimeter. Southwestern corn borer neonate LC90 confidence limit values ranged from 40.3 to 157 ng of Cry9C protein per centimeter. The most sensitive southwestern corn borer colony was collected from the Mississippi delta exhibiting an LC50 value of 22.6 ng of Cry9C per cm2 and also displayed the widest LC0 confidence limits of 40.3-94.8 ng of Cry9C per cm2. Geographic baseline susceptibility data establishes the natural genetic variation and provides the foundation for future testing of insect populations exposed to increased use of Bacillus thuringiensis-based crops. Insect resistance management and stewardship of Cry9C will rely upon baseline data for the validation of discriminating dose assays for European corn borer and southwestern corn borer.  相似文献   

19.
About 125,000,000 pounds of castor oil are annually used in the United States in the manufacture of paints and varnishes, fatty acids, sulphonated oils, soap and other important products, 95% of which is imported either as seed or expressed oil. Attempts are now being made to revive a former American industry in the growing of domestic crops.  相似文献   

20.
Sesame is an important oil crop for the high oil content and quality. The seed oil and protein contents are two important traits in sesame. To identify the molecular markers associated with the seed oil and protein contents in sesame, we systematically performed the association mapping among 369 worldwide germplasm accessions under 5 environments using 112 polymorphic SSR markers. The general linear model (GLM) was applied with the criteria of logP≥3.0 and high stability under all 5 environments. Among the 369 sesame accessions, the oil content ranged from 27.89%–58.73% and the protein content ranged from 16.72%–27.79%. A significant negative correlation of the oil content with the protein content was found in the population. A total of 19 markers for oil content were detected with a R2 value range from 4% to 29%; 24 markers for protein content were detected with a R2 value range from 3% to 29%, of which 19 markers were associated with both traits. Moreover, partial markers were confirmed using mixed linear model (MLM) method, which suggested that the oil and protein contents are controlled mostly by major genes. Allele effect analysis showed that the allele associated with high oil content was always associated with low protein content, and vice versa. Of the 19 markers associated with oil content, 17 presented near the locations of the plant lipid pathway genes and 2 were located just next to a fatty acid elongation gene and a gene encoding Stearoyl-ACP Desaturase, respectively. The findings provided a valuable foundation for oil synthesis gene identification and molecular marker assistant selection (MAS) breeding in sesame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号