首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fraction greatly enriched in microsomes was prepared from chick embryo limb bone tissue homogenates by differential centrifugation in a high density solution of Metrizamide. This fraction was used to determine the submicrosomal localization of prolyl hydroxylase. At a low concentration (0.05%) of the non-ionic detergents Triton X-100 and Brij-35, 90 to 93% of prolyl hydroxylase activity was released from microsomes. Concentrations of Triton X-100 greater than 0.1% were required to solubilize the intrinsic membrane enzyme NADH-ferricyanide reductase and to release membrane-bound ribosomes, while Brij-35 did not extensively solubilize membrane components even at concentrations up to 0.4%. In addition, prolyl hydroxylase activity which could subsequently be released from microsomes by Brij-35 was relatively resistant to trypsin proteolysis at concentrations which removed more than 50% of the ribosomes and approximately 40% of the protein from microsomes. These results suggest that 90 to 93% of prolyl hydroxylase activity in connective tissue is located within the cisternae of the endoplasmic reticulum. Gel filtration of prolyl hydroxylase released from microsomes or found in the soluble fraction of limb bone homogenates revealed two peaks of activity corresponding to molecular weights of 230,000 and 450,000 to 500,000. The latter is twice the value reported for purified chick embryo prolyl hydroxylase. A fraction of the total prolyl hydroxylase activity (generally 20 to 35%) in microsome preparations could be measured in the absence of detergent, although the microsomal membrane should be impermeable to the large unhydroxylated collagen chains used as substrate. On the basis of experimental data, it was concluded that detergent-independent activity was most likely due to damaged microsomal membranes and that this damage was sufficient to allow substrate and trypsin to enter the cisternae but not to allow prolyl hydroxylase to be released.  相似文献   

2.
Association of prolyl hydroxylase activity with membranes   总被引:6,自引:0,他引:6  
Addition of ionic and nonionic detergents to whole homogenates of liver, kidney and lung prepared by a mild homogenization technique resulted in a two- to three-fold increase of prolyl hydroxylase activity. After subcellular fractionation of whole homogenates of liver, particulate and supernatant fractions were incubated in the presence and absence of triton X-100 and assayed for prolyl hydroxylase activity. All particulate fractions tested were able to release significant amounts of prolyl hydroxylase activity in the presence of triton. The release of enzyme activity by triton was observed with the 1000 × g and 17,000 × g supernatants but not with the 105,000 × g supernatant; thus indicating that detergent does not activate soluble enzyme nor make the substrate more accessible to hydroxylation by the enzyme during incubation. Rigorous homogenization of the 17,000 × g particulate fraction with the Polytron ST system resulted in a substantial loss of the amount of prolyl hydroxylase activity released by treatment with triton. These data suggest that a significant amount of prolyl hydroxylase activity is associated with membranes under physiological conditions.  相似文献   

3.
An improved procedure was developed to extract prolyl hydroxylase from tendon cells of chick embryos with detergent, and improved assays were developed for both the activity of the enzyme and the amount of enzyme protein. Freshly isolated tendon cells were found to contain approx. 100 μg of enzyme protein per 108 cells and 40–50% of the enzyme protein was active. When the cells were cultured, they were found to contain the same amount of enzyme protein by only 15–20% of the enzyme protein was active. Gel filtration of cell extracts indicated that the active form of prolyl hydroxylase in freshly isolated tendon cells and in cultured tendon cells had the same apparent size and the same activity per μg of immunoreactive protein as enzyme which was shown to be a tetramer. The inactive form was found to have about the same apparent size as subunits of the enzyme.When freshly isolated cells were incubated for 2 h in the presence of 40 μg per ml of ascorbate, there was a slight increase in the rate of hydroxyproline synthesis. In cultured cells, ascorbate at a concentration of 40 μg per ml caused a 2-fold increase in the rate of hydroxyproline synthesis within 30 min. However, ascorbate did not increase the activity of prolyl hydroxylase in extracts from either cell system. Therefore it appears that the influence of ascorbate on synthesis of procollagen hydroxyproline by the cells studied here must be ascribed to a cofactor effect on the hydroxylation reaction similar to that observed with purified enzyme, and it does not involve “activation” of inactive enzyme protein to active enzyme as has been observed in cultures of L-929 and 3T6 mouse fibroblasts.  相似文献   

4.
5.
A purification of up to 4000-fold is reported for lysyl hydroxylase (EC 1.14.11.4) from extract of chick-embryo homogenate and one of about 300-fold from extract of chick-embryo cartilage. Multiple forms of the enzyme were observed during purification from whole chick embryos. In gel filtration the elution positions of the two main forms corresponded to average molecular weights of about 580000 and 220000. These two forms could also be clearly separated in hydroxyapatite chromatography. In addition, some enzyme activity was always eluted between the two main peaks both in gel filtration and in hydroxyapatite chromatography. The presence of the two main forms was also observed when purifying enzyme from chick embryo cartilage. Both forms of the enzyme hydroxylated lysine in arginine-rich histone, which does not contain any -X-Lys-Gly- sequence. No difference was found between the enzyme from whole chick embryos and from chick embryo cartilage in this respect. Lysyl hydroxylase was found to have affinity for concanavalin A, indicating the presence of some carbohydrate residues in the enzyme molecule. Lysyl and prolyl hydroxylase activities increased when the chick embryo homogenate was assayed in the presence of lysolecithin. Preincubation of the homogenate either with lysolecithin or with Triton X-100 increased lysyl hydroxylase activity in homogenate, and in the 1500 x g and 150000 x g supernatants, suggesting that the increase in the enzyme activity was due to liberation of the enzyme from the membranes. Divalent cations were found to inhibit the activity of lysyl and prolyl hydroxylases in vitro. An inhibition of about 50% was achieved with 15 mM calcium 60 muM copper and 3 muM zinc concentrations. The mode of inhibition was tested with Cu2+, and was found to be competitive with Fe2+.  相似文献   

6.
7.
Changes in prolyl hydroxylase activity and immunoreactive protein were studied in various chick embryo tissues during the embryonic development. Both the enzyme activity and the amoung of immunoreactive protein increased till the 16th day of development and declined thereafter in all tissues studied. Comparison of the enzyme activity to the content of the total immuno-reactive protein indicated that there are distinct differences in the degree of enzyme activity between different chick embryo tissues, and in the same tissue between different stages of embryonic development. The highest relative enzyme activities were found in cartilage and skin, in which about 60% of the enzyme was active on the 16th day of development and only 20-30% was active on the 20th day of development; the lowest values were observed in spleen and large vessels, in which below 10% of the enzyme protein was in the active form on the 20th day of development Gel filtration studies demonstrated that in cartilage of 16-day-old chick embryos about 60% of the total immunoreactive enzyme in the tissue was present in the form of active prolylhydroxylase tetramer, whereas on the 20th day of development only 30% of the enzyme protein in cartilage was in the tetramer form. By contrast, in large vessels of the 16-day-old chick embryos, essentially all the enzyme was in the form of prolyl hydroxylase monomers.  相似文献   

8.
9.
10.
An improved procedure was developed to extract prolyl hydroxylase from tendon cells of chick embryos with detergent, and improved assays were developed for both the activity of the enzyme and the amount of enzyme protein. Freshly isolated tendon cells were found to contain approx. 100 mug of enzyme protein per 10(8) cells and 40-50% of the enzyme protein was active. When the cells were cultured, they were found to contain the same amount of enzyme protein but only 15-20% of the enzyme protein was active. Gel filtration of cell extracts indicated that the active form of prolyl hydroxylase in freshly isolated tendon cells and incultured tendon cells had the same apparent size and the same activity per mug of immunoreactive protein as enzyme which was shown to be a tetramer. The inactive form was found to have about the same apparent size as subunits of the enzyme. When freshly isolated cells were incubated for 2 h in the presence of 40 mug per ml of ascorbate, there was a slight increase in the rate of hydroxyproline synthesis. In cultured cells, ascorbate at a concentration of 40 mug per ml caused a 2-fold increase in the rate of hydroxyproline synthesis within 30 min. However, ascorbate did not icrease the activity of prolyl hydroxylase in extracts from either cell system. Therefore it appears that the influence of ascorbate on synthesis of procollagen hydroxyproline by the cells studied here must be ascribed to a cofactor effect on the hydroxylation reaction similar to that observed with purified enzyme, and it does not involve "activation" of inactive enzyme protein to active enzyme as has been observed in cultures of L-929 and 3T6 mouse fibroblasts.  相似文献   

11.
Prolyl oligopeptidase (POP) is a serine protease that cleaves small peptides at the carboxyl side of an internal proline residue. Substance P, arginine-vasopressin, thyroliberin and gonadoliberin are proposed physiological substrates of this protease. POP has been implicated in a variety of brain processes, including learning, memory, and mood regulation, as well as in pathologies such as neurodegeneration, hypertension, and psychiatric disorders. Although POP has been considered to be a soluble cytoplasmic peptidase, significant levels of activity have been detected in membranes and in extracellular fluids such as serum, cerebrospinal fluid, seminal fluid, and urine, suggesting the existence of noncytoplasmic forms. Furthermore, a closely associated membrane prolyl endopeptidase (PE) activity has been previously detected in synaptosomes and shown to be different from the cytoplasmic POP activity. Here we isolated, purified and characterized this membrane-bound PE, herein referred to as mPOP. Although, when attached to membranes, mPOP presents certain features that distinguish it from the classical POP, our results indicate that this protein has the same amino acid sequence as POP except for the possible addition of a hydrophobic membrane anchor. The kinetic properties of detergent-soluble mPOP are fully comparable to those of POP; however, when attached to the membranes in its natural conformation, mPOP is significantly less active and, moreover, it migrates anomalously in SDS/PAGE. Our results are the first to show that membrane-bound and cytoplasmic POP are encoded by variants of the same gene.  相似文献   

12.
13.
Hypoxic cellular response is crucial for normal development as well as in pathological conditions in order to tolerate low oxygen. The response is mediated by Hypoxia Inducible Factors (HIFs), where the α-subunit of HIF is stabilised and able to function only in low oxygen. Prolyl hydroxylases (PHDs) are oxygen dependent dioxygenase enzymes that hydroxylate HIF-α leading to HIF degradation. Thus PHDs function as an oxygen sensor for the function of HIFs. Here we describe the mRNA expression pattern of PHDs in chick embryos. Up to embryonic day 2, PHDs are weak without specific localisation, whereas from day 3 localised expression was observed in the eye, branchial arches and dermomyotome. Later in the limb development PHDs were expressed in the perichondral mesenchyme, excluded from the developing limb cartilages.  相似文献   

14.
Underhydroxylated collagenous proteins accumulate in the media of embryonic chick calvaria cultured in the presence of α,α′-dipyridyl for 24 h. These soluble collagenous proteins, when labeled with radioactive proline, were shown to be a specific, stable, and highly efficient substrate for in vitro measurement of prolyl hydroxylase. The ability of the media proteins to serve as a substrate for prolyl hydroxylase was abolished by digestion with purified bacterial collagenase. This method of substrate preparation provides a soluble, efficient, economical substrate for routine prolyl hydroxylase assays, and permits the accumulation of sufficient quantities of substrate of one specific activity to serve for extended periods of time.  相似文献   

15.
The ability of chick-embryo proline hydroxylase to hydroxylate [(14)C]proline-labelled procollagen was investigated between 23 degrees and 37 degrees C. The amount of hydroxy[(14)C]proline that could be formed increased sharply between 26 degrees and 30 degrees C. This corresponded to the temperature interval in which the [(14)C]procollagen substrate was thermally denatured, and the results therefore indicate that only denatured molecules can be hydroxylated.  相似文献   

16.
17.
S Curran  D J Prockop 《Biochemistry》1982,21(7):1482-1487
The amino-terminal propeptide from type II procollagen was isolated from organ cultures of sternal cartilages from 17-day-old chick embryos. The procedure provided the first isolation of the propeptide in amounts adequate for chemical characterization. The propeptide had an apparent molecular weight of 18000 as estimated by gel electrophoresis in sodium dodecyl sulfate. It contained a collagen-like domain as demonstrated by its amino acid composition, circular dichroism spectrum, and susceptibility to bacterial collagenase. One residue of hydroxylysine was present, the first time this amino acid has been detected in a propeptide. The peptide contained no methionine and only two residues of half-cystine. Antibodies were prepared to the propeptide and were used to establish its identity. The antibodies precipitated type II procollagen but did not precipitate type II procollagen from which the amino and carboxy propeptides were removed with pepsin. Also, they did not precipitate the carboxy propeptide of type II procollagen. The data demonstrated th at the type II amino propeptide was similar to the amino propeptides of type I and type III procollagens in that it contained a collagen-like domain. It differed, however, in that it lacked a globular domain as large as the globular domain of 77-86 residues found at the amino-terminal ends of the pro alpha 1 chains of type I and type III procollagens.  相似文献   

18.
After homogenization of intestinal mucosa from vitamin D-replete chicks and high speed centrifugation, the major proportion of the vitamin D-induced calcium-binding protein is present in the supernatant fraction. However, the centrifugate, after repeated washing, contains significant amounts of bound calcium-binding protein that can be solubilized by Triton X-100. The bound calcium-binding protein is identical to soluble calcium-binding protein by the criteria of immunological identity, electrophoretic mobility, and molecular size, as determined by gel filtration chromatography. The bound calcium-binding protein is only partially released by sonication, osmotic shock or by ribonuclease treatment Bound and soluble calcium-binding protein are not present in rachitic chick intestine. The addition of calcium-binding protein to rachitic mucosa prior to homogenization does not yield a Triton X-100 solubilizable form, indicating that bound calcium-binding protein in vitamin D-replete intestine is not due to adsorption of vesicular entrapmetn of soluble calcium-binding protein. The overall evidence suggests that part of the intestinal calcium-binding protein is membrane-bound.  相似文献   

19.
Using immunochemical methods, the fibronectin-synthesizing activity of membrane-bound and free polyribosomes in a cell-free system was studied. It was demonstrated that fibronectin biosynthesis on membrane-bound polyribosomes from human embryonic fibroblasts makes up to 4.9%, while that from chicken embryos--1.1% of the total amount of the de novo synthesized proteins (as compared to 1.0 and 0.3% in free polyribosomes, respectively). Fibronectin monomers (Mr = 330 kD) were detected only in the newly synthesized (in the presence of spermidine) material of the cell-free system containing heavy fractions of membrane-bound polyribosomes.  相似文献   

20.
Procollagen N-proteinase, the enzyme which cleaves the NH2-terminal propeptides from type I procollagen, was purified over 15,000-fold from extracts of chick embryos by chromatography on columns of DEAE-cellulose, concanavalin A-agarose, heparin-agarose, pN-collagen-agarose, and a filtration gel. The purified enzyme had an apparent molecular weight of 320,000 as estimated by gel filtration and a pH optimum for activity of 7.4 to 9.0. The enzyme was inhibited by metal chelators and the thiol reagent dithiothreitol. Addition of calcium was required for maximal activity under the standard assay conditions, and the presence of calcium decreased thermal inactivation at 37 degrees C. The purified enzyme cleaved a homotrimer of pro-alpha 1(I) chains, an observation which indicated that the presence of pro-alpha 2(I) chain is not essential for the enzymic cleavage of NH2-terminal propeptides. Previous observations suggesting that the enzyme requires a substrate with a native conformation were explored further by reacting the enzyme with type I procollagen at different temperatures. Type I procollagen from chick embryo fibroblasts became resistant to cleavage at about 43 degrees C. Type I procollagen from human skin fibroblasts, which was previously shown to have a slightly lower thermal stability than chick embryo type I procollagen, became resistant to cleavage at temperatures that were about 2 degrees C lower. The results suggested that the enzyme is a sensitive probe for the three-dimensional structure of the NH2-terminal region of the procollagen molecule and that it requires the protein substrate to be triple helical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号