首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal ions are essential cofactors for precursor tRNA (ptRNA) processing by bacterial RNase P. The ribose 2'-OH at nucleotide (nt) -1 of ptRNAs is known to contribute to positioning of catalytic Me2+. To investigate the catalytic process, we used ptRNAs with single 2'-deoxy (2'-H), 2'-amino (2'-N), or 2'-fluoro (2'-F) modifications at the cleavage site (nt -1). 2' modifications had small (2.4-7.7-fold) effects on ptRNA binding to E. coli RNase P RNA in the ground state, decreasing substrate affinity in the order 2'-OH > 2'-F > 2'-N > 2'-H. Effects on the rate of the chemical step (about 10-fold for 2'-F, almost 150-fold for 2'-H and 2'-N) were much stronger, and, except for the 2'-N modification, resembled strikingly those observed in the Tetrahymena ribozyme-catalyzed reaction at corresponding position. Mn2+ rescued cleavage of the 2'-N but also the 2'-H-modified ptRNA, arguing against a direct metal ion coordination at this location. Miscleavage between nt -1 and -2 was observed for the 2'-N-ptRNA at low pH (further influenced by the base identities at nt -1 and +73), suggesting repulsion of a catalytic metal ion due to protonation of the amino group. Effects caused by the 2'-N modification at nt -1 of the substrate allowed us to substantiate a mechanistic difference in phosphodiester hydrolysis catalyzed by Escherichia coli RNase P RNA and the Tetrahymena ribozyme: a metal ion binds next to the 2' substituent at nt -1 in the reaction catalyzed by RNase P RNA, but not at the corresponding location in the Tetrahymena ribozyme reaction.  相似文献   

2.
The YAG/ consensus sequence at the 3' end of introns (the slash indicates the location of the 3' splice site) is essential for catalysis of the second step of pre-mRNA splicing. Little is known about the interactions formed by these three nucleotides in the spliceosome. Although previous observations have suggested that the G of the YAG/ interacts with the first nucleotide of the /GUA consensus sequence at the 5' end of the intron, additional interactions have not been identified. Here we report several striking genetic interactions between A+3 of the 5' /GUA with Y-3 of the 3' YAG/ and G50 of the highly conserved ACAGAG motif in U6 snRNA. Two mutations in U6 G50 of the ACAGAG can weakly suppress two mutations in A+3 of the 5' /GUA. This suppression is significantly enhanced upon the inclusion of a specific mutation Y-3 in the 3' YAG/. RNA analysis confirmed that the severe splicing defect observed in A+3 and Y-3 double mutants can be rescued to near wild-type levels by the mutations in U6 G50. The contributions of each mutation to the genetic interaction and the strong position specificity of suppression, combined with previous findings, support a model in which the 5' /GUA and the GAG of U6 function in binding the 3' YAG/ during the second catalytic step.  相似文献   

3.
A Flynn-Charlebois  N Lee  H Suga 《Biochemistry》2001,40(45):13623-13632
Catalytically active RNA molecules rely on metal ions for structural and/or catalytic functions. Our in vitro selected aminoacyl-transferase ribozyme is no exception, as it employs a single fully hydrated Mg2+ ion for catalysis [Suga, H., et al. (1998) Biochemistry 37, 10118-10125]. Here we report the essential catalytic residues of the ribozyme and their spatial arrangement in the relation to the metal binding site. Evidence obtained using a combination of Pb2+ and Tb3+ hydrolytic cleavage assays on wild type and mutant ribozymes revealed a cooperative metal binding site that consists of the tandem G:U wobble pairs in P1 and consecutive G:U and U:A pairs in P3. The formation of this concerted Mg2+ binding site positions the P1 and P3 helices in a parallel manner, placing the L3 tetraloop in close proximity to the internal guide sequence (IGS, substrate binding site), which is adjacent to P1. Certain monovalent metal ions inhibit catalysis at low concentrations but support catalysis at high concentrations. These analyses imply that the Mg2+ ion plays both structural and chemical roles and that it brings about the significant rate acceleration in aminoacyl-transfer in concert with the L3-IGS long-range interaction.  相似文献   

4.
The hepatitis delta virus (HDV) ribozyme uses both metal ion and nucleobase catalysis in its cleavage mechanism. A reverse G·U wobble was observed in a recent crystal structure of the precleaved state. This unusual base pair positions a Mg(2+) ion to participate in catalysis. Herein, we used molecular dynamics (MD) and X-ray crystallography to characterize the conformation and metal binding characteristics of this base pair in product and precleaved forms. Beginning with a crystal structure of the product form, we observed formation of the reverse G·U wobble during MD trajectories. We also demonstrated that this base pair is compatible with the diffraction data for the product-bound state. During MD trajectories of the product form, Na(+) ions interacted with the reverse G·U wobble in the RNA active site, and a Mg(2+) ion, introduced in certain trajectories, remained bound at this site. Beginning with a crystal structure of the precleaved form, the reverse G·U wobble with bound Mg(2+) remained intact during MD simulations. When we removed Mg(2+) from the starting precleaved structure, Na(+) ions interacted with the reverse G·U wobble. In support of the computational results, we observed competition between Na(+) and Mg(2+) in the precleaved ribozyme crystallographically. Nonlinear Poisson-Boltzmann calculations revealed a negatively charged patch near the reverse G·U wobble. This anionic pocket likely serves to bind metal ions and to help shift the pK(a) of the catalytic nucleobase, C75. Thus, the reverse G·U wobble motif serves to organize two catalytic elements, a metal ion and catalytic nucleobase, within the active site of the HDV ribozyme.  相似文献   

5.
Metal ions facilitate the folding of the hairpin ribozyme but do not participate directly in catalysis. The metal complex cobalt(III) hexaammine supports folding and activity of the ribozyme and also mediates specific internucleotide photocrosslinks, several of which retain catalytic ability. These crosslinks imply that the active core structure organized by [Co(NH3)6]3+ is different from that organized by Mg2+ and that revealed in the crystal structure [Rupert, P. B., and Ferre-D'Amare, A. R. (2001) Nature 410, 780-786] (1). Residues U+2 and C+3 of the substrate, in particular, adopt different conformations in [Co(NH3)6]3+. U+2 is bulged out of loop A and stacked on residue G36, whereas the nucleotide at position +3 is stacked on G8, a nucleobase crucial for catalysis. Cleavage kinetics performed with +2 variants and a C+3 U variant correlate with the crosslinking observations. Variants that decreased cleavage rates in magnesium up to 70-fold showed only subtle decreases or even increases in observed rates when assayed in [Co(NH3)6]3+. Here, we propose a model of the [Co(NH3)6]3+-mediated catalytic core generated by MC-SYM that is consistent with these data.  相似文献   

6.
The hairpin ribozyme is a small catalytic RNA with reversible phosphodiester cleavage activity. Biochemical and structural studies exclude a requirement for divalent metal cation cofactors and implicate one active site nucleobase in particular, G8, in the catalytic mechanism. Our previous work demonstrated that the cleavage activity that is lost when G8 is replaced by an abasic residue is restored when certain nucleobases are provided in solution. The specificity and pH dependence of exogenous nucleobase rescue were consistent with several models of the rescue mechanism, including general acid base catalysis, electrostatic stabilization of negative charge in the transition state or a requirement for protonation to facilitate exogenous nucleobase binding. Detailed analyses of exogenous nucleobase rescue for both cleavage and ligation reactions now allow us to refine models of the rescue mechanism. Activity increased with increasing pH for both unmodified ribozyme reactions and unrescued reactions of abasic variants lacking G8. This similarity in pH dependence argues against a role for G8 as a general base catalyst, because G8 deprotonation could not be responsible for the pH-dependent transition in the abasic variant. Exogenous nucleobase rescue of both cleavage and ligation activity increased with decreasing pH, arguing against a role for rescuing nucleobases in general acid catalysis, because a nucleobase that contributes general acid catalysis in the cleavage pathway should provide general base catalysis in ligation. Analysis of the concentration dependence of cytosine rescue at high and low pH demonstrated that protonation promotes catalysis within the nucleobase-bound ribozyme complex but does not stabilize nucleobase binding in the ground state. These results support an electrostatic stabilization mechanism in which exogenous nucleobase binding counters negative charge that develops in the transition state.  相似文献   

7.
Base substitutions in U2/U6 helix I, a conserved base-pairing interaction between the U6 and U2 snRNAs, have previously been found to specifically block the second catalytic step of nuclear pre-mRNA splicing. To further assess the role of U2/U6 helix I in the second catalytic step, we have screened mutations in U2/U6 helix I to identify those that influence 3' splice site selection using a derivative of the yeast actin pre-mRNA. In these derivatives, the spacing between the branch site adenosine and 3' splice site has been reduced from 43 to 12 nt and this results in enhanced splicing of mutants in the conserved 3' terminal intron residue. In this context, mutation of the conserved 3' intron terminal G to a C also results in the partial activation of a nearby cryptic 3' splice site with U as the 3' terminal intron nucleotide. Using this highly sensitive mutant substrate, we have identified a mutation in the U6 snRNA (U57A) that significantly increases the selection of the cryptic 3' splice site over the normal 3' splice site and augments its utilization relative to that observed with the wild-type U2 or U6 snRNAs. In a previous study, we found that the same U6 mutation suppressed the effects of an A-to-G branch site mutation in an allele-specific fashion. The ability of U6-U57 mutants to influence the fidelity of both branch site and 3' splice site recognition suggests that this nucleotide may participate in the formation of the active site(s) of the spliceosome.  相似文献   

8.
Application of ribozymes for knockdown of RNA targets requires the identification of suitable target sites according to the consensus sequence. For the hairpin ribozyme, this was originally defined as Y?2 N?1 *G+1 U+2 Y+3 B+?, with Y = U or C, and B = U, C or G, and C being the preferred nucleobase at positions -2 and +4. In the context of development of ribozymes for destruction of an oncogenic mRNA, we have designed ribozyme variants that efficiently process RNA substrates at U?2 G?1 *G+1 U+2 A+3 A+? sites. Substrates with G?1 *G+1 U+2 A+3 sites were previously shown to be processed by the wild-type hairpin ribozyme. However, our study demonstrates that, in the specific sequence context of the substrate studied herein, compensatory base changes in the ribozyme improve activity for cleavage (eight-fold) and ligation (100-fold). In particular, we show that A+3 and A+? are well tolerated if compensatory mutations are made at positions 6 and 7 of the ribozyme strand. Adenine at position +4 is neutralized by G? →U, owing to restoration of a Watson-Crick base pair in helix 1. In this ribozyme-substrate complex, adenine at position +3 is also tolerated, with a slightly decreased cleavage rate. Additional substitution of A? with uracil doubled the cleavage rate and restored ligation, which was lost in variants with A?, C? and G?. The ability to cleave, in conjunction with the inability to ligate RNA, makes these ribozyme variants particularly suitable candidates for RNA destruction.  相似文献   

9.
Activation of a cryptic 5' splice site by U1 snRNA   总被引:1,自引:0,他引:1       下载免费PDF全文
In the course of analyzing 5' splice site mutations in the second intron of Schizosaccharomyces pombe cdc2, we identified a cryptic 5' junction containing a nonconsensus nucleotide at position +2. An even more unusual feature of this cryptic 5' junction was its pattern of activation. By analyzing the profile of splicing products for an extensive series of cdc2 mutants in the presence and absence of compensatory U1 alleles, we have obtained evidence that the natural 5' splice site participates in activation of the cryptic 5' splice site, and that it does so via base pairing to U1 snRNA. Furthermore, the results of follow-up experiments strongly suggest that base pairing between U1 snRNA and the cryptic 5' junction itself plays a dominant role in its activation. Most remarkably, a mutant U1 can activate the cryptic 5' splice site even in the presence of a wild-type sequence at the natural 5' junction, providing unambiguous evidence that this snRNA redirects splicing via base pairing. Although previous work has demonstrated that U5 and U6 snRNAs can activate cryptic 5' splice sites through base pairing interactions, this is the first example in which U1 snRNA has been implicated in the final selection of a cryptic 5' junction.  相似文献   

10.
The hairpin ribozyme is a small catalytic RNA that accelerates reversible cleavage of a phosphodiester bond. Structural and mechanistic studies suggest that divalent metals stabilize the functional structure but do not participate directly in catalysis. Instead, two active site nucleobases, G8 and A38, appear to participate in catalytic chemistry. The features of A38 that are important for active site structure and chemistry were investigated by comparing cleavage and ligation reactions of ribozyme variants with A38 modifications. An abasic substitution of A38 reduced cleavage and ligation activity by 14,000-fold and 370,000-fold, respectively, highlighting the critical role of this nucleobase in ribozyme function. Cleavage and ligation activity of unmodified ribozymes increased with increasing pH, evidence that deprotonation of some functional group with an apparent pK(a) value near 6 is important for activity. The pH-dependent transition in activity shifted by several pH units in the basic direction when A38 was substituted with an abasic residue, or with nucleobase analogs with very high or low pK(a) values that are expected to retain the same protonation state throughout the experimental pH range. Certain exogenous nucleobases that share the amidine group of adenine restored activity to abasic ribozyme variants that lack A38. The pH dependence of chemical rescue reactions also changed according to the intrinsic basicity of the rescuing nucleobase, providing further evidence that the protonation state of the N1 position of purine analogs is important for rescue activity. These results are consistent with models of the hairpin ribozyme catalytic mechanism in which interactions with A38 provide electrostatic stabilization to the transition state.  相似文献   

11.
U6 RNA is essential for nuclear pre-mRNA splicing and has been implicated directly in catalysis of intron removal. The U80G mutation at the essential magnesium binding site of the U6 3' intramolecular stem-loop region (ISL) is lethal in yeast. To further understand the structure and function of the U6 ISL, we have investigated the structural basis for the lethal U80G mutation by NMR and optical spectroscopy. The NMR structure reveals that the U80G mutation causes a structural rearrangement within the ISL resulting in the formation of a new Watson-Crick base pair (C67 x G80), and disrupts a protonated C67 x A79 wobble pair that forms in the wild-type structure. Despite the structural change, the accessibility of the metal binding site is unperturbed, and cadmium titration produces similar phosphorus chemical shift changes for both the U80G mutant and wild-type RNAs. The thermodynamic stability of the U80G mutant is significantly increased (Delta Delta G(fold) = -3.6 +/- 1.9 kcal/mol), consistent with formation of the Watson-Crick pair. Our structural and thermodynamic data, in combination with previous genetic data, suggest that the lethal basis for the U80G mutation is stem-loop hyperstabilization. This hyperstabilization may prevent the U6 ISL melting and rearrangement necessary for association with U4.  相似文献   

12.
Guo F  Gooding AR  Cech TR 《Molecular cell》2004,16(3):351-362
The Tetrahymena intron is an RNA catalyst, or ribozyme. As part of its self-splicing reaction, this ribozyme catalyzes phosphoryl transfer between guanosine and a substrate RNA strand. Here we report the refined crystal structure of an active Tetrahymena ribozyme in the absence of its RNA substrate at 3.8 A resolution. The 3'-terminal guanosine (omegaG), which serves as the attacking group for RNA cleavage, forms a coplanar base triple with the G264-C311 base pair, and this base triple is sandwiched by three other base triples. In addition, a metal ion is present in the active site, contacting or positioned close to the ribose of the omegaG and five phosphates. All of these phosphates have been shown to be important for catalysis. Therefore, we provide a picture of how the ribozyme active site positions both a catalytic metal ion and the nucleophilic guanosine for catalysis prior to binding its RNA substrate.  相似文献   

13.
Burton AS  Lehman N 《Biochimie》2006,88(7):819-825
Group I intron ribozymes isolated from natural sources have a strict dependence on the divalent metal cations Mg(II) or Mn(II) for catalytic activity. However, mutant versions of the Tetrahymena ribozyme have been previously isolated in the laboratory that show demonstrable activity in 10 mM CaCl(2) as the only supplied salt. Here, we sought to discover similar variants of another group I intron that is likely more evolutionarily specialized. We used in vitro selection to isolate a Ca(II)-dependent variant of the naturally-occurring form of the Azoarcus ribozyme, which is half the size of the Tetrahymena ribozyme and possesses an extremely high G+C content of 71%. A mutation of G to A at position 118 was selected in multiple independent trials. Activity of the mutant is very poor in Ca(II) and can only be observed after RT-PCR, highlighting the power of in vitro selection to isolate molecules with rare and low-level activities. The mutation likely confers an alternate but rare folded conformation that permits accommodation of Ca(II) ions and catalysis. This work also serves to caution that although a selection may be successful, isolates may not be catalytically proficient enough to provide useful levels of activity.  相似文献   

14.
15.
Lambert D  Heckman JE  Burke JM 《Biochemistry》2006,45(23):7140-7147
Native hammerhead ribozymes contain RNA domains that enable high catalytic activity under physiological conditions, where minimal hammerheads show little activity. However, little is known about potential differences in native versus minimal ribozyme folding. Here, we present results of photocross-linking analysis of native and minimal hammerheads containing photoreactive nucleobases 6-thioguanosine, 2,6-diaminopurine, 4-thiouridine, and pyrrolocytidine, introduced at specific sites within the catalytic core. Under conditions where catalytic activity is observed, the two substrate nucleobases spanning the cleavage site approach and stack upon G8 and G12 of the native hammerhead, two conserved nucleobases that show similar behavior in minimal constructs, have been implicated in general acid-base catalysis, and are >15 A from the cleavage site in the crystal structures. Pyrrolocytidine at cleavage site position 17 forms an efficient crosslink to G12, and the crosslinked RNA retains catalytic activity. Multiple cross-linked species point to a structural rearrangement within the U-turn, positioning residue G5 in the vicinity of cleavage site position 1.1. Intriguing crosslinks were triggered by nucleotide analogues at positions distal to the crosslinked residues; for example, 6-thioguanosine at position 5 induced a crosslink between G12 and C17, suggesting an intimate functional communication among these three nucleobases. Together, these results support a model in which the native hammerhead folds to an active structure similar to that of the minimal ribozyme, and significantly different from the crystallographic structures.  相似文献   

16.
The hairpin ribozyme requires functional group contributions from G8 to assist in phosphodiester bond cleavage. Previously, replacement of G8 by a series of nucleobase variants showed little effect on interdomain docking, but a 3-250-fold effect on catalysis. To identify G8 features that contribute to catalysis within the hairpin ribozyme active site, structures for five base variants were determined by X-ray crystallography in a resolution range between 2.3 and 2.7 A. For comparison, a native all-RNA "G8" hairpin ribozyme structure was refined to 2.05 A resolution. The native structure revealed a scissile bond angle (tau) of 158 degrees, which is close to the requisite 180 degrees "in-line" geometry. Mutations G8(inosine), G8(diaminopurine), G8(aminopurine), G8(adenosine), and G8(uridine) folded properly, but exhibited nonideal scissile bond geometries (tau ranging from 118 degrees to 93 degrees) that paralleled their diminished solution activities. A superposition ensemble of all structures, including a previously described hairpin ribozyme-vanadate complex, indicated the scissile bond can adopt a variety of conformations resulting from perturbation of the chemical environment and provided a rationale for how the exocyclic amine of nucleobase 8 promotes productive, in-line geometry. Changes at position 8 also caused variations in the A-1 sugar pucker. In this regard, variants A8 and U8 appeared to represent nonproductive ground states in which their 2'-OH groups mimicked the pro-R, nonbridging oxygen of the vanadate transition-state complex. Finally, the results indicated that ordered water molecules bind near the 2'-hydroxyl of A-1, lending support to the hypothesis that solvent may play an important role in the reaction.  相似文献   

17.
Splice-site selection specificity in Tetrahymena self-splicing RNA is thought to be mediated by a base-paired complex between a CUCUCU sequence on the end of the 5' exon and a GGGAGG guide sequence in the intron. The substitution of uracil (U) in oligonucleotide mini-exons with 5-fluorouracil (UF), an analogue bearing a much more acidic N-3 proton, allowed us to test the role of hydrogen bonding between complementary bases in the splice-site selection process. The affinities of (U) and (UF) mini-exons for the ribozyme active site were similar and several orders of magnitude greater than expected from base pairing alone. In contrast to CUCU, the CUFCUF mini-exon lost substrate activity with increasing pH, presumably due to ionization of the UF residues. However, the apparent pK values of these residues were several pK units above that of free UF, indicating that the mini-exon is shielded from the solvent by an active site of low polarity. Loss of the pyrimidine N-3 hydrogen bond by selective ionization of the UF residues decreased the binding of CUFCUF to the ribozyme only 3-fold but did prevent its ligation to the 3' exon. Temperature dependence of substrate activity was identical for both (U) and (UF) mini-exons, whereas the UF-substituted ribozyme lost activity at a considerably lower temperature than did the natural (U) ribozyme. These observations indicate that hydrogen-bonded base pairs involving the U residues contribute little to the total binding energy of the 5' splice site with the active site of the ribozyme, but probably help to align the splice sites properly for ligation.  相似文献   

18.
Leadzyme is a ribozyme that requires Pb2+. The catalytic sequence, CUGGGAGUCC, binds to an RNA substrate, GGACC downward arrowGAGCCAG, cleaving the RNA substrate at one site. We have investigated the effect of the substrate sequence on the cleavage activity of leadzyme using mutant substrates in order to structurally understand the RNA catalysis. The results showed that leadzyme acted as a catalyst for single site cleavage of a C5 deletion mutant substrate, GGAC downward arrowGAGCCAG, as well as the wild-type substrate. However, a mutant substrate GGACCGACCAG, which had G8 deleted from the wild-type substrate, was not cleaved. Kinetic studies by surface plasmon resonance indicated that the difference between active and inactive structures reflected the slow association and dissociation rate constants of complex formation induced by Pb2+rather than differences in complex stability. CD spectra showed that the active form of the substrate-leadzyme complex was rearranged by Pb2+binding. The G8 of the wild-type substrate, which was absent in the inactive complex, is not near the cleavage site. Thus, these results show that the active substrate-leadzyme complex has a Pb2+binding site at the junction between the unpaired region (asymmetric internal loop) and the stem region, which is distal to the cleavage site. Pb2+may play a role in rearranging the bases in the asymmetric internal loop to the correct position for catalysis.  相似文献   

19.
The upstream site of cleavage of all group I self-splicing introns is identified by an absolutely conserved U.G base pair. Although a wobble C.A pair can substitute the U.G pair, all other combinations of nucleotides at this position abolish splicing, suggesting that it is an unusual RNA structure, rather than sequence, that is recognized by the catalytic intron core. RNA enzymes are metalloenzymes, and divalent metal ion binding may be an important requirement for splice site recognition and catalysis. The paramagnetic broadening of NMR resonances upon manganese binding at specific sites was used to probe the interaction between divalent metal ions and an oligonucleotide model of a group I intron ribozyme substrate. Unlike previous studies in which only imino proton resonances were monitored, we have used isotopically labelled RNA and a set of complete spectral assignments to identify the location of the divalent metal binding site with much greater detail than previously possible. Two independent metal binding sites were identified for this oligonucleotide. A first metal binding site is located in the major groove of the three consecutive G.C base pairs at the end of double helical stem. A second site is found in the major groove of the RNA double helix in the vicinity of the U.G base pair. These results suggest that metal ion coordination (or a metal bridge) and tertiary interactions identified biochemically, may be used by group I intron ribozymes for substrate recognition.  相似文献   

20.
Self-splicing group I introns use guanosine as a nucleophile to cleave the 5' splice site. The guanosine-binding site has been localized to the G264-C311 base pair of the Tetrahymena intron on the basis of analysis of mutations that change the specificity of the nucleophile from G (guanosine) to 2AP (2-aminopurine ribonucleoside) (F. Michel et al. (1989) Nature 342, 391-395). We studied the effect of these mutations (G-U, A-C and A-U replacing G264-C311) in the L-21 ScaI version of the Tetrahymena ribozyme. In this enzymatic system (kcat/Km)G monitors the cleavage step. This kinetic parameter decreased by at least 5 x 10(3) when the G264-C311 base pair was mutated to an A-U pair, while (kcat/Km)2AP increased at least 40-fold. This amounted to an overall switch in specificity of at least 2 x 10(5). The nucleophile specificity (G > 2AP for the G-C and G-U pairs, 2AP > G for the A-U and A-C pairs) was consistent with the proposed hydrogen bond between the nucleotide at position 264 and N1 of the nucleophile. Unexpectedly, the A-U and A-C mutants showed a decrease of an order of magnitude in the rate of ribozyme-catalyzed hydrolysis of RNA, in which H2O or OH- replaces G as the nucleophile, whereas the G-U mutant showed a decrease of only 2-fold. The low hydrolysis rates were not restored by raising the Mg2+ concentration or lowering the temperature. In addition, the mutant ribozymes exhibited a pattern of cleavage by Fe(II)-EDTA indistinguishable from that of the wild type, and the [Mg2+]1/2 for folding of the A-U mutant ribozyme was the same as that of the wild type. Therefore the guanosine-binding site mutations do not appear to have a major effect on RNA folding or stability. Because changing G264 affects the hydrolysis reaction without perturbing the global folding of the RNA, we conclude that the catalytic role of this conserved nucleotide is not limited to guanosine binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号