首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rhizobium loti NZP2037 and NZP2213, each cured of its single large indigenous plasmid, formed effective nodules on Lotus spp., suggesting that the symbiotic genes are carried on the chromosome of these strains. By using pSUP1011 as a vector for introducing transposon Tn5 into R. loti NZP2037, symbiotic mutants blocked in hair curling (Hac), nodule initiation (Noi), bacterial release (Bar), and nitrogen fixation (Nif/Cof) on Lotus pedunculatus were isolated. Cosmids complementing the Hac, Noi, and Bar mutants were isolated from a pLAFR1 gene library of NZP2037 DNA by in planta complementation and found to contain EcoRI fragments of identical sizes to those into which Tn5 had inserted in the mutants. The cosmids that complemented the mutants of these phenotypic classes did not share common fragments, nor did cosmids that complemented four mutants within the Noi class, suggesting that these symbiotically important regions are not tightly linked on the R. loti chromosome.  相似文献   

2.
Mutants with defective respiratory nitrite utilization (Nir- phenotype) were obtained by transposon Tn5 insertion into genomic DNA of the ZoBell strain of Pseudomonas stutzeri. Three representative mutants were characterized with respect to their activities of nitrite and nitric oxide reduction, cytochrome cd 1 content, and pattern of soluble c-type cytochromes. Mutant strain MK201 over-produced cytochrome c 552 about fourfold by comparison with the wild type, but possessed an in vitro functional cytochrome cd 1. Mutant strain MK202 lacked cytochrome cd 1 and, simultaneously, had low amounts of cytochrome c 552 and the split -peak c-type cytochrome. Strain MK203 synthesized nitrite reductase defective in the heme d 1 prosthetic group. Irrespective of these biochemically distinct Nir- phenotypes, all mutants preserved the nitric oxidereducing capability of the wild type. The mutant characteristics demonstrate that cytochrome cd 1 is essential for nitrite respiration of P. stutzeri and establish the presence of a nitric oxide-reducing system distinct from cytochrome cd 1. They also indicate the functional or regulatory interdependence of c-type cytochromes.  相似文献   

3.
By transposon Tn5 mutagenesis, 19 strains of Pseudomonas stutzeri were acquired that had defects in nitrous oxide respiration (Nos- phenotype). A physical map of the mutants showed nearly random Tn5 insertions into genomic DNA within a single region ca. 8 kilobases long. Mutants were characterized immunochemically, enzymatically, and chemically. Several functions related to the synthesis and regulation of nitrous oxide reductase were associated with this DNA region, indicating that in P. stutzeri part of the genetic information necessary to respire nitrous oxide is clustered.  相似文献   

4.
Seventeen arginine auxotrophic mutants of Sinorhizobium meliloti Rmd201 were isolated by random transposon Tn5 mutagenesis using Tn5 delivery vector pGS9. Based on intermediate feeding studies, these mutants were designated as argA/argB/argC/argD/argE (ornithine auxotrophs), argF/argI, argG and argH mutants. The ornithine auxotrophs induced ineffective nodules whereas all other arginine auxotrophs induced fully effective nodules on alfalfa plants. In comparison to the parental strain induced nodule, only a few nodule cells infected with rhizobia were seen in the nitrogen fixation zone of the nodule induced by the ornithine auxotroph. TEM studies showed that the bacteroids in the nitrogen fixation zone of ornithine auxotroph induced nodule were mostly spherical or oval unlike the elongated bacteroids in the nitrogen fixation zone of the parental strain induced nodule. These results indicate that ornithine or an intermediate of ornithine biosynthesis, or a chemical factor derived from one of these compounds is required for the normal development of nitrogen fixation zone and transformation of rhizobial bacteria into bacteroids during symbiosis of S. meliloti with alfalfa plants.  相似文献   

5.
Symbiotically defective mutants of cowpea rhizobia strain IRC256 were isolated by random Tn5 mutagenesis and characterized. One auxotroph (MS1) requiring adenine and thiamine was a non-nodulating mutant (Nod) and three prototrophic mutants were Nod+ Fix which formed small and ineffective nodules on cowpeas (Vigna unguiculata). Acetylene reduction activity of the Nod+ Fix mutants was reduced to 80–94% of that of the wild-type strain. The non-nodulating mutant (MS1) induced root-hair curling but did not show any nodule initiation or nodule development. Ultrastructural examination of nodules formed by Fix mutants showed that these contained few bacteroids, indicating either early senescence or a reduction in bacterial release into the cytoplasm of the host cell. DNA hybridization of total DNAs from a representative number of Tn5 mutants showed that each of them had one copy of the transposon Tn5 which was randomly inserted into the genome of cowpea rhizobia.  相似文献   

6.
Abstract The wild-type strain Rhodobacter sphaeroides DSM 158 is a nitrate-reducing bacterium with a periplasmic nitrate reductase. Addition of chlorate to the culture medium causes a stimulation of the phototrophic growth, indicating that this strain is able to use chlorate as an ancillary oxidant. Several mutant strains of R. sphaeroides deficient in nitrate reductase activity were obtained by transposon Tn5 mutagenesis. Mutant strain NR45 exhibited high constitutive nitrate and chlorate reductase activities and phototrophic growth was also increased by the presence of chlorate. In contrast, the stimulation of growth by chlorate was not observed in mutant strains NR8 and NR13, in which transposon Tn5 insertion causes the simultaneous loss of both nitrate and chlorate reductase activities. Tn5 insertion probably does not affect molybdenum metabolism since NR8 and NR13 mutants exhibit both xanthine dehydrogenase and nitrogenase activities. These results that a single enzyme could reduce both nitrate and chlorate in R. sphaeroides DSM 158.  相似文献   

7.
8.
Summary Selection was made for the transposition of the kanamycin resistance transposon Tn5 from a location on the chromosome of R. leguminosarum into a transmissible, bacteriocinogenic plasmid that also carries genes required for the induction of nitrogen-fixing nodules on peas.One hundred and sixty independent insertions into transmissible plasmids were isolated. When these plasmids were transferred by conjugation into a non-nodulating strain, which carries a deletion in one of its resident plasmids, of the 160 isolates tested 14 yielded transconjugants that formed nodules that did not fix nitrogen (Fix-) and in a further 15 cases the transconjugants were unable to form nodules (were Nod-). When transferred to a symbiotically proficient strain (i.e. Nod+ Fix+) none of the transconjugants was symbiotically defective; thus the mutations were not dominant.When kan was transduced from the clones that generated Fix- transconjugants into a Fix+ recipient the majority of transductants inherited Fix- indicating that the insertion of Tn5 had induced the symbiotic mutations. Transduction of kan, from the clones that failed to donate Nod+ by conjugation to strain 6015, occurred at barely detectable frequencies and it was not possible to demonstrate transduction of Nod-. kan was co-transduced with Nod+ from some of the clones and some of these transductants also inherited the ability to produce medium bacteriocin and to transfer at high frequency by conjugation. Thus the genes for all these characters are closely linked.  相似文献   

9.
The denitrifier Pseudomonas perfectomarina reduced nitrite under conditions of kinetic competition between cells and gas sparging for extracellular dissolved nitric and nitrous oxides, NOaq and N2Oaq, in a chemically defined marine medium. Time courses of nitrite reduction and NOg and N2Og alpha removal were integrated to give NOg and N2Og yields. At high sparging rates, the NOg yield was greater than 50% of nitrite-N reduced, and the yield of NOg + N2Og was approximately 75%. Hence interrupted denitrification yields NOaq and N2Oaq as major products. The yields varied with sparging rates in agreement with a quantitative model of denitrification (Betlach, M. P., and Tiedje, J.M. (1981) Appl. Environ. Microbiol. 42, 1074-1084) that applies simplified Michaelis-Menten kinetics to NO2-----NOaq----N2Oaq----N2. The fit gave an estimate of the maximum scavengeable NOaq yield of 73 +/- 8% of nitrite-N. Thus a minor path independent of NOaq is also required. The fit of the model to data at lower sparging rates, where normal denitrification products predominate, implies that the extracellular NOaq pool yield is independent of gas sparging rate. Thus in P. perfectomarina NOaq and N2Oaq are intermediates, or facilely equilibrate with true intermediates, during complete denitrification. The recovery of most nitrite-N as NO and/or N2O under perturbed conditions is not an artifact of irreversible product removal, but an attribute of denitrification in this species, and most probably it is characteristic of denitrification in other species as well.  相似文献   

10.
Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions.   总被引:15,自引:25,他引:15  
Rhizobium phaseoli CFN42 DNA was mutated by random insertion of Tn5 from suicide plasmid pJB4JI to obtain independently arising strains that were defective in symbiosis with Phaseolus vulgaris but grew normally outside the plant. When these mutants were incubated with the plant, one did not initiate visible nodule tissue (Nod-), seven led to slow nodule development (Ndv), and two led to superficially normal early nodule development but lacked symbiotic nitrogenase activity (Sna-). The Nod- mutant lacked the large transmissible indigenous plasmid pCFN42d that has homology to Klebsiella pneumoniae nitrogenase (nif) genes. The other mutants had normal plasmid content. In the two Sna- mutants and one Ndv mutant, Tn5 had inserted into plasmid pCFN42d outside the region of nif homology. The insertions of the other Ndv mutants were apparently in the chromosome. They were not in plasmids detected on agarose gels, and, in contrast to insertions on indigenous plasmids, they were transmitted in crosses to wild-type strain CFN42 at the same frequency as auxotrophic markers and with the same enhancement of transmission by conjugation plasmid R68.45. In these Ndv mutants the Tn5 insertions were the same as or very closely linked to mutations causing the Ndv phenotype. However, in two mutants with Tn5 insertions on plasmid pCFN42d, an additional mutation on the same plasmid, rather than Tn5, was responsible for the Sna- or Ndv phenotype. When plasmid pJB4JI was transferred to two other R. phaseoli strains, analysis of symbiotic mutants was complicated by Tn5-containing deleted forms of pJB4JI that were stably maintained.  相似文献   

11.
The branched respiratory chain of Pseudomonas aeruginosa contains at least two terminal oxidases which are active under normal physiological conditions. One of these, cytochrome co, is a cytochrome c oxidase which is completely inhibited by concentrations of the respiratory inhibitor potassium cyanide as low as 100 microM. The second oxidase, the cyanide-insensitive oxidase, is resistant to cyanide concentrations in excess of 1 mM as well as to sodium azide. In this work, we describe the isolation and characterization of a mutant of P. aeruginosa defective in cyanide-insensitive respiration. This insertion mutant was isolated with mini-D171 (a replication-defective derivative of the P. aeruginosa phage D3112) as a mutagen and by screening the resulting tetracycline-resistant transductants for the loss of ability to grow in the presence of 1 mM sodium azide. Polarographic studies on the NADH-mediated respiration rate of the mutant indicated an approximate 50% loss of activity, and titration of this activity against increasing cyanide concentrations gave a monophasic curve clearly showing the complete loss of cyanide-insensitive respiration. The mutated gene for a mutant affected in the cyanide-insensitive, oxidase-terminated respiratory pathway has been designated cio. We have complemented the azide-sensitive phenotype of this mutant with a wild-type copy of the gene by in vivo cloning with another mini-D element, mini-D386, carried on plasmid pADD386. The complemented cio mutant regained the ability to grow on medium containing 1 mM azide, titration of its NADH oxidase activity with cyanide gave a biphasic curve similar to that of the wild-type organism, and the respiration rate returned to normal levels. Spectral analysis of the cytochrome contents of the membranes of the wild type, the cio mutant, and the complemented mutant suggests that the cio mutant is not defective in any membrane-bound cytochromes and that the complementing gene does not encode a heme protein.  相似文献   

12.
1) Rhodobacter capsulatus (formerly Rhodopseudomonas capsulata) strain 37b4 was subjected to transposon Tn5 mutagenesis. 2) Kanamycin-resistant transconjugants were screened for their inability to reduce trimethylamine-N-oxide (TMAO) as judged by the lack of alkali production during anaerobic growth on plates containing glucose as carbon source and cresol red as pH indicator. 3) Of 6 mutants examined, all were found to have considerably decreased levels of methylviologen-dependent TMAO reductase activity and dimethylsulphoxide (DMSO) reductase activity. 4) Periplasmic fractions of one of these mutants (DK9) and of the parent strain were subjected to sodium dodecylsulphate polyacrylamide gel electrophoresis. The gels were stained for TMAO-reductase and DMSO-reductase. With the wild-type strain, only a single polypeptide band, Mr=46,000, stained for TMAO and DMSO reductase activity. In mutant DK9 this band was not detectable. 5) In contrast to the parent strain, harvested washed cells of mutant DK9 were unable to generate a cytoplasmic membrane potential in the presence of TMAO or DMSO under dark anaerobic conditions. 6) In contrast to the parent strain, DK9 was unable to grow in dark anaerobic culture with fructose as the carbon source and TMAO as oxidant.Abbreviations TMAO trimethylamine-N-oxide - DMSO dimethylsulphoxide - PMS phenazine methosulphate - cytoplasmic membrane potential  相似文献   

13.
14.
Pseudomonas putida PpF1 degraded toluene via a dihydrodiol pathway to tricarboxylic acid cycle intermediates. The initial reaction was catalyzed by a multicomponent enzyme, toluene dioxygenase, which oxidized toluene to (+)-cis-1(S),2(R)-dihydroxy-3-methylcyclohexa-3,5-diene (cis-toluene dihydrodiol). The enzyme consisted of three protein components: NADH-ferredoxintol oxidoreductase (reductasetol), ferredoxintol, and a terminal oxygenase which is an iron-sulfur protein (ISPtol). Mutants blocked in each of these components were isolated after mutagenesis with nitrosoguanidine. Mutants occurred as colony morphology variants when grown in the presence of toluene on indicator plates containing agar, mineral salts, a growth-supporting nutrient (arginine), 2,3,5-triphenyltetrazolium chloride (TTC), and Nitro Blue Tetrazolium (NBT). Under these conditions, wild-type colonies appeared large and red as a result of TTC reduction. Colonies of reductasetol mutants were white or white with a light blue center, ferredoxintol strains were light blue with a dark blue center, and strains that lacked ISPtol gave dark blue colonies. Blue color differences in the mutant colonies were due to variations in the extent of NBT reduction. Strains lacking all three components appeared white. Toluene dioxygenase mutants were characterized by assaying toluene dioxygenase activity in crude cell extracts which were complemented with purified preparations of each protein component. Between 40 and 60% of the putative mutants selected from the NBT-TTC indicator plates were unable to grow with toluene as the sole source of carbon and energy. This method should prove extremely useful in isolating mutants in other multicomponent oxygenase enzyme systems.  相似文献   

15.
Sixteen Tn916-induced mutants of Clostridium acetobutylicum were selected that were defective in the production of acetone and butanol. Formation of ethanol, however, was only partially affected. The strains differed with respect to the degree of solvent formation ability and could be assigned to three different groups. Type I mutants (2 strains) were completely defective in acetone and butanol production and contained one or three copies of Tn916 in the chromosome. Analysis of the mutants for enzymes responsible for solvent production revealed the presence of a formerly unknown, specific acetaldehyde dehydrogenase. The data obtained also strongly indicate that the NADP+-dependent alcohol dehydrogenase is in vivo reponsible for ethanol formation, whereas the NAD+-dependent alcohol dehydrogenase is probably involved in butanol production. No activity of this enzyme together with all other enzymes in the acetone and butanol pathway could be found in type I strains. All tetracycline-resistant mutants obtained did no longer sporulate.Non-standard abbreviations AADC acetoacetate decarboxylase - AcaDH acetaldehyde dehydrogenase - BuaDH butyraldehyde dehydrogenase - CoA-TF acetoacetyl coenzyme A: acetate/butyrate: coenzyme A transferase - NAD-ADH, NAD+ dependent alcohol dehydrogenase - NADP-ADH, NADP+ dependent alcohol dehydrogenase  相似文献   

16.
Transposon, Tn917, carried on pTV1 plasmid has been used successfully to mutagenise Bacillus brevis. The transposon showed preference for insertion at an "aro" site. A second insertional event after elimination of the preferred site with ethidium bromide/acridine orange treatment has permitted isolation of Gln- mutants in B. brevis.  相似文献   

17.
A syringotoxin-producing strain of Pseudomonas syringae pv. syringae (B457) was subjected to Tn5 mutagenesis by the transposon vector pSUP1011. Analyses of auxotrophs obtained suggested simple random insertions of Tn5. Syringotoxin-negative mutants arose at a frequency of about 0.28%. In a Southern blot analysis, the loss of toxin production was associated with Tn5 insertions into chromosomal EcoRI fragments of about 10.5, 17.8, and 19.3 kilobases. Data from a Southern blot analysis of SstI-digested DNA from these mutants suggest that the 10.5- and 17.8-kilobase EcoRI fragments may be adjacent to or near each other. Mutants that produced only 3 to 4% wild-type toxin levels also were identified.  相似文献   

18.
Nitrosoguanidine-induced mutants ofAcinetobacter sp. defective in exopolysaccharide biosynthesis did not differ from the parent strain in distinguishing physiological and biochemical properties, such as requirements for growth factors, utilization of mono- and disaccharides, and resistance to antibiotics. The genetic relation of parent and mutant strains was shown by 16S rRNA PCR analysis. The comparative study of parent and mutant strains with respect to resistance to unfavorable environmental factors confirmed our hypothesis thatAcinetobacter sp. exopolysaccharides perform protective functions. Hybridization experiments revealed the conjugal transfer of plasmid R68.45 fromPseudomonas putida BS228 (R68.45) to mutant but not to the parentAcinetobacter sp. strains. The role of theAcinetobacter sp. exopolysaccharides in providing the genetic stability of this bacterium is discussed.  相似文献   

19.
To identify genes involved in the decolorization of brilliant green, we isolated random mutants generated by transposon insertion in brilliant green-decolorizing bacterium, Citrobacter sp. The resulting mutant bank yielded 19 mutants with a complete defect in terms of the brilliant green color removing ability. Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in 7 mutants and these mutants appeared to have insertions at different sites of the chromosome. Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. By comparing these with a sequence database, putative protein products encoded by bg genes were identified as follows: bg 3 as a LysR-type regulatory protein; bg 11 as a MalG protein in the maltose transport system; bg 14 as an oxidoreductase; and bg 17 as an ABC transporter. The sequences deduced from the three bg genes, bg 2, bg 7 and bg 16, showed no significant similarity to any protein with a known function, suggesting that these three bg genes may encode unidentified proteins responsible for the decolorization of brilliant green.  相似文献   

20.
We have physically and genetically characterized 20 symbiotic and 20 auxotrophic mutants of Rhizobium meliloti, the nitrogen-fixing symbiont of alfalfa (Medicago sativa), isolated by transposon Tn5 mutagenesis. A "suicide plasmid" mutagenesis procedure was used to generate TN-5-induced mutants, and both auxotrophic and symbiotic mutants were found at a frequency of 0.3% among strains containing random TN5 insertions. Two classes of symbiotic mutants were isolated: 4 of the 20 formed no nodules at all (Nod-), and 16 formed nodules which failed to fix nitrogen (Fix-). We used a combination of physical and genetic criteria to determine that in most cases the auxotrophic and symbiotic phenotypes could be correlated with the insertion of a single Tn5 elements. Once the Tn5 element was inserted into the R. meliloti genome, the frequency of its transposition to a new site was approximately 10-8 and the frequency of precise excision was less than 10-9. In approximately 25% of the mutant strains, phage Mu DNA sequences, which originated from the suicide plasmid used to generate the Tn5 transpositions, were also found in the R. meliloti genome contiguous with Tn5. These later strains exhibited anomalous conjugation properties, and therefore we could not correlate the symbiotic phenotype with a Tn5 insertion. In general, we found that both physical and genetic tests were required to fully characterize transposon-induced mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号