共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2014,49(10):1571-1579
Strictly aerobic acetic acid bacteria (AAB) have a long history of use in fermentation processes, and the conversion of ethanol to acetic acid for the production of vinegar is the most well-known application.At the industrial scale, vinegar is mainly produced by submerged fermentation, which refers to an aerobic process in which the ethanol in beverages such as spirits, wine or cider is oxidized to acetic acid by AAB. Submerged fermentation requires robust AAB strains that are able to oxidize ethanol under selective conditions to produce high-titer acetic acid. Currently submerged fermentation is conducted by unselected AAB cultures, which are derived from previous acetification stocks and maintained by repeated cultivation cycles.In this work, submerged fermentation for vinegar production is discussed with regard to advances in process optimization and parameters (oxygen availability, acetic acid content and temperature) that influence AAB activity. Furthermore, the potential impact arising from the use of selected AAB is described.Overcoming the acetification constraints is a main goal in order to facilitate innovation in submerged fermentation and to create new industry-challenging perspectives. 相似文献
2.
Acetobacter spp. are used for industrial vinegar production because of their high ability to oxidize ethanol to acetic acid and high resistance to acetic acid. Two-dimensional gel electrophoretic analysis of a soluble fraction of Acetobacter aceti revealed the presence of several proteins whose production was enhanced, to various extents, in response to acetic acid in the medium. A protein with an apparent molecular mass of 100 kDa was significantly enhanced in amount by acetic acid and identified to be aconitase by NH2-terminal amino acid sequencing and subsequent gene cloning. Amplification of the aconitase gene by use of a multicopy plasmid in A. aceti enhanced the enzymatic activity and acetic acid resistance. These results showed that aconitase is concerned with acetic acid resistance. Enhancement of the aconitase activity turned out to be practically useful for acetic acid fermentation, because the A. aceti transformant harboring multiple copies of the aconitase gene produced a higher concentration of acetic acid with a reduced growth lag-time. 相似文献
3.
A cellulolytic, acetic acid producing anaerobic bacterial isolate, Gram negative, rod-shaped, motile, terminal oval shaped endospore forming bacterium identified as Clostridium lentocellum SG6 based on physiological and biochemical characteristics. It produced acetic acid as a major end product from cellulose fermentation at 37°C and pH 7.2. Acetic acid production was 0.67 g/g cellulose substrate utilized in cellulose mineral salt (CMS) medium. Yeast extract (0.4%) was the best nitrogen source among the various nitrogenous nutrients tested in production medium containing 0.8% cellulose as substrate. No additional vitamins or trace elemental solution were required for acetic acid fermentation. This is the highest acetic acid fermentation yield in monoculture fermentation for direct conversion of cellulose to acetic acid. 相似文献
4.
Cristina Andrés-Barrao Cinzia Benagli Malou Chappuis Ruben Ortega Pérez Mauro Tonolla François Barja 《Systematic and applied microbiology》2013
Acetic acid bacteria (AAB) are widespread microorganisms characterized by their ability to transform alcohols and sugar-alcohols into their corresponding organic acids. The suitability of matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) for the identification of cultured AAB involved in the industrial production of vinegar was evaluated on 64 reference strains from the genera Acetobacter, Gluconacetobacter and Gluconobacter. Analysis of MS spectra obtained from single colonies of these strains confirmed their basic classification based on comparative 16S rRNA gene sequence analysis. MALDI-TOF analyses of isolates from vinegar cross-checked by comparative sequence analysis of 16S rRNA gene fragments allowed AAB to be identified, and it was possible to differentiate them from mixed cultures and non-AAB. The results showed that MALDI-TOF MS analysis was a rapid and reliable method for the clustering and identification of AAB species. 相似文献
5.
Japanese cedar (Cryptomeria japonica) was treated with hot-compressed water and as decomposed products, the following compounds were recovered: furfural, 5-hydroxymethyl furfural, levoglucosan, lactic acid, glycolic acid, coniferyl alcohol, coniferyl aldehyde and vanillin. The impacts and fermentability of these compounds were studied on acetic acid fermentation by the co-culture of Clostridium thermocellum and Moorella thermoacetica. It was found that furfural, 5-HMF and lignin-derived products strongly limited acetic acid production by free cells. Importantly, co-immobilized C. thermocellum and M. thermoacetica expressed increased tolerance towards the decomposed products and successfully provided acetic acid corresponding to 93% of the theoretical maximum from Japanese cedar hydrolyzates. 相似文献
6.
Under certain controllability and observability restrictions, two different parameterisations for a non-linear compartmental model can only have the same input-output behaviour if they differ by a locally diffeomorphic change of basis for the state space. With further restrictions, it is possible to gain valuable information with respect to identifiability via a linear analysis. Examples are presented where non-linear identifiability analyses are substantially simplified by means of an initial linear analysis. For complex models, with four or more compartments, this linear analysis can prove lengthy to perform by hand and so symbolic computation has been employed to aid this procedure. 相似文献
7.
In this paper, it is shown that the SIR epidemic model, with the force of infection subject to seasonal variation, and a proportion of either the prevalence or the incidence measured, is unidentifiable unless certain key system parameters are known, or measurable. This means that an uncountable number of different parameter vectors can, theoretically, give rise to the same idealised output data. Any subsequent parameter estimation from real data must be viewed with little confidence as a result. The approach adopted for the structural identifiability analysis utilises the existence of an infinitely differentiable transformation that connects the state trajectories corresponding to parameter vectors that give rise to identical output data. When this approach proves computationally intractable, it is possible to use the converse idea that the existence of a coordinate transformation between states for particular parameter vectors implies indistinguishability between these vectors from the corresponding model outputs. 相似文献
8.
Comparison of HaeIII- and HpaII-restriction profiles of PCR-amplified 16S-23S rDNA ITS regions of Gluconacetobacter sp. LMG 1529T and SKU 1109 with restriction profiles of reference strains of acetic acid bacteria described by Tr?ek and Teuber [34] revealed the same but unique restriction profiles for LMG 1529T and SKU 1109. Further analyses of nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rDNA ITS sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated both strains to a single phylogenetic cluster well separated from the other species of the genus Gluconacetobacter. DNA–DNA hybridizations confirmed their novel species identity by 73% DNA–DNA relatedness between both strains, and values below the species level (<70%) between SKU 1109 and the type strains of the closest phylogenetic neighbors. The classification of strains LMG 1529T and SKU 1109 into a single novel species was confirmed also by AFLP and (GTG)5-PCR DNA fingerprinting data, as well as by phenotypic data. Strains LMG 1529T and SKU 1109 can be differentiated from their closely related Gluconacetobacter species, Gluconacetobacter entanii and Gluconacetobacter hansenii, by their ability to form 2-keto-d-gluconic acid from d-glucose, their ability to use d-mannitol, d-gluconate and glycerol as carbon source and form acid from d-fructose, and their ability to grow without acetic acid. The major fatty acid of LMG 1529T and SKU 1109 is C18:1ω7c (60.2–64.8%). The DNA G + C content of LMG 1529T and SKU 1109 is 62.5 and 63.3 mol% respectively. The name Gluconacetobacter maltaceti sp. nov. is proposed. The type strain is LMG 1529T (= NBRC 14815T = NCIMB 8752T). 相似文献
9.
In this paper we identify biologically relevant families of models whose structural identifiability analysis could not be performed with available techniques directly. The models considered come from both the immunological and epidemiological literature. 相似文献
10.
Andrés-Barrao C Saad MM Chappuis ML Boffa M Perret X Ortega Pérez R Barja F 《Journal of Proteomics》2012,75(6):1701-1717
Acetic acid bacteria (AAB) are Gram-negative, strictly aerobic microorganisms that show a unique resistance to ethanol (EtOH) and acetic acid (AcH). Members of the Acetobacter and Gluconacetobacter genera are capable of transforming EtOH into AcH via the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes and are used for the industrial production of vinegar.Several mechanisms have been proposed to explain how AAB resist high concentrations of AcH, such as the assimilation of acetate through the tricarboxylic acid (TCA) cycle, the export of acetate by various transporters and modifications of the outer membrane. However, except for a few acetate-specific proteins, little is known about the global proteome responses to AcH.In this study, we used 2D-DIGE to compare the proteome of Acetobacter pasteurianus LMG 1262T when growing in glucose or ethanol and in the presence of acetic acid. Interesting protein spots were selected using the ANOVA p-value of 0.05 as threshold and 1.5-fold as the minimal level of differential expression, and a total of 53 proteins were successfully identified.Additionally, the size of AAB was reduced by approximately 30% in length as a consequence of the acidity. A modification in the membrane polysaccharides was also revealed by PATAg specific staining. 相似文献
11.
12.
L. J. White N. D. Evans T. J. G. M. Lam Y. H. Schukken G. F. Medley K. R. Godfrey M. J. Chappell 《Mathematical biosciences》2002,180(1-2)
A mathematical model for the transmission of two interacting classes of mastitis causing bacterial pathogens in a herd of dairy cows is presented and applied to a specific data set. The data were derived from a field trial of a specific measure used in the control of these pathogens, where half the individuals were subjected to the control and in the others the treatment was discontinued. The resultant mathematical model (eight non-linear simultaneous ordinary differential equations) therefore incorporates heterogeneity in the host as well as the infectious agent and consequently the effects of control are intrinsic in the model structure. A structural identifiability analysis of the model is presented demonstrating that the scope of the novel method used allows application to high order non-linear systems. The results of a simultaneous estimation of six unknown system parameters are presented. Previous work has only estimated a subset of these either simultaneously or individually. Therefore not only are new estimates provided for the parameters relating to the transmission and control of the classes of pathogens under study, but also information about the relationships between them. We exploit the close link between mathematical modelling, structural identifiability analysis, and parameter estimation to obtain biological insights into the system modelled. 相似文献
13.
14.
Adler-Nissen Jens Demain Arnold L. 《Journal of industrial microbiology & biotechnology》1994,13(6):335-343
Summary Controlled aeration ofLeuconostoc mesenteroides was studied as a possible mechanism for control of the formation of acetic acid a metabolite of major influence on the taste of lactic fermented foods. Fermentations were carried out in small scale in a medium in which growth was limited by the buffer capacity only. Ethanol and acetic acid formed during the fermentation were analyzed by rapid head space gas chromatography, and the ratio of the molar concentrations of these two volatiles quantitatively predicted the balance between the formation of acetic acid and lactic acid. The oxygen concentration during the fermentations decreased rapidly to zero, meaning that oxygen transfer was limited by the volumetric oxygen transfer rate,k
1
aC
*. A linear correlation between k1aC* and the quantity of acetic acid produced was established, and it is suggested that such oxygenated heterolactic fermentation processes should be analyzed as fed-batch fermentations with oxygen as the limiting substrate. Addition of fructose in limited amounts leads to the formation of one half mole of acetic acid for each mole fructose, thus offering an alternative mechanism for controlling acetic acid formation. 相似文献
15.
Teruhiko Beppu 《Antonie van Leeuwenhoek》1993,64(2):121-135
Plasmid vectors for the acetic acid-producing strains ofAcetobacter andGluconobacter were constructed from their cryptic plasmids and the efficient transformation conditions were established. The systems allowed to reveal the genetic background of the strains used in the acetic acid fermentation. Genes encoding indispensable components in the acetic acid fermentation, such as alcohol dehydrogenase, aldehyde dehydrogenase and terminal oxidase, were cloned and characterized. Spontaneous mutations at high frequencies in the acetic acid bacteria to cause the deficiency in ethanol oxidation were analyzed. A new insertion sequence element, IS1380, was identified as a major factor of the genetic instability, which causes insertional inactivation of the gene encoding cytochromec, an essential component of the functional alcohol dehydrogenase complex. Several genes including the citrate synthase gene ofA. aceti were identified to confer acetic acid resistance, and the histidinolphosphate aminotransferase gene was cloned as a multicopy suppressor of an ethanol sensitive mutant. Improvement of the acetic acid productivity of anA. aceti strain was achieved through amplification of the aldehyde dehydrogenase gene with a multicopy vector. In addition, spheroplast fusion of theAcetobacter strains was developed and applied to improve their properties.
ADH
membrane-bound alcohol dehydrogenase
-
ALDH
membrane-bound aldehyde dehydrogenase
-
IS
insertion sequence
-
NTG
N-methyl-N-nitro-N-nitrosoguanidine
- PQQ
pyrroloquinoline quinone 相似文献
16.
Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) methods were used to determine if corn starch–glacial acetic acid mixtures can be melted and thermally processed at reasonable temperatures. DSC studies showed that the melting temperature of dry starch was reduced from about 280 to 180°C in the presence of >30% acetic acid. Glass transition temperatures varied from 110 to 40°C at 15 and 45% acetic acid, respectively. XRD showed the loss of native starch crystallinity and the formation of V-type complexes. Addition of 10% water decreased the melting temperatures to 140–150°C while addition of a base (sodium acetate) had little effect. Some possible applications of processing starch in glacial acetic acid will be discussed. 相似文献
17.
18.
Ravinder T. Ramesh B. Seenayya G. Reddy Gopal 《World journal of microbiology & biotechnology》2000,16(6):507-512
Clostridium lentocellum SG6 fermented various pure crystalline cellulosic materials efficiently with maximum acetic acid yield (gram acetic acid/gram substrate) of 0.67, at low substrate (8 g l−1) concentration. The strain grew poorly on crude biopolymers but fermented them easily after alkali treatment, when grown with 8 g substrate l−1 concentration of alkali-extracted cotton straw (AECS), paddy straw (AEPS) and sorghum stover (AESS) etc. The acetic acid to substrate (A/S) ratios were similar to those obtained with pure cellulosic materials. An increase in substrate concentration led to a decreased A/S ratio and a decreased percentage of substrate degraded. At high substrate concentration of 75 g filter paper l−1, the strain SG6 converted 63.2 g filter paper into 31.28 g acetic acid l−1. At 100 g l−1 concentrations, AECS and AEPS served as the best substrates for acetic acid production when compared with other biopolymers. A maximum amount of 30.98 and 30.86 g acetic acid was produced from 70.6 g AEPS and 70.1 g AESS l−1 of medium by strain SG6, respectively. Acetic acid production of 0.67 g g−1 pure cellulose (Whatman No. 1 filter paper), 0.63 g g−1 of alkali-treated cotton straw (AECS) are the highest among the cellulolytic bacteria reported so far in mono culture fermentations with pure and native cellulosic materials. This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
19.
A cellular automata model to simulate penicillin fed-batch fermentation process (CAPFM) was established in this study, based
on a morphologically structured dynamic penicillin production model, that is in turn based on the growth mechanism of penicillin
producing microorganisms and the characteristics of penicillin fed-batch fermentation. CAPFM uses the three-dimensional cellular
automata as a growth space, and a Moore-type neighborhood as the cellular neighborhood. The transition rules of CAPFM are
designed based on mechanical and structural kinetic models of penicillin batch-fed fermentation processes. Every cell of CAPFM
represents a single or specific number of penicillin producing microorganisms, and has various state. The simulation experimental
results show that CAPFM replicates the evolutionary behavior of penicillin batch-fed fermentation processes described by the
structured penicillin production kinetic model accordingly.
__________
Translated from ACTA BIOPHYSICA, 2005, 21(2) [译自: 生物物理学报, 2005,21(2)] 相似文献
20.
A cellular automata model to simulate penicillin fed-batch fermentation process(CAPFM)was established in this study,based on a morphologically structured dynamic penicillin production model,that is in turn based on the growth mechanism of penicillin producing microorganisms and the characteristics of penicillin fed-batch fermentation.CAPFM uses the three-dimensional cellular automata as a growth space,and a Moore-type neighborhood as the cellular neighborhood.The transition roles of CAPFM are designed based on mechanical and structural kinetic models of penicillin batch-fed fermentation processes.Every cell of CAPFM represents a single or specific number of penicillin producing microorganisms,and has various state.The simulation experimental results show that CAPFM replicates the evolutionary behavior of penicillin batch-fed fermentation processes described by the structured penicillin production kinetic model accordingly. 相似文献