首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When a two-headed molecular motor such as kinesin is attached to its track by just a single head in the presence of an applied load, thermally activated head detachment followed by rapid re-attachment at another binding site can cause the motor to ‘hop’ backwards. Such hopping, on its own, would produce a linear force-velocity relation. However, for kinesin, we must incorporate hopping into the motor's alternating-head scheme, where we expect it to be most important for the state prior to neck-linker docking. We show that hopping can account for the backward steps, run length and stalling of conventional kinesin. In particular, although hopping does not hydrolyse ATP, we find that the hopping rate obeys the same Michaelis-Menten relation as the ATP hydrolysis rate. Hopping can also account for the reduced processivity observed in kinesins with mutations in their tubulin-binding loop. Indeed, it may provide a general mechanism for the breakdown of perfect processivity in two-headed molecular motors.  相似文献   

2.
In a universe that is dominated by increasing entropy, living organisms are a curious anomaly. The organization that distinguishes living organisms from their inanimate surroundings relies upon their ability to execute vectorial processes, such as directed movements and the assembly of macromolecules and organelle systems. Many of these phenomena are executed by molecular motors that harness chemical potential energy to perform mechanical work and unidirectional motion. This article explores how these remarkable protein machines might have evolved and what roles they could play in biological and medical research in the coming decades.  相似文献   

3.
In a universe that is dominated by increasing entropy, living organisms are a curious anomaly. The organization that distinguishes living organisms from their inanimate surroundings relies upon their ability to execute vectorial processes, such as directed movements and the assembly of macromolecules and organelle systems. Many of these phenomena are executed by molecular motors that harness chemical potential energy to perform mechanical work and unidirectional motion. This article explores how these remarkable protein machines might have evolved and what roles they could play in biological and medical research in the coming decades.  相似文献   

4.
In a universe that is dominated by increasing entropy, living organisms are a curious anomaly. The organization that distinguishes living organisms from their inanimate surroundings relies upon their ability to execute vectorial processes, such as directed movements and the assembly of macromolecules and organelle systems. Many of these phenomena are executed by molecular motors that harness chemical potential energy to perform mechanical work and unidirectional motion. This article explores how these remarkable protein machines might have evolved and what roles they could play in biological and medical research in the coming decades.  相似文献   

5.
Recent breakthroughs in the structural biology of cytoskeletal motor proteins show that two distinct families of motors--kinesins and myosins - use a similar mechanism of conformational switching for converting small structural changes in their nucleotide-binding sites into larger movements to provide force generation and motion. This mechanism is found to be similar to that employed by G proteins, the well-known molecular switches that regulate protein-protein interactions in many biological systems.  相似文献   

6.
Studies of molecular recognition using designed and synthesised molecules provide valuable information on the principle and possible applications of artificial functional molecules. Porphyrin-based receptors have been used to elucidate haem-protein interactions and the basic mechanism of multi-point recognition.  相似文献   

7.
Eg5 is a kinesin whose inhibition leads to cycle arrest during mitosis, making it a potential therapeutic target in cancers. Circular dichroism and isothermal titration calorimetry of our pyrrolotriazine-4-one series of inhibitors with Eg5 motor domain revealed enhanced binding in the presence of adenosine 5′-diphosphate (ADP). Using this information, we studied the interaction of this series with ADP-Eg5 complexes using a thermal shift assay. We measured up to a 7 °C increase in the thermal melting (Tm) of Eg5 for an inhibitor that produced IC50 values of 60 and 130 nM in microtubule-dependent adenosine triphosphatase (ATPase) and cell-based cytotoxicity assays, respectively. In general, the inhibitor potency of the pyrrolotriazine-4-one series in in vitro biological assays correlated with the magnitude of the thermal stability enhancement of ADP-Eg5. The thermal shift assay also confirmed direct binding of Eg5 inhibitors identified in a high-throughput screen and demonstrated that the thermal shift assay is applicable to a range of chemotypes and can be useful in evaluating both potent (nM) and relatively weakly binding (μM) leads. Overall, the thermal shift assay was found to be an excellent biophysical method for evaluating direct binding of a large number of compounds to Eg5, and it complemented the catalytic assay screens by providing an alternative determination of inhibitor potency.  相似文献   

8.
Based on the available crystal structure a model is presented for the polymerization activity and switching transition between polymerase and exonuclease sites of a DNA polymerase molecular motor. Using the model, the fast polymerization rate for correctly base-paired DNA and much reduced polymerization rate after an incorporation of a mismatched base can be well explained. The dependences of the polymerization rate and exonuclease rate on mechanical tension acting on the DNA template are studied. The switching rates between the two sites are analyzed. All the results show good quantitative agreement with the available experimental results.  相似文献   

9.
Varied approaches to estimating confidence intervals for immunological and hybridization distances can be uniformly applied to any matrix of distances. One procedure bootstraps the pairwise dissimilarities between the distances of every pair of taxa to all others, creating a derived matrix of distances for which dispersions can be estimated. Another approach bootstraps the sample of differences between pairwise homologous branch lengths concerning each pair of taxa and between asymmetric halves of the matrix, to find a standard error of the dispersions. This allows comparison of the robustness of trees among different sources of data. DNA hybridization, transferrin immunology and protein immunodiffusion matrices all yield much the same result once standard deviations of dissimilarities are acknowledged: namely, unresolvable trichotomies among the human-chimp-gorilla clade and among this clade with orang and gibbon; conventional relationships among hominoids, cercopithecoids, ceboids and strepsirhines; and a polychotomy among anthropoids, strepsirhines, tarsiers, tupaiids and dermopterans.  相似文献   

10.
Recent advances in the computation of free energies have facilitated the understanding of host—guest and protein—ligand recognition. Rigorous perturbation methods have been assessed and expanded, and more approximate techniques have been developed that allow faster treatment of diverse systems.  相似文献   

11.
Newton E. Morton 《Genetica》1995,96(1-2):139-144
There are three approaches to DNA identification: tectonic, halieutic and icarian, of which the tectonic is sensible, the halieutic impractical, and the icarian idiotic. The rationale and consequences of these approaches are detailed.Editor's commentsThe author captures the harsh tone that has often characterized the debate over the use of DNA for human identification. It should be mentioned that D.L. Hartl, E.S. Lander and R.C. Lewontin were invited to respond. The positions of these three authors are contained in their papers, listed in the Bibliography. Readers should note, in particular, Budowle and Lander (1994).  相似文献   

12.
13.
ABSTRACT

The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a defined microenvironment has also garnered deep insight into the engineering mechanisms existing within the cell. This review presents recent experimental findings on the influence of several parameters of the extracellular environment on cell behavior and fate, such as substrate topography, stiffness, chemistry and charge. In addition, the use of synthetic environments to measure physical properties of the reconstituted cytoskeleton and their interaction with intracellular proteins such as molecular motors is discussed, which is relevant for understanding cell migration, division and structural integrity, as well as intracellular transport. Insight is provided regarding the next steps to be taken in this interdisciplinary field, in order to achieve the global aim of artificially directing cellular response.  相似文献   

14.
The kinesin superfamily of microtubule associated motor proteins share a characteristic motor domain which both hydrolyses ATP and binds microtubules. Kinesins display differences across the superfamily both in ATP turnover and in microtubule interaction. These differences tailor specific kinesins to various functions such as cargo transport, microtubule sliding, microtubule depolymerization and microtubule stabilization. To understand the mechanism of action of a kinesin it is important to understand how the chemical cycle of ATP turnover is coupled to the mechanical cycle of microtubule interaction. To dissect the ATP turnover cycle, one approach is to utilize fluorescently labeled nucleotides to visualize individual steps in the cycle. Determining the kinetics of each nucleotide transition in the ATP turnover cycle allows the rate-limiting step or steps for the complete cycle to be identified. For a kinesin, it is important to know the rate-limiting step, in the absence of microtubules, as this step is generally accelerated several thousand fold when the kinesin interacts with microtubules. The cycle in the absence of microtubules is then compared to that in the presence of microtubules to fully understand a kinesin’s ATP turnover cycle. The kinetics of individual nucleotide transitions are generally too fast to observe by manually mixing reactants, particularly in the presence of microtubules. A rapid mixing device, such as a stopped-flow fluorimeter, which allows kinetics to be observed on timescales of as little as a few milliseconds, can be used to monitor such transitions. Here, we describe protocols in which rapid mixing of reagents by stopped-flow is used in conjunction with fluorescently labeled nucleotides to dissect the ATP turnover cycle of a kinesin.  相似文献   

15.
Since the second Indochina war, habitat destruction and overhunting has resulted in fragmentation of the remaining populations of Bos javanicus and B. gaurus. Nowadays, both species are in serious danger, especially the gaur. In Vietnam, where these species have become almost impossible to capture in the wild, non-invasive investigations are the only feasible approach to obtain data on populations. However, non-invasive derived DNA, especially in tropical areas, is usually characterized by low concentrations, poor quality and/or contamination from alien DNA. To assist in tropical conservation management, baseline information is provided here on assessing the reliability of species identification, molecular sexing and microsatellite genotyping using fecal DNA from B. gaurus and B. javanicus. For species identification using bovine fecal samples, cytochrome b fragment between positions 867 and 1140 was found to contain species diagnostic sites, which distinguishes the four species encountered in the region: B. gaurus, B. indicus, B. javanicus and B. taurus. For sex determination, primers were initially tested on DNA obtained from blood. Then, these primers were successfully used on DNA derived from fecal material. Finally, we also evaluate the feasibility of non-invasive microsatellite genotyping on fecal samples collected in Vietnamese nature reserves. The results presented here improve on current molecular methods based on fecal material obtained from tropical areas. Zoo Biol 28:127–136, 2009. © 2008 Wiley-Liss, Inc.  相似文献   

16.
The faithful transmission of genetic information from a mother to daughter cells can only occur if the integrity of the genome is preserved. DNA transactions within cells are tightly regulated to prevent DNA damage. When events that challenge genome integrity do occur, a complex web of DNA damage response pathways comes into play. Studies in model organisms have contributed significantly to the understanding of these pathways. In the last decade, the development of functional genomics techniques in S.cerevisiae has ushered in systematic approaches for the study of complex cellular processes. These methods have enabled the systematic interrogation of the DNA damage response.  相似文献   

17.
Little is known about the transmission dynamics of human malaria and other vector-borne diseases, partly because of the limited availability and distribution of appropriate tools for quantifying human-mosquito contact rates. Recent developments in molecular biology have allowed a significant increase in the efficacy and reliability of bloodmeal identification, and DNA-based molecular markers are now being harnessed for typing arthropod bloodmeals. The extent to which these markers have been used for analysis of mosquito bloodmeals and the potential they might have for the future is discussed, and the contributions that the advent of PCR has made are examined here.  相似文献   

18.
Abstract

Probucol, a clinically used cholesterol lowering and antioxidant drug, was investigated for possible protection against lipid peroxidation and DNA damage induced by iron nitrilotriacetate (Fe-NTA) plus hydrogen peroxide (H2O2). Fe-NTA is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of H2O2-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. Fe-NTA is associated with a high incidence of renal adenocarcinoma in rodents. Lipid peroxidation and DNA damage are the principal manifestation of Fe-NTA induced toxicity, which could be mitigated by probucol. Incubation of renal microsomal membrane and/or calf thymus DNA with H2O2 (40 mM) in the presence of Fe-NTA (0.1 mM) induces renal microsomal lipid peroxidation and DNA damage to about 2.4-fold and 5.9-fold, respectively, as compared to control (P < 0.05). Induction of renal microsomal lipid peroxidation and DNA damage was inhibited by probucol in a concentration-dependent manner. In lipid peroxidation protection studies, probucol treatment showed a concentration-dependent inhibition (10–34% inhibition; P <0.05) of Fe-NTA plus H2O2-induced lipid peroxidation as measured by thiobarbituric acid reacting species' (TBARS) formation in renal microsomes. Similarly, in DNA damage protection studies, probucol treatment also showed a concentration-dependent strong inhibition (36–71% inhibition; P < 0.05) of DNA damage. From these studies, it was concluded that probucol inhibits peroxidation of microsomal membrane lipids and DNA damage induced by Fe-NTA plus H2O2. However, because the lipid peroxidation and DNA damage studied here are regarded as early markers of carcinogenesis, we suggest that probucol may be developed as a cancer chemopreventive agent against renal carcinogenesis and other adverse effects of Fe-NTA exposure in experimental animals, in addition to being a cholesterol-lowering drug, useful for the control of hypercholestrolemia.  相似文献   

19.
In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns.  相似文献   

20.
Biomotors were once described into two categories: linear motor and rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24 h, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, and T7 as well as bacterial DNA translocase FtsK and SpoIIIE or the large eukaryotic dsDNA viruses such as mimivirus and vaccinia virus as examples to elucidate the puzzles. These motors use ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, that is the size of dsDNA, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-chiral arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism that avoids DNA coiling in translocating the lengthy genomic dsDNA helix could be advantageous for cell replication such as bacterial binary fission and cell mitosis without the need for topoisomerase or helicase to consume additional energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号