首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
James DC 《Cytotechnology》1996,22(1-3):17-24
The advent of new technologies for analysis of biopolymers by mass spectrometry has revolutionised strategies for recombinant protein characterization. The principal recent developments have been matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Using these tools, accurate molecular mass determinations can now be obtained routinely-often using minute (picomole-femtomole) quantities of protein or protein fragments. These techniques have proved indispensible for detailed characterization of the post-translational modifications of recombinant proteins produced by eukaryotic systems. Glycosylation is arguably the most important and complex of these modifications and has prompted widespread use of these new techniques. In this mini-review article I describe recent advances in the use of mass spectrometry for analysis of recombinant glycoproteins.  相似文献   

2.
Top-down mass spectrometry strategies allow identification and characterization of proteins and protein networks by direct fragmentation. These analytical processes involve a panel of fragmentation mechanisms, some of which preserve protein post-translational modifications. Thus top-down is of special interest in clinical biochemistry to probe modified proteins as potential disease biomarkers. This review describes separating methods, mass spectrometry instrumentation, bioinformatics, and theoretical aspects of fragmentation mechanisms used for top-down analysis. The biological interest of this strategy is extensively reported regarding the characterization of post-translational modifications in biochemical pathways and the discovery of biomarkers. One has to bear in mind that quantitative aspects that are beyond the focus of this review are also of critical important for biomarker discovery. The constant evolution of technologies makes top-down strategies crucial players in clinical and basic proteomics.  相似文献   

3.
The entire genomic DNA sequences of a number of prokaryotic and eukaryotic species are now available and many more, including the human genome, will be completed in the near future. The state-of-life of a cell at any given time, however, is defined by its protein composition, i.e., its proteome. Gel electrophoresis, mass spectrometry, and bioinformatics will be important tools for protein and proteome analysis in the post-genome era. Protein identification from electrophoretic gels by mass spectrometric peptide mapping or peptide sequencing combined with sequence database searching is established and has been applied to numerous biological systems. We describe current strategies and selected applications in molecular and cell biology. The next challenges are detailed structure/function analyses, which include studying the molecular composition of multiprotein complexes and characterization of secondary modifications of proteins. The advantages and limitations of a number of mass spectrometry-based strategies designed for microcharacterization of low amounts of protein from electrophoretic gels are discussed and illustrated by examples. Proteins Suppl. 2:74–89, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Protein phosphorylation is a key regulator of cellular signaling pathways. It is involved in most cellular events in which the complex interplay between protein kinases and protein phosphatases strictly controls biological processes such as proliferation, differentiation, and apoptosis. Defective or altered signaling pathways often result in abnormalities leading to various diseases, emphasizing the importance of understanding protein phosphorylation. Phosphorylation is a transient modification, and phosphoproteins are often very low abundant. Consequently, phosphoproteome analysis requires highly sensitive and specific strategies. Today, most phosphoproteomic studies are conducted by mass spectrometric strategies in combination with phospho‐specific enrichment methods. This review presents an overview of different analytical strategies for the characterization of phosphoproteins. Emphasis will be on the affinity methods utilized specifically for phosphoprotein and phosphopeptide enrichment prior to MS analysis, and on recent applications of these methods in cell biological applications.  相似文献   

5.
Mass spectrometry has proved to be an important tool for protein biomarker discovery, identification and characterization. However, global proteomic profiling strategies often fail to identify known low-abundance biomarkers as a result of the limited dynamic range of mass spectrometry (two to three orders of magnitude) compared with the large dynamic range of protein concentrations in biologic fluids (11 to 12 orders of magnitude for serum). In addition, the number of peptides generated in such methods vastly overwhelms the resolution capacity of mass spectrometers, requiring extensive sample clean-up (e.g., affinity tag, retentate chromatography and/or high-performance liquid chromatography) before mass spectrometry analysis. Baiting and affinity pre-enrichment strategies, which overcome the dynamic range and sample complexity issues of global proteomic strategies, are very difficult to couple to mass spectrometry. This is due to the fact that it is nearly impossible to sort target peptides from those of the bait since there will be many cases of isobaric peptides. IDBEST? (Target Discovery, Inc.) is a new tagging strategy that enables such pre-enrichment of specific proteins or protein classes as the resulting tagged peptides are distinguishable from those of the bait by a mass defect shift of approximately 0.1 atomic mass units. The special characteristics of these tags allow: resolution of tagged peptides from untagged peptides through incorporation of a mass defect element; high-precision quantitation of up- and downregulation by using stable isotope versions of the same tag; and potential analysis of protein isoforms through more complete peptide coverage from the proteins of interest.  相似文献   

6.
7.
Mass spectrometry has proved to be an important tool for protein biomarker discovery, identification and characterization. However, global proteomic profiling strategies often fail to identify known low-abundance biomarkers as a result of the limited dynamic range of mass spectrometry (two to three orders of magnitude) compared with the large dynamic range of protein concentrations in biologic fluids (11 to 12 orders of magnitude for serum). In addition, the number of peptides generated in such methods vastly overwhelms the resolution capacity of mass spectrometers, requiring extensive sample clean-up (e.g., affinity tag, retentate chromatography and/or high-performance liquid chromatography) before mass spectrometry analysis. Baiting and affinity pre-enrichment strategies, which overcome the dynamic range and sample complexity issues of global proteomic strategies, are very difficult to couple to mass spectrometry. This is due to the fact that it is nearly impossible to sort target peptides from those of the bait since there will be many cases of isobaric peptides. IDBEST (Target Discovery, Inc.) is a new tagging strategy that enables such pre-enrichment of specific proteins or protein classes as the resulting tagged peptides are distinguishable from those of the bait by a mass defect shift of approximately 0.1 atomic mass units. The special characteristics of these tags allow: resolution of tagged peptides from untagged peptides through incorporation of a mass defect element; high-precision quantitation of up- and downregulation by using stable isotope versions of the same tag; and potential analysis of protein isoforms through more complete peptide coverage from the proteins of interest.  相似文献   

8.
Protein activity and turnover is tightly and dynamically regulated in living cells. Whereas the three-dimensional protein structure is predominantly determined by the amino acid sequence, posttranslational modification (PTM) of proteins modulates their molecular function and the spatial-temporal distribution in cells and tissues. Most PTMs can be detected by protein and peptide analysis by mass spectrometry (MS), either as a mass increment or a mass deficit relative to the nascent unmodified protein. Tandem mass spectrometry (MS/MS) provides a series of analytical features that are highly useful for the characterization of modified proteins via amino acid sequencing and specific detection of posttranslationally modified amino acid residues. Large-scale, quantitative analysis of proteins by MS/MS is beginning to reveal novel patterns and functions of PTMs in cellular signaling networks and biomolecular structures.  相似文献   

9.
Protein phosphorylation on serine, threonine and tyrosine is recognized as a major tool of signal transduction in bacteria. However, progress in the field has been hampered by the lack of global and site-specific data on bacterial phosphoproteomes. Recent advances in mass spectrometry-based proteomics have encouraged bacteriologists to start using powerful gel-free approaches for global detection of phosphorylated proteins. These studies have generated large data sets of proteins phosphorylated on serine, threonine and tyrosine, with identified phosphorylation sites which represent an excellent starting point for in-depth physiological characterization of kinases and their substrates. The list of phosphorylated proteins inspired a number of physiological studies in which the identity of the phosphorylation site facilitated the elucidation of molecular mechanisms of signaling and regulation. Bacterial phosphoproteomics also provided interesting insights into the evolutionary aspects of protein phosphorylation. The field is rapidly embracing quantitative mass spectrometry strategies, comparing phosphoproteome dynamics in changing conditions and aiming to reconstruct the entire regulatory networks by linking kinases to their physiological substrates.  相似文献   

10.
Eukaryotes generally rely on signal transduction by mitogen-activated protein kinases (MAPKs) for activating their regulatory pathways. However, the presence of a complete MAPK cascade in Plasmodium falciparum is debatable because a search of the entire genome did not portray known MAPK kinase (MAPKK) sequences. Via homology PCR experiments, only two copies of plasmodial MAPK homologues (Pfmap1 and Pfmap2) have been identified but their upstream activators remain unknown. In an earlier experiment, Pfnek3 was found to be an unusual activator of Pfmap2 in in vitro experiments, despite its molecular identity as a malarial protein kinase from the NIMA (Never in Mitosis, Aspergillus) family. In this study, the role of Pfnek3 as a likely upstream MAPKK is defined through molecular and biochemical characterization. Since a previous report proposes a TSH motif as an activation site of Pfmap2, its site-directed mutants, T290A, S291A, and H292K were constructed to elucidate the involvement of Pfnek3 in phosphorylating and activating Pfmap2 in a battery of kinase assays. The results suggested that residue T290 is the site of phosphorylation by Pfnek3. This supposition was further supported by liquid chromatography mass spectrometry. Although P. falciparum does not appear to possess a conventional MAPK cascade, they may rely on other kinases such as Pfnek3 to carry out similar phosphorylation to activate its signaling pathways.  相似文献   

11.
The reversible phosphorylation of proteins plays a major role in many vital cellular processes by modulating protein function and transmitting signals within cellular pathways and networks. Because phosphorylation is dynamic and the sites of modification cannot be predicted by an organism's genome, proteomic measurements are required to identify sites of and changes in the phosphorylation state of proteins. The low stoichiometry of phosphorylation sites that accompany the multifarious nature of protein phosphorylation in biological systems continues to challenge the dynamic range of present mass spectrometry (MS) technologies and proteomic measurements, despite the preponderance of research and analytical methods devoted to this area. This review addresses some of the strategies and limitations involving the use of MS to map and quantify changes in protein phosphorylation sites for samples that range from a single protein to an entire proteome, and presents several compelling reasons as to why comprehensive phosphorylation site analysis has proven to be so elusive without a hypothesis-driven experimental approach to elicit more meaningful and confident results.  相似文献   

12.
Mass spectrometry has evolved as a technique suitable for the characterization of peptides and proteins beyond their linear sequence. The advantages of mass spectrometric sample analysis are high sensitivity, high mass accuracy, rapid analysis time and low sample consumption. In epitope mapping, the molecular structure of an antigen (the epitope or antigenic determinant) that interacts with the paratope (recognition surface) of the antibody is identified. To obtain information on linear, conformational and/or discontinuous epitopes, various approaches have been developed in conjunction with mass spectrometry. These methods include limited proteolysis and epitope footprinting, epitope excision and epitope extraction for linear epitopes and probing the surface accessibility of residues by differential chemical modifications of specific amino acid side chains or by differential hydrogen/deuterium exchange of the protein backbone amides for conformational and discontinuous epitopes. Epitope mapping by mass spectrometry is applicable in basic biochemical research and, with increasing robustness, should soon find its implementation in routine clinical diagnosis.  相似文献   

13.
With advances in ionization methods and instrumentation, liquid chromatography (LC)/mass spectrometry (MS) has become a powerful technology for protein characterization. This review article will describe the general approaches on LC-MS analysis in protein characterization, including bottom-up and top-down strategies. Discussions will be given on characterization of recombinant proteins, and post-translational and protein modifications such as disulfide bonds, glycosylation and phosphorylation using LC-MS. New research directions in this area will also be presented to illustrate future prospects of LC-MS in protein characterization, including application to proteomics.  相似文献   

14.
With advances in ionization methods and instrumentation, liquid chromatography (LC)/mass spectrometry (MS) has become a powerful technology for protein characterization. This review article will describe the general approaches on LC-MS analysis in protein characterization, including bottom-up and top-down strategies. Discussions will be given on characterization of recombinant proteins, and post-translational and protein modifications such as disulfide bonds, glycosylation and phosphorylation using LC-MS. New research directions in this area will also be presented to illustrate future prospects of LC-MS in protein characterization, including application to proteomics.  相似文献   

15.
Mass spectrometry has evolved as a technique suitable for the characterization of peptides and proteins beyond their linear sequence. The advantages of mass spectrometric sample analysis are high sensitivity, high mass accuracy, rapid analysis time and low sample consumption. In epitope mapping, the molecular structure of an antigen (the epitope or antigenic determinant) that interacts with the paratope (recognition surface) of the antibody is identified. To obtain information on linear, conformational and/or discontinuous epitopes, various approaches have been developed in conjunction with mass spectrometry. These methods include limited proteolysis and epitope footprinting, epitope excision and epitope extraction for linear epitopes and probing the surface accessibility of residues by differential chemical modifications of specific amino acid side chains or by differential hydrogen/deuterium exchange of the protein backbone amides for conformational and discontinuous epitopes. Epitope mapping by mass spectrometry is applicable in basic biochemical research and, with increasing robustness, should soon find its implementation in routine clinical diagnosis.  相似文献   

16.
The characterization of heterogeneous multicomponent protein complexes, which goes beyond identification of protein subunits, is a challenging task. Here we describe and apply a comprehensive method that combines a mild affinity purification procedure with a multiplexed mass spectrometry approach for the in-depth characterization of the exosome complex from Saccharomyces cerevisiae expressed at physiologically relevant levels. The exosome is an ensemble of primarily 3' --> 5' exoribonucleases and plays a major role in RNA metabolism. The complex has been reported to consist of 11 proteins in molecular mass ranging from 20 to 120 kDa. By using native macromolecular mass spectrometry we measured accurate masses (around 400 kDa) of several (sub)exosome complexes. Combination of these data with proteolytic peptide LC tandem mass spectrometry using a linear ion trap coupled to a FT-ICR mass spectrometer and intact protein LC mass spectrometry provided us with the identity of the different exosome components and (sub)complexes, including the subunit stoichiometry. We hypothesize that the observed complexes provide information about strongly and weakly interacting exosome-associated proteins. In our analysis we also identified for the first time phosphorylation sites in seven different exosome subunits. The phosphorylation site in the Rrp4 subunit is fully conserved in the human homologue of Rrp4, which is the only previously reported phosphorylation site in any of the human exosome proteins. The described multiplexed mass spectrometry-based procedure is generic and thus applicable to many different types of cellular molecular machineries even if they are expressed at endogenous levels.  相似文献   

17.
Protein-nucleic acid complexes are commonly studied by photochemical cross-linking. UV-induced cross-linking of protein to nucleic acid may be followed by structural analysis of the conjugated protein to localize the cross-linked amino acids and thereby identify the nucleic acid binding site. Mass spectrometry is becoming increasingly popular for characterization of purified peptide-nucleic acid heteroconjugates derived from UV cross-linked protein-nucleic acid complexes. The efficiency of mass spectrometry-based methods is, however, hampered by the contrasting physico-chemical properties of nucleic acid and peptide entities present in such heteroconjugates. Sample preparation of the peptide-nucleic acid heteroconjugates is, therefore, a crucial step in any mass spectrometry-based analytical procedure. This study demonstrates the performance of four different MS-based strategies to characterize E. coli single-stranded DNA binding protein (SSB) that was UV-cross-linked to a 5-iodouracil containing DNA oligomer. Two methods were optimized to circumvent the need for standard liquid chromatography and gel electrophoresis, thereby dramatically increasing the overall sensitivity of the analysis. Enzymatic degradation of protein and oligonucleotide was combined with miniaturized sample preparation methods for enrichment and desalting of cross-linked peptide-nucleic acid heteroconjugates from complex mixtures prior to mass spectrometric analysis. Detailed characterization of the peptidic component of two different peptide-DNA heteroconjugates was accomplished by matrix-assisted laser desorption/ionization mass spectrometry and allowed assignment of tryptophan-54 and tryptophan-88 as candidate cross-linked residues. Sequencing of those peptide-DNA heteroconjugates by nanoelectrospray quadrupole time-of-flight tandem mass spectrometry identified tryptophan-54 and tryptophan-88 as the sites of cross-linking. Although the UV-cross-linking yield of the protein-DNA complex did not exceed 15%, less than 100 pmole of SSB protein was required for detailed structural analysis by mass spectrometry.  相似文献   

18.
Because of their complexity, the separation of intact proteins from complex mixtures is an important step to comparative proteomics and the identification and characterization of the proteins by mass spectrometry (MS). In the study reported, we evaluated the use of nonporous-reversed-phase (np-RP)-HPLC for intact protein separation prior to MS analyses. The separation system was characterized and compared to 1D-SDS-PAGE electrophoresis in terms of resolution and sensitivity. We demonstrate that np-RP-HPLC protein separation is highly reproducible and provides intact protein fractions which can be directly analyzed by MALDI-TOF-MS for intact molecular weight determination. An in-well digestion protocol was developed, allowing for rapid protein identification by peptide mass fingerprinting (PMF) and resulted in comparable or improved peptide recovery compared with in-gel digestion. The np-RP sensitivity of detection by UV absorbance at 214 nm for intact proteins was at the low ng level and the sensitivity of peptide analysis by MALDI-TOF-MS was in the 10-50 fmol level. A membrane protein fraction was characterized to demonstrate application of this methodology. Among the identified proteins, multiple forms of vimentin were observed. Overall, we demonstrate that np-RP-HPLC followed by MALDI-TOF-MS allows for rapid, sensitive, and reproducible protein fractionation and very specific protein characterization by integration of PMF analysis with MS intact molecular weight information.  相似文献   

19.
Determination of the disulfide-bond arrangement of a protein by characterization of disulfide-linked peptides in proteolytic digests may be complicated by resistance of the protein to specific proteases, disulfide interchange, and/or production of extremely complex mixtures by less specific proteolysis. In this study, mass spectrometry has been used to show that incorporation of (18)O into peptides during peptic digestion of disulfide-linked proteins in 50% (18)O water resulted in isotope patterns and increases in average masses that facilitated identification and characterization of disulfide-linked peptides even in complex mixtures, without the need for reference digests in 100% (16)O water. This is exemplified by analysis of peptic digests of model proteins lysozyme and ribonuclease A (RNaseA) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry (MS). Distinct isotope profiles were evident when two peptide chains were linked by disulfide bonds, provided one of the chains did not contain the C terminus of the protein. This latter class of peptide, and single-chain peptides containing an intrachain disulfide bond, could be identified and characterized by mass shifts produced by reduction. Reduction also served to confirm other assignments. Isotope profiling of peptic digests showed that disulfide-linked peptides were often enriched in the high molecular weight fractions produced by size exclusion chromatography (SEC) of the digests. Applicability of these procedures to analysis of a more complex disulfide-bond arrangement was shown with the hemagglutinin/neuraminidase of Newcastle disease virus.  相似文献   

20.
Zooming in: fractionation strategies in proteomics   总被引:5,自引:0,他引:5  
Stasyk T  Huber LA 《Proteomics》2004,4(12):3704-3716
The recent development of mass spectrometry, i.e., high sensitivity, automation of protein identification and some post-translational modifications (PTMs) significantly increased the number of large-scale proteomics projects. However, there are still considerable limitations as none of the currently available proteomics techniques allows the analysis of an entire proteome in a single step procedure. On the other hand, there are several successful studies analyzing well defined groups of proteins, e.g., proteins of purified organelles, membrane microdomains or isolated proteins with certain PTMs. Coupling of advanced separation methodologies (different prefractionation strategies, such as subcellular fractionation, affinity purification, fractionation of proteins and peptides according to their physicochemical properties) to highly sensitive mass spectrometers provides powerful means to detect and analyze dynamic changes of low abundant regulatory proteins in eukaryotic cells on the subcellular level. This review summarizes and discusses recent strategies in proteomics approaches where different fractionation strategies were successfully applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号